Type of Publication: | Journal article |
Author: | Magiera, Martin P.; Wolf, Dietrich E.; Brendel, Lothar; Nowak, Ulrich |
Year of publication: | 2009 |
Published in: | IEEE Transactions on Magnetics ; 45 (2009), 10. - pp. 3938-3941 |
DOI (citable link): | https://dx.doi.org/10.1109/TMAG.2009.2023623 |
Summary: |
A magnetic dipole moving parallel to a ferromagnetically interacting surface is subject to a friction force due to the conversion of kinetic energy into spin excitations. This phenomenon is studied in the framework of the classical anisotropic Heisenberg-model, using the stochastic Landau-Lifshitz-Gilbert equation. The friction force is calculated from dissipation rates, which are obtained directly from energy functions. For small velocities, magnetic friction increases linearly (like Stokes' law for laminar flow). The characteristic low- and high-temperature behavior is analyzed and explained by a relaxation time ansatz.
|
Subject (DDC): | 530 Physics |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
MAGIERA, Martin P., Dietrich E. WOLF, Lothar BRENDEL, Ulrich NOWAK, 2009. Magnetic Friction and the Role of Temperature. In: IEEE Transactions on Magnetics. 45(10), pp. 3938-3941. Available under: doi: 10.1109/TMAG.2009.2023623
@article{Magiera2009Magne-955, title={Magnetic Friction and the Role of Temperature}, year={2009}, doi={10.1109/TMAG.2009.2023623}, number={10}, volume={45}, journal={IEEE Transactions on Magnetics}, pages={3938--3941}, author={Magiera, Martin P. and Wolf, Dietrich E. and Brendel, Lothar and Nowak, Ulrich} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/955"> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Nowak, Ulrich</dc:contributor> <dc:contributor>Magiera, Martin P.</dc:contributor> <dc:contributor>Wolf, Dietrich E.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:52:27Z</dc:date> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/955"/> <dc:language>eng</dc:language> <dc:creator>Brendel, Lothar</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Nowak, Ulrich</dc:creator> <dcterms:bibliographicCitation>Publ. in: IEEE Transactions on Magnetics 45 (2009), 10, pp. 3938 3941</dcterms:bibliographicCitation> <dc:contributor>Brendel, Lothar</dc:contributor> <dcterms:issued>2009</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:52:27Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dcterms:abstract xml:lang="eng">A magnetic dipole moving parallel to a ferromagnetically interacting surface is subject to a friction force due to the conversion of kinetic energy into spin excitations. This phenomenon is studied in the framework of the classical anisotropic Heisenberg-model, using the stochastic Landau-Lifshitz-Gilbert equation. The friction force is calculated from dissipation rates, which are obtained directly from energy functions. For small velocities, magnetic friction increases linearly (like Stokes' law for laminar flow). The characteristic low- and high-temperature behavior is analyzed and explained by a relaxation time ansatz.</dcterms:abstract> <dc:creator>Magiera, Martin P.</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Wolf, Dietrich E.</dc:creator> <dcterms:title>Magnetic Friction and the Role of Temperature</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> </rdf:Description> </rdf:RDF>