On least squares estimation for long-memory lattice processes

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

BERAN, Jan, Sucharita GHOSH, Dieter SCHELL, 2009. On least squares estimation for long-memory lattice processes. In: Journal of Multivariate Analysis. 100(10), pp. 2178-2194. Available under: doi: 10.1016/j.jmva.2009.04.007

@article{Beran2009least-813, title={On least squares estimation for long-memory lattice processes}, year={2009}, doi={10.1016/j.jmva.2009.04.007}, number={10}, volume={100}, journal={Journal of Multivariate Analysis}, pages={2178--2194}, author={Beran, Jan and Ghosh, Sucharita and Schell, Dieter} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/813"> <dcterms:bibliographicCitation>Publ. in: Journal of Multivariate Analysis 100 (2009), 10, pp. 2178-2194</dcterms:bibliographicCitation> <dc:contributor>Beran, Jan</dc:contributor> <dcterms:title>On least squares estimation for long-memory lattice processes</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:58Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Ghosh, Sucharita</dc:creator> <dcterms:rights rdf:resource="https://kops.uni-konstanz.de/page/termsofuse"/> <dcterms:issued>2009</dcterms:issued> <dcterms:abstract xml:lang="eng">A flexible class of anisotropic stationary lattice processes with long memory can be defined in terms of a two-way fractional ARIMA (FARIMA) representation. We consider parameter estimation based on minimizing an approximate residual sum of squares. The method can be applied to sampling areas that are not necessarily rectangular. A central limit theorem is derived under general conditions. The method is illustrated by an analysis of satellite data consisting of total column ozone amounts in Europe and the Atlantic respectively.</dcterms:abstract> <dc:creator>Schell, Dieter</dc:creator> <dc:creator>Beran, Jan</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/813"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:48:58Z</dcterms:available> <dc:contributor>Schell, Dieter</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Ghosh, Sucharita</dc:contributor> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account