Type of Publication: | Journal article |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-51649 |
Author: | Stehr, Matthias; Smau, Liliana; Singh, Mahavir; Seth, Oliver; Macheroux, Peter; Ghisla, Sandro; Diekmann, Hans |
Year of publication: | 1999 |
Published in: | Biological Chemistry ; 380 (1999), 1. - pp. 47-54. - ISSN 1431-6730 |
Pubmed ID: | 10064136 |
DOI (citable link): | https://dx.doi.org/10.1515/BC.1999.006 |
Summary: |
The proposed FAD binding site of L-lysine N6-hydroxylase (EC 1.14.13.99) exhibits an unusual proline in a position where a highly conserved glycine is found in other FAD dependent hydroxylases. We have studied the role of this proline by mutating it to glycine in [P14G]aerA, which was expressed in Escherichia coli M15-2 and purified to homogeneity. The mutation has marked effects on the affinities of the cofactors FAD and NADPH as well as the substrate, lysine. Compared to the wild-type enzyme, the activity vs. pH profile of the mutant protein indicates a shift of the apparent pK'as (7.8 and 8.7 for wild-type and 6.8 and 7.7 for the P14G-mutant enzyme) and of the activity maximum (pH 8 for wild-type and pH 7 for the P14G-mutant enzyme). While the activity of the mutant enzyme is much lower under conditions found to be optimal for the wild-type enzyme, adjustment of substrate and cofactor concentrations and pH leads to comparable activities for the mutant enzyme. These results suggest that the proline fulfils an important structural role in the proposed FAD binding site.
|
Subject (DDC): | 570 Biosciences, Biology |
Keywords: | Aerobactin, Enzyme kinetics, Flavoprotein in monooxygenase, Lysine, Nucleotide binding, Site-directed mutagenesis |
Link to License: | Attribution-NonCommercial-NoDerivs 2.0 Generic |
STEHR, Matthias, Liliana SMAU, Mahavir SINGH, Oliver SETH, Peter MACHEROUX, Sandro GHISLA, Hans DIEKMANN, 1999. Studies with lysine N6-hydroxylase : effect of a mutation in the assumed FAD binding site on coenzyme affinities and on lysine hydroxylating activity. In: Biological Chemistry. 380(1), pp. 47-54. ISSN 1431-6730. Available under: doi: 10.1515/BC.1999.006
@article{Stehr1999Studi-7566, title={Studies with lysine N6-hydroxylase : effect of a mutation in the assumed FAD binding site on coenzyme affinities and on lysine hydroxylating activity}, year={1999}, doi={10.1515/BC.1999.006}, number={1}, volume={380}, issn={1431-6730}, journal={Biological Chemistry}, pages={47--54}, author={Stehr, Matthias and Smau, Liliana and Singh, Mahavir and Seth, Oliver and Macheroux, Peter and Ghisla, Sandro and Diekmann, Hans} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/7566"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Stehr, Matthias</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/7566"/> <dc:contributor>Smau, Liliana</dc:contributor> <dc:creator>Macheroux, Peter</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:35:26Z</dcterms:available> <dc:contributor>Diekmann, Hans</dc:contributor> <dc:contributor>Singh, Mahavir</dc:contributor> <dc:contributor>Seth, Oliver</dc:contributor> <dcterms:title>Studies with lysine N6-hydroxylase : effect of a mutation in the assumed FAD binding site on coenzyme affinities and on lysine hydroxylating activity</dcterms:title> <dc:format>application/pdf</dc:format> <dc:language>eng</dc:language> <dcterms:issued>1999</dcterms:issued> <dc:contributor>Macheroux, Peter</dc:contributor> <dc:creator>Diekmann, Hans</dc:creator> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <dc:contributor>Stehr, Matthias</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7566/1/Studies_with_lysine_N6_hydroxylase.pdf"/> <dcterms:bibliographicCitation>First publ. in: Biological Chemistry 380 (1999), 1, pp.47-54</dcterms:bibliographicCitation> <dc:creator>Smau, Liliana</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T17:35:26Z</dc:date> <dcterms:abstract xml:lang="eng">The proposed FAD binding site of L-lysine N6-hydroxylase (EC 1.14.13.99) exhibits an unusual proline in a position where a highly conserved glycine is found in other FAD dependent hydroxylases. We have studied the role of this proline by mutating it to glycine in [P14G]aerA, which was expressed in Escherichia coli M15-2 and purified to homogeneity. The mutation has marked effects on the affinities of the cofactors FAD and NADPH as well as the substrate, lysine. Compared to the wild-type enzyme, the activity vs. pH profile of the mutant protein indicates a shift of the apparent pK'as (7.8 and 8.7 for wild-type and 6.8 and 7.7 for the P14G-mutant enzyme) and of the activity maximum (pH 8 for wild-type and pH 7 for the P14G-mutant enzyme). While the activity of the mutant enzyme is much lower under conditions found to be optimal for the wild-type enzyme, adjustment of substrate and cofactor concentrations and pH leads to comparable activities for the mutant enzyme. These results suggest that the proline fulfils an important structural role in the proposed FAD binding site.</dcterms:abstract> <dc:creator>Ghisla, Sandro</dc:creator> <dc:creator>Singh, Mahavir</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:creator>Seth, Oliver</dc:creator> <dc:contributor>Ghisla, Sandro</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/7566/1/Studies_with_lysine_N6_hydroxylase.pdf"/> </rdf:Description> </rdf:RDF>
Studies_with_lysine_N6_hydroxylase.pdf | 1286 |