Type of Publication: | Journal article |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-50682 |
Author: | Denk, Robert; Volevič, Leonid R. |
Year of publication: | 2001 |
Published in: | Functional differential equations ; 8 (2001). - pp. 147-161 |
Summary: |
In this paper we discuss ellipticity conditions for some parameter-dependent boundary value problems which do not satisfy the Agmon-Agranovich-Vishik condition of ellipticity with parameter. The appropriate definition of ellipticity uses the concept of the Newton polygon. For the corresponding boundary value problems with small parameter we construct the formal asymptotic solution, thus explaining the nature of the Shapiro-Lopatinskii condition for these problems.
|
Subject (DDC): | 510 Mathematics |
Link to License: | Attribution-NonCommercial-NoDerivs 2.0 Generic |
DENK, Robert, Leonid R. VOLEVIČ, 2001. Newton's polygon in the theory of singular perturbations of boundary value problems. In: Functional differential equations. 8, pp. 147-161
@article{Denk2001Newto-720, title={Newton's polygon in the theory of singular perturbations of boundary value problems}, year={2001}, volume={8}, journal={Functional differential equations}, pages={147--161}, author={Denk, Robert and Volevič, Leonid R.} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/720"> <dcterms:bibliographicCitation>First publ. in: Functional differential equations 8 (2001), pp. 147-161</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Denk, Robert</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:title>Newton's polygon in the theory of singular perturbations of boundary value problems</dcterms:title> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:creator>Volevič, Leonid R.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/720/1/rd21.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:format>application/pdf</dc:format> <dcterms:abstract xml:lang="eng">In this paper we discuss ellipticity conditions for some parameter-dependent boundary value problems which do not satisfy the Agmon-Agranovich-Vishik condition of ellipticity with parameter. The appropriate definition of ellipticity uses the concept of the Newton polygon. For the corresponding boundary value problems with small parameter we construct the formal asymptotic solution, thus explaining the nature of the Shapiro-Lopatinskii condition for these problems.</dcterms:abstract> <dc:contributor>Volevič, Leonid R.</dc:contributor> <dc:creator>Denk, Robert</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:37Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/720"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:37Z</dc:date> <dcterms:issued>2001</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/720/1/rd21.pdf"/> </rdf:Description> </rdf:RDF>
rd21.pdf | 68 |