KOPS - The Institutional Repository of the University of Konstanz

Newton's polygon in the theory of singular perturbations of boundary value problems

Newton's polygon in the theory of singular perturbations of boundary value problems

Cite This

Files in this item

Checksum: MD5:6c65ffc5674088e9c7b3daad6cfc06b7

DENK, Robert, Leonid R. VOLEVIČ, 2001. Newton's polygon in the theory of singular perturbations of boundary value problems. In: Functional differential equations. 8, pp. 147-161

@article{Denk2001Newto-720, title={Newton's polygon in the theory of singular perturbations of boundary value problems}, year={2001}, volume={8}, journal={Functional differential equations}, pages={147--161}, author={Denk, Robert and Volevič, Leonid R.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/720"> <dcterms:bibliographicCitation>First publ. in: Functional differential equations 8 (2001), pp. 147-161</dcterms:bibliographicCitation> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Denk, Robert</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:title>Newton's polygon in the theory of singular perturbations of boundary value problems</dcterms:title> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dc:creator>Volevič, Leonid R.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/720/1/rd21.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:format>application/pdf</dc:format> <dcterms:abstract xml:lang="eng">In this paper we discuss ellipticity conditions for some parameter-dependent boundary value problems which do not satisfy the Agmon-Agranovich-Vishik condition of ellipticity with parameter. The appropriate definition of ellipticity uses the concept of the Newton polygon. For the corresponding boundary value problems with small parameter we construct the formal asymptotic solution, thus explaining the nature of the Shapiro-Lopatinskii condition for these problems.</dcterms:abstract> <dc:contributor>Volevič, Leonid R.</dc:contributor> <dc:creator>Denk, Robert</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:37Z</dcterms:available> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/720"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:37Z</dc:date> <dcterms:issued>2001</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/720/1/rd21.pdf"/> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

rd21.pdf 68

This item appears in the following Collection(s)

Attribution-NonCommercial-NoDerivs 2.0 Generic Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivs 2.0 Generic

Search KOPS


Browse

My Account