Type of Publication: | Journal article |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-50635 |
Author: | Denk, Robert; Volevič, Leonid R. |
Year of publication: | 2002 |
Published in: | Translations Series 2 / American Mathematical Society ; 206 (2002). - pp. 29-64 |
Summary: |
In this paper boundary value problems are studied for systems with large parameter, elliptic in the sense of Douglis-Nirenberg. We restrict ourselves on model problems acting in the half-space. It is possible to define parameter-ellipticity for such problems, in particular we formulate Shapiro-Lopatinskii type conditions on the boundary operators. It can be shown that parameter-elliptic boundary value problems are uniquely solvable and that their solutions satisfy uniform a priori estimates in parameter-dependent norms. We essentially use ideas from Newton's polygon method and of Vishik-Lyusternik boundary layer theory.
|
Subject (DDC): | 510 Mathematics |
Keywords: | Mixed order systems, Douglis-Nirenberg systems, ellipticity with parameter, a priori estimate |
Link to License: | Attribution-NonCommercial-NoDerivs 2.0 Generic |
DENK, Robert, Leonid R. VOLEVIČ, 2002. Elliptic boundary value problems with large parameter for mixed order systems. In: Translations Series 2 / American Mathematical Society. 206, pp. 29-64
@article{Denk2002Ellip-662, title={Elliptic boundary value problems with large parameter for mixed order systems}, year={2002}, volume={206}, journal={Translations Series 2 / American Mathematical Society}, pages={29--64}, author={Denk, Robert and Volevič, Leonid R.} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/662"> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/662/1/rd26.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/662/1/rd26.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/662"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Denk, Robert</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:25Z</dcterms:available> <dc:format>application/pdf</dc:format> <dc:contributor>Volevič, Leonid R.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:25Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/2.0/"/> <dcterms:abstract xml:lang="eng">In this paper boundary value problems are studied for systems with large parameter, elliptic in the sense of Douglis-Nirenberg. We restrict ourselves on model problems acting in the half-space. It is possible to define parameter-ellipticity for such problems, in particular we formulate Shapiro-Lopatinskii type conditions on the boundary operators. It can be shown that parameter-elliptic boundary value problems are uniquely solvable and that their solutions satisfy uniform a priori estimates in parameter-dependent norms. We essentially use ideas from Newton's polygon method and of Vishik-Lyusternik boundary layer theory.</dcterms:abstract> <dcterms:issued>2002</dcterms:issued> <dc:creator>Volevič, Leonid R.</dc:creator> <dc:creator>Denk, Robert</dc:creator> <dcterms:title>Elliptic boundary value problems with large parameter for mixed order systems</dcterms:title> <dc:rights>Attribution-NonCommercial-NoDerivs 2.0 Generic</dc:rights> <dcterms:bibliographicCitation>First publ. in: Translations Series 2 / American Mathematical Society 206 (2002), pp. 29-64</dcterms:bibliographicCitation> </rdf:Description> </rdf:RDF>
rd26.pdf | 202 |