Nonlinear Stability of Ekman boundary layers

Cite This

Files in this item

Checksum: MD5:f205f86d51ec87b669cc5c0c7f00766b

HESS, Matthias, Matthias HIEBER, Alex MAHALOV, Jürgen SAAL, 2007. Nonlinear Stability of Ekman boundary layers

@unpublished{Hess2007Nonli-653, title={Nonlinear Stability of Ekman boundary layers}, year={2007}, author={Hess, Matthias and Hieber, Matthias and Mahalov, Alex and Saal, Jürgen} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/653"> <dc:format>application/pdf</dc:format> <dcterms:issued>2007</dcterms:issued> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/653/1/research_paper_242.pdf"/> <dcterms:abstract xml:lang="eng">We consider the initial value problem for the three dimensional Navier-Stokes equations with rotation in the half-space subject to Dirichlet boundary conditions as well as the Ekman spiral which is a stationary solution to the above equations. It is proved that perturbed Ekman spirals are nonlinearly stable provided the corresponding Reynolds number is small enough. Moreover, the decay rate can be computed in terms of the decay of the corresponding linear problem.</dcterms:abstract> <dcterms:title>Nonlinear Stability of Ekman boundary layers</dcterms:title> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/653"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:23Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Mahalov, Alex</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:45:23Z</dc:date> <dc:contributor>Hess, Matthias</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/653/1/research_paper_242.pdf"/> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Saal, Jürgen</dc:contributor> <dc:contributor>Hieber, Matthias</dc:contributor> <dc:creator>Hieber, Matthias</dc:creator> <dc:creator>Saal, Jürgen</dc:creator> <dc:creator>Mahalov, Alex</dc:creator> <dc:creator>Hess, Matthias</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

research_paper_242.pdf 372

This item appears in the following Collection(s)

Search KOPS


Browse

My Account