Publikationstyp: | Preprint |
URI (zitierfähiger Link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-20904 |
Autor/innen: | Jüngel, Ansgar; Markovich, Peter A.; Toscani, Giuseppe |
Erscheinungsjahr: | 2000 |
Schriftenreihe: | Konstanzer Schriften in Mathematik und Informatik ; 118 |
Zusammenfassung: |
Explicit decay rates for solutions of systems of degenerate parabolic equations in the whole space or in bounded domains subject to homogeneous Dirichlet boundary conditions are proven. These systems include the scalar porous medium, fast diffusion and p-Laplace equation and strongly coupled systems of these equations. For the whole space problem, the (algebraic) decay rates turn out to be optimal. In the case of bounded domains, algebraic and exponential decay rates are shown to hold depending on the nonlinearities. The proofs of these results rely on the use of the entropy functional together with generalized Nash inequalities (for the whole space problem) or Poincare inqualities (for the bounded domain case).
|
Fachgebiet (DDC): | 004 Informatik |
Link zur Lizenz: | Nutzungsbedingungen |
JÜNGEL, Ansgar, Peter A. MARKOVICH, Giuseppe TOSCANI, 2000. Decay rates for solutions of degenerate parabolic systems
@unpublished{Jungel2000Decay-6015, title={Decay rates for solutions of degenerate parabolic systems}, year={2000}, author={Jüngel, Ansgar and Markovich, Peter A. and Toscani, Giuseppe} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/6015"> <dc:creator>Toscani, Giuseppe</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:rights rdf:resource="https://kops.uni-konstanz.de/page/termsofuse"/> <dc:creator>Markovich, Peter A.</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/6015"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6015/1/preprint_118.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:46Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:format>application/pdf</dc:format> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Jüngel, Ansgar</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-24T16:08:46Z</dcterms:available> <dcterms:abstract xml:lang="eng">Explicit decay rates for solutions of systems of degenerate parabolic equations in the whole space or in bounded domains subject to homogeneous Dirichlet boundary conditions are proven. These systems include the scalar porous medium, fast diffusion and p-Laplace equation and strongly coupled systems of these equations. For the whole space problem, the (algebraic) decay rates turn out to be optimal. In the case of bounded domains, algebraic and exponential decay rates are shown to hold depending on the nonlinearities. The proofs of these results rely on the use of the entropy functional together with generalized Nash inequalities (for the whole space problem) or Poincare inqualities (for the bounded domain case).</dcterms:abstract> <dc:contributor>Toscani, Giuseppe</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/6015/1/preprint_118.pdf"/> <dc:contributor>Markovich, Peter A.</dc:contributor> <dcterms:title>Decay rates for solutions of degenerate parabolic systems</dcterms:title> <dc:creator>Jüngel, Ansgar</dc:creator> <dcterms:issued>2000</dcterms:issued> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>
preprint_118.pdf | 62 |