Type of Publication: | Bachelor thesis |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-2-1rrvhpmkai8mw0 |
Author: | Kartmann, Michael |
Year of publication: | 2019 |
Summary: |
Optimized Schwarz Methods (OSM) are Domain Decomposition (DD) methods for solving efficiently PDEs by splitting the computational domain in subdomains and solve iteratively through the resulting subproblems. The more subdomains are used, the greater the gain from parallelization can be, but on the other hand the slower the convergence of the OSM can be, which results in the question of scalability. In this thesis we show via Fourier analysis that OSMs for certain elliptic problems are weakly scalable, i.e., that they converge independent of the number of subdomains used.
|
Dissertation note: | Bachelor thesis, Universität Konstanz |
Subject (DDC): | 510 Mathematics |
Keywords: | Domain Decomposition, Elliptic PDEs, Weak Scalability, Optimized Schwarz Methods, Fourier Analysis |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
KARTMANN, Michael, 2019. A Weak Scalability Analysis For Optimized Schwarz Methods [Bachelor thesis]. Konstanz: Universität Konstanz
@mastersthesis{Kartmann2019Scala-58353, title={A Weak Scalability Analysis For Optimized Schwarz Methods}, year={2019}, address={Konstanz}, school={Universität Konstanz}, author={Kartmann, Michael} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/58353"> <dcterms:title>A Weak Scalability Analysis For Optimized Schwarz Methods</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/58353"/> <dc:rights>terms-of-use</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-22T09:03:39Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-08-22T09:03:39Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Kartmann, Michael</dc:creator> <dcterms:issued>2019</dcterms:issued> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">Optimized Schwarz Methods (OSM) are Domain Decomposition (DD) methods for solving efficiently PDEs by splitting the computational domain in subdomains and solve iteratively through the resulting subproblems. The more subdomains are used, the greater the gain from parallelization can be, but on the other hand the slower the convergence of the OSM can be, which results in the question of scalability. In this thesis we show via Fourier analysis that OSMs for certain elliptic problems are weakly scalable, i.e., that they converge independent of the number of subdomains used.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58353/3/Kartmann_2-1rrvhpmkai8mw0.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/58353/3/Kartmann_2-1rrvhpmkai8mw0.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Kartmann, Michael</dc:contributor> </rdf:Description> </rdf:RDF>
Kartmann_2-1rrvhpmkai8mw0.pdf | 33 |