Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können am Montag, 6.2. und Dienstag, 7.2. keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted on Monday, Feb. 6 and Tuesday, Feb. 7.)

Many Faces of Symmetric Edge Polytopes

Cite This

Files in this item

Checksum: MD5:89bb0cc15e6d32a34fcf9ae4264019b0

D'ALÌ, Alessio, Emanuele DELUCCHI, Mateusz MICHALEK, 2022. Many Faces of Symmetric Edge Polytopes. In: The Electronic Journal of Combinatorics. Herbert S. Wilf. 29(3), P3.24. ISSN 1097-1440. eISSN 1077-8926. Available under: doi: 10.37236/10387

@article{DAli2022Faces-58344, title={Many Faces of Symmetric Edge Polytopes}, year={2022}, doi={10.37236/10387}, number={3}, volume={29}, issn={1097-1440}, journal={The Electronic Journal of Combinatorics}, author={D'Alì, Alessio and Delucchi, Emanuele and Michalek, Mateusz}, note={Article Number: P3.24} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:date rdf:datatype="">2022-08-19T09:42:50Z</dc:date> <dc:contributor>Michalek, Mateusz</dc:contributor> <dspace:isPartOfCollection rdf:resource=""/> <dc:language>eng</dc:language> <dcterms:title>Many Faces of Symmetric Edge Polytopes</dcterms:title> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:rights rdf:resource=""/> <dcterms:available rdf:datatype="">2022-08-19T09:42:50Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2022</dcterms:issued> <dcterms:hasPart rdf:resource=""/> <dc:creator>Delucchi, Emanuele</dc:creator> <dc:creator>Michalek, Mateusz</dc:creator> <dspace:hasBitstream rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <dc:contributor>D'Alì, Alessio</dc:contributor> <dc:creator>D'Alì, Alessio</dc:creator> <dcterms:abstract xml:lang="eng">Symmetric edge polytopes are a class of lattice polytopes constructed from finite simple graphs. In the present paper we highlight their connections to the Kuramoto synchronization model in physics — where they are called adjacency polytopes — and to Kantorovich-Rubinstein polytopes from finite metric space theory. Each of these connections motivates the study of symmetric edge polytopes of particular classes of graphs. We focus on such classes and apply algebraic combinatorial methods to investigate invariants of the associated symmetric edge polytopes.</dcterms:abstract> <bibo:uri rdf:resource=""/> <dc:contributor>Delucchi, Emanuele</dc:contributor> </rdf:Description> </rdf:RDF>

Downloads since Aug 19, 2022 (Information about access statistics)

D'Ali_2-nasw3w7ear1k9.PDF 17

This item appears in the following Collection(s)

Search KOPS


My Account