Type of Publication: | Journal article |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-2-1izbq74cqtvor2 |
Author: | Dhariwal, Gaurav; Huber, Florian; Neamtu, Alexandra Aurelia |
Year of publication: | 2021 |
Published in: | Stochastic Analysis and Applications ; 39 (2021), 5. - pp. 898-925. - Taylor & Francis. - ISSN 0736-2994. - eISSN 1532-9356 |
DOI (citable link): | https://dx.doi.org/10.1080/07362994.2020.1857268 |
Summary: |
The main goal of this work is to relate weak and pathwise mild solutions for parabolic quasilinear stochastic partial differential equations (SPDEs). Extending in a suitable way techniques from the theory of nonautonomous semilinear SPDEs to the quasilinear case, we prove the equivalence of these two solution concepts.
|
Subject (DDC): | 510 Mathematics |
Keywords: | Quasilinear SPDEs, cross-diffusion systems, weak solution, pathwise mild solution |
Link to License: | Attribution 4.0 International |
Bibliography of Konstanz: | Yes |
Refereed: | Unknown |
DHARIWAL, Gaurav, Florian HUBER, Alexandra Aurelia NEAMTU, 2021. On the equivalence of pathwise mild and weak solutions for quasilinear SPDEs. In: Stochastic Analysis and Applications. Taylor & Francis. 39(5), pp. 898-925. ISSN 0736-2994. eISSN 1532-9356. Available under: doi: 10.1080/07362994.2020.1857268
@article{Dhariwal2021-09-03equiv-57950, title={On the equivalence of pathwise mild and weak solutions for quasilinear SPDEs}, year={2021}, doi={10.1080/07362994.2020.1857268}, number={5}, volume={39}, issn={0736-2994}, journal={Stochastic Analysis and Applications}, pages={898--925}, author={Dhariwal, Gaurav and Huber, Florian and Neamtu, Alexandra Aurelia} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/57950"> <dcterms:title>On the equivalence of pathwise mild and weak solutions for quasilinear SPDEs</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-06T09:22:46Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57950/1/Dhariwal_2-1izbq74cqtvor2.pdf"/> <dc:contributor>Neamtu, Alexandra Aurelia</dc:contributor> <dc:creator>Dhariwal, Gaurav</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-07-06T09:22:46Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57950"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Neamtu, Alexandra Aurelia</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Dhariwal, Gaurav</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Huber, Florian</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57950/1/Dhariwal_2-1izbq74cqtvor2.pdf"/> <dcterms:abstract xml:lang="eng">The main goal of this work is to relate weak and pathwise mild solutions for parabolic quasilinear stochastic partial differential equations (SPDEs). Extending in a suitable way techniques from the theory of nonautonomous semilinear SPDEs to the quasilinear case, we prove the equivalence of these two solution concepts.</dcterms:abstract> <dcterms:issued>2021-09-03</dcterms:issued> <dc:creator>Huber, Florian</dc:creator> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>
Dhariwal_2-1izbq74cqtvor2.pdf | 46 |