Magneto-thermo-elasticity : large time behavior for linear systems

Cite This

Files in this item

Checksum: MD5:940a52ee4b4482df7495132e95f293a7

MUÑOZ RIVERA, Jaime E., Reinhard RACKE, 1999. Magneto-thermo-elasticity : large time behavior for linear systems

@unpublished{MunozRivera1999Magne-562, title={Magneto-thermo-elasticity : large time behavior for linear systems}, year={1999}, author={Muñoz Rivera, Jaime E. and Racke, Reinhard} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:creator>Muñoz Rivera, Jaime E.</dc:creator> <dcterms:issued>1999</dcterms:issued> <dcterms:title>Magneto-thermo-elasticity : large time behavior for linear systems</dcterms:title> <dc:date rdf:datatype="">2011-03-22T17:45:04Z</dc:date> <dc:contributor>Racke, Reinhard</dc:contributor> <dspace:hasBitstream rdf:resource=""/> <dcterms:rights rdf:resource=""/> <bibo:uri rdf:resource=""/> <dcterms:hasPart rdf:resource=""/> <dc:contributor>Muñoz Rivera, Jaime E.</dc:contributor> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Racke, Reinhard</dc:creator> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="">2011-03-22T17:45:04Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">Initial and initial boundary value problems for linearized magneto-thermo-elastic models are considered. For the Cauchy problem in three space dimensions, a polynomial rate of decay as time tends to infinity is proved. In bounded domains a boundary condition of memory type is considered for the displacement. When the relaxation function satisfies dissipative properties and decays exponentially, we show that the solution of the magneto-thermo-elastic system decays exponentially. When the relaxation function decays polynomially, it is proved that the solution decays polynomially. Energy methods are used.</dcterms:abstract> <dc:format>application/pdf</dc:format> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

preprint_102.pdf 102

This item appears in the following Collection(s)

Search KOPS


My Account