Type of Publication: | Journal article |
Publication status: | Published |
Author: | Bianchi, Luigi Amedeo; Blömker, Dirk |
Year of publication: | 2021 |
Published in: | Physica D: Nonlinear Phenomena ; 415 (2021). - 132742. - Elsevier. - ISSN 0167-2789. - eISSN 1872-8022 |
ArXiv-ID: | arXiv:2005.09676v2 |
DOI (citable link): | https://dx.doi.org/10.1016/j.physd.2020.132742 |
Summary: |
We consider the impact of additive Gaussian white noise on a supercritical pitchfork bifurcation in an unbounded domain. As an example we focus on the stochastic Swift-Hohenberg equation with polynomial nonlinearity. Here we identify the order where small noise first impacts the bifurcation. Using an approximation via modulation equations, we provide a tool to analyse how the noise influences the dynamics close to a change of stability.
|
Subject (DDC): | 510 Mathematics |
Keywords: | Swift–Hohenberg, Supercritical bifurcation, Impact of noise, Modulation equation, Amplitude equation, Averaging |
Refereed: | Unknown |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
BIANCHI, Luigi Amedeo, Dirk BLÖMKER, 2021. The impact of white noise on a supercritical bifurcation in the Swift-Hohenberg equation. In: Physica D: Nonlinear Phenomena. Elsevier. 415, 132742. ISSN 0167-2789. eISSN 1872-8022. Available under: doi: 10.1016/j.physd.2020.132742
@article{Bianchi2021impac-52966, title={The impact of white noise on a supercritical bifurcation in the Swift-Hohenberg equation}, year={2021}, doi={10.1016/j.physd.2020.132742}, volume={415}, issn={0167-2789}, journal={Physica D: Nonlinear Phenomena}, author={Bianchi, Luigi Amedeo and Blömker, Dirk}, note={Article Number: 132742} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/52966"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Bianchi, Luigi Amedeo</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52966"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-23T12:29:09Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-23T12:29:09Z</dc:date> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Blömker, Dirk</dc:creator> <dcterms:issued>2021</dcterms:issued> <dc:contributor>Bianchi, Luigi Amedeo</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We consider the impact of additive Gaussian white noise on a supercritical pitchfork bifurcation in an unbounded domain. As an example we focus on the stochastic Swift-Hohenberg equation with polynomial nonlinearity. Here we identify the order where small noise first impacts the bifurcation. Using an approximation via modulation equations, we provide a tool to analyse how the noise influences the dynamics close to a change of stability.</dcterms:abstract> <dc:contributor>Blömker, Dirk</dc:contributor> <dcterms:title>The impact of white noise on a supercritical bifurcation in the Swift-Hohenberg equation</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> </rdf:Description> </rdf:RDF>