Toric varieties in phylogenetics

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

MICHALEK, Mateusz, 2015. Toric varieties in phylogenetics. In: Dissertationes Mathematicae. Institute of Mathematics, Polish Academy of Sciences. 511, pp. 1-86. ISSN 1730-6310. eISSN 0012-3862. Available under: doi: 10.4064/dm511-0-1

@article{Michalek2015Toric-52780, title={Toric varieties in phylogenetics}, year={2015}, doi={10.4064/dm511-0-1}, volume={511}, issn={1730-6310}, journal={Dissertationes Mathematicae}, pages={1--86}, author={Michalek, Mateusz} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/52780"> <dc:creator>Michalek, Mateusz</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Michalek, Mateusz</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-09T10:37:58Z</dcterms:available> <dcterms:title>Toric varieties in phylogenetics</dcterms:title> <dcterms:issued>2015</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52780"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">The paper contains a revised, and extended by new results, part of the author's PhD thesis. The main objects that we study are toric varieties naturally associated to special Markov processes on trees. Such Markov processes can be defined by a tree T and a group G. They are called group-based models. The main, but not unique, motivation to consider these processes comes from phylogenetics. We study the geometry, defining equations and combinatorial description of the associated toric varieties. We obtain new results for a large class of not necessarily abelian group-based models, which we call G-models. We also prove that equations of degree 4 define the projective scheme representing the 3-Kimura model.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-09T10:37:58Z</dc:date> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account