Type of Publication: | Journal article |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-2-1whkbv4xfo1mk9 |
Author: | Harris, Corey; Michalek, Mateusz; Sertöz, Emre Can |
Year of publication: | 2019 |
Published in: | Advances in Computational Mathematics ; 45 (2019), 5-6. - pp. 2845-2865. - Springer. - ISSN 1019-7168. - eISSN 1572-9044 |
DOI (citable link): | https://dx.doi.org/10.1007/s10444-019-09715-8 |
Summary: |
The image of a polynomial map is a constructible set. While computing its closure is standard in computer algebra systems, a procedure for computing the constructible set itself is not. We provide a new algorithm, based on algebro-geometric techniques, addressing this problem. We also apply these methods to answer a question of W. Hackbusch on the non-closedness of site-independent cyclic matrix product states for infinitely many parameters.
|
Subject (DDC): | 510 Mathematics |
Keywords: | Polynomial maps, Constructible set, Matrix product states |
Link to License: | Attribution 4.0 International |
Refereed: | Yes |
HARRIS, Corey, Mateusz MICHALEK, Emre Can SERTÖZ, 2019. Computing images of polynomial maps. In: Advances in Computational Mathematics. Springer. 45(5-6), pp. 2845-2865. ISSN 1019-7168. eISSN 1572-9044. Available under: doi: 10.1007/s10444-019-09715-8
@article{Harris2019-12Compu-52467, title={Computing images of polynomial maps}, year={2019}, doi={10.1007/s10444-019-09715-8}, number={5-6}, volume={45}, issn={1019-7168}, journal={Advances in Computational Mathematics}, pages={2845--2865}, author={Harris, Corey and Michalek, Mateusz and Sertöz, Emre Can} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/52467"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Michalek, Mateusz</dc:contributor> <dc:contributor>Sertöz, Emre Can</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-15T12:14:48Z</dc:date> <dcterms:title>Computing images of polynomial maps</dcterms:title> <dcterms:issued>2019-12</dcterms:issued> <dcterms:abstract xml:lang="eng">The image of a polynomial map is a constructible set. While computing its closure is standard in computer algebra systems, a procedure for computing the constructible set itself is not. We provide a new algorithm, based on algebro-geometric techniques, addressing this problem. We also apply these methods to answer a question of W. Hackbusch on the non-closedness of site-independent cyclic matrix product states for infinitely many parameters.</dcterms:abstract> <dc:creator>Harris, Corey</dc:creator> <dc:contributor>Harris, Corey</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52467/1/Harris_2-1whkbv4xfo1mk9.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Michalek, Mateusz</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-15T12:14:48Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52467/1/Harris_2-1whkbv4xfo1mk9.pdf"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Sertöz, Emre Can</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52467"/> </rdf:Description> </rdf:RDF>
Harris_2-1whkbv4xfo1mk9.pdf | 26 |