Quantum state tomography as a numerical optimization problem

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

IVANOVA-ROHLING, Violeta N., Guido BURKARD, Niklas ROHLING, 2020. Quantum state tomography as a numerical optimization problem

@unpublished{IvanovaRohling2020-12-28T21:32:34ZQuant-52409, title={Quantum state tomography as a numerical optimization problem}, year={2020}, author={Ivanova-Rohling, Violeta N. and Burkard, Guido and Rohling, Niklas} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/52409"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/52"/> <dc:contributor>Burkard, Guido</dc:contributor> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52409"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">We present a framework that formulates the quest for the most efficient quantum state tomography scheme as an optimization problem which can be solved numerically. This approach can be applied to a broad spectrum of relevant setups including measurements restricted to a subsystem. To illustrate the power of this method we present results for the six-dimensional Hilbert space constituted by a qubit-qutrit system, which could be realized e.g. by the N-14 nuclear spin-1 and two electronic spin states of a nitrogen-vacancy center in diamond. Measurements of the qubit subsystem are expressed by projectors of rank three, i.e., projectors on half-dimensional subspaces. For systems consisting only of qubits, it was shown analytically that a set of projectors on half-dimensional subspaces can be arranged in an informationally optimal fashion for quantum state tomography, thus forming so-called mutually unbiased subspaces. Our method goes beyond qubits-only systems and we find that in dimension six such a set of mutually-unbiased subspaces can be approximated with a deviation irrelevant for practical applications.</dcterms:abstract> <dcterms:title>Quantum state tomography as a numerical optimization problem</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-14T10:22:01Z</dcterms:available> <dcterms:issued>2020-12-28T21:32:34Z</dcterms:issued> <dc:creator>Rohling, Niklas</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/52"/> <dc:creator>Ivanova-Rohling, Violeta N.</dc:creator> <dc:contributor>Rohling, Niklas</dc:contributor> <dc:contributor>Ivanova-Rohling, Violeta N.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-01-14T10:22:01Z</dc:date> <dc:creator>Burkard, Guido</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account