Inhomogeneous symbols, the Newton polygon, and maximal Lp-regularity

Cite This

Files in this item

Checksum: MD5:7fa30324866b940110d481ed6e5903db

DENK, Robert, Jürgen SAAL, Jörg SEILER, 2008. Inhomogeneous symbols, the Newton polygon, and maximal Lp-regularity

@techreport{Denk2008Inhom-524, series={Konstanzer Schriften in Mathematik und Informatik}, title={Inhomogeneous symbols, the Newton polygon, and maximal Lp-regularity}, year={2008}, number={244}, author={Denk, Robert and Saal, Jürgen and Seiler, Jörg} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/524"> <dcterms:abstract xml:lang="eng">We prove a maximal regularity result for operators corresponding to rotation invariant (in space) symbols which are inhomogeneous in space and time. Symbols of this type frequently arise in the treatment of half-space models for (free) boundary value problems. The result is obtained by extending the Newton polygon approach to variables living in complex sectors and combining it with abstract results on functional calculus and R-bounded operator families. As an application we derive maximal regularity for the linearized Stefan problem with Gibbs-Thomson correction.</dcterms:abstract> <dc:creator>Denk, Robert</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:55Z</dc:date> <dcterms:title>Inhomogeneous symbols, the Newton polygon, and maximal Lp-regularity</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Denk, Robert</dc:contributor> <dc:creator>Seiler, Jörg</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2011-03-22T17:44:55Z</dcterms:available> <dcterms:rights rdf:resource="https://kops.uni-konstanz.de/page/termsofuse"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/524/1/research_paper_244.pdf"/> <dcterms:issued>2008</dcterms:issued> <dc:creator>Saal, Jürgen</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/524/1/research_paper_244.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/524"/> <dc:contributor>Seiler, Jörg</dc:contributor> <dc:contributor>Saal, Jürgen</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:format>application/pdf</dc:format> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

research_paper_244.pdf 179

This item appears in the following Collection(s)

Search KOPS


Browse

My Account