KOPS - The Institutional Repository of the University of Konstanz

Discontinuous Galerkin Methods and Model Reduction for the nonlinear Schrödinger Equation with FEniCS and DUNE

Discontinuous Galerkin Methods and Model Reduction for the nonlinear Schrödinger Equation with FEniCS and DUNE

Cite This

Files in this item

Checksum: MD5:c96ed1c93d1682f3ac11fab7906f98ee

HÖLTGE, Dominik, 2020. Discontinuous Galerkin Methods and Model Reduction for the nonlinear Schrödinger Equation with FEniCS and DUNE [Master thesis]. Konstanz: Universität Konstanz

@mastersthesis{Holtge2020Disco-50621, title={Discontinuous Galerkin Methods and Model Reduction for the nonlinear Schrödinger Equation with FEniCS and DUNE}, year={2020}, address={Konstanz}, school={Universität Konstanz}, author={Höltge, Dominik} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/50621"> <dcterms:issued>2020</dcterms:issued> <dcterms:abstract xml:lang="eng">We face the numerical solving process of the nonlinear Schrödinger equation (NLSE), also called Gross-Pitaevskii equation, which is a central semilinear partial differential equation (PDE) in the field of quantum mechanics. Concerning the spatial discretization, we compare the continuous Galerkin (CG) methods with their close relatives, the discontinuous Galerkin (DG) methods. As a practical example, we have a look at the symmetric interior penalty Galerkin (SIPG) method and the standard finite element method (FEM) with piecewise continuous basis functions. The semidiscrete NLSE is solved with the average vector field (AVF) method. A special focus is dedicated to the mass and energy preservation properties of the methods. Further on, we deal with model order reduction, carried out with proper orthogonal decomposition (POD) and randomized singular value decomposition (rSVD). The implementation is made in Python, using also the software FEniCS for CG and DUNE for DG methods.</dcterms:abstract> <dc:contributor>Höltge, Dominik</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50621/3/Hoeltge_2-oczlbl3nm9va9.pdf"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-01T09:29:38Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50621"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-01T09:29:38Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50621/3/Hoeltge_2-oczlbl3nm9va9.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Höltge, Dominik</dc:creator> <dcterms:title>Discontinuous Galerkin Methods and Model Reduction for the nonlinear Schrödinger Equation with FEniCS and DUNE</dcterms:title> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> </rdf:Description> </rdf:RDF>

Downloads since Sep 1, 2020 (Information about access statistics)

Hoeltge_2-oczlbl3nm9va9.pdf 28

This item appears in the following Collection(s)

Search KOPS


Browse

My Account