Efficient Approximation of Flow Problems With Multiple Scales in Time

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

FREI, Stefan, Thomas RICHTER, 2020. Efficient Approximation of Flow Problems With Multiple Scales in Time. In: Multiscale Modeling & Simulation. Society for Industrial and Applied Mathematics (SIAM). 18(2), pp. 942-969. ISSN 1540-3459. eISSN 1540-3467. Available under: doi: 10.1137/19M1258396

@article{Frei2020-05-26Effic-50387, title={Efficient Approximation of Flow Problems With Multiple Scales in Time}, year={2020}, doi={10.1137/19M1258396}, number={2}, volume={18}, issn={1540-3459}, journal={Multiscale Modeling & Simulation}, pages={942--969}, author={Frei, Stefan and Richter, Thomas} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/50387"> <dcterms:title>Efficient Approximation of Flow Problems With Multiple Scales in Time</dcterms:title> <dc:creator>Frei, Stefan</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-29T11:38:46Z</dcterms:available> <dc:contributor>Frei, Stefan</dc:contributor> <dcterms:abstract xml:lang="eng">In this article we address flow problems that carry a multiscale character in time. In particular we consider the Navier--Stokes flow in a channel on a fast scale that influences the movement of the boundary which undergoes a deformation on a slow scale in time. We derive an averaging scheme that is of first order with respect to the ratio of time scales $\epsilon$. In order to cope with the problem of unknown initial data for the fast-scale problem, we assume near-periodicity in time. Moreover, we construct a second-order accurate time discretization scheme and derive a complete error analysis for a corresponding simplified ODE system. The resulting multiscale scheme does not ask for the continuous simulation of the fast-scale variable and shows powerful speedups up to 1:10,000 compared to a resolved simulation. Finally, we present some numerical examples for the full Navier--Stokes system to illustrate the convergence and performance of the approach.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2020-05-26</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50387"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-29T11:38:46Z</dc:date> <dc:creator>Richter, Thomas</dc:creator> <dc:contributor>Richter, Thomas</dc:contributor> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account