KOPS - The Institutional Repository of the University of Konstanz

Effective Hamiltonian theory of the geometric evolution of quantum systems

Effective Hamiltonian theory of the geometric evolution of quantum systems

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

SHKOLNIKOV, Vladislav O., Guido BURKARD, 2020. Effective Hamiltonian theory of the geometric evolution of quantum systems. In: Physical Review A. American Physical Society (APS). 101(4), 042101. ISSN 2469-9926. eISSN 2469-9934. Available under: doi: 10.1103/PhysRevA.101.042101

@article{Shkolnikov2020Effec-49247, title={Effective Hamiltonian theory of the geometric evolution of quantum systems}, year={2020}, doi={10.1103/PhysRevA.101.042101}, number={4}, volume={101}, issn={2469-9926}, journal={Physical Review A}, author={Shkolnikov, Vladislav O. and Burkard, Guido}, note={Article Number: 042101} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/49247"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49247"/> <dc:contributor>Shkolnikov, Vladislav O.</dc:contributor> <dcterms:issued>2020</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">In this work we present an effective Hamiltonian description of the quantum dynamics of a generalized Λ system undergoing adiabatic evolution. We assume the system to be initialized in the dark subspace and show that its holonomic evolution can be viewed as a conventional Hamiltonian dynamics in an appropriately chosen extended Hilbert space. In contrast to the existing approaches, our method does not require the calculation of the non-Abelian Berry connection and can be applied without any parametrization of the dark subspace, which becomes a challenging problem with increasing system size.</dcterms:abstract> <dc:creator>Burkard, Guido</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> <dc:creator>Shkolnikov, Vladislav O.</dc:creator> <dcterms:title>Effective Hamiltonian theory of the geometric evolution of quantum systems</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-22T08:57:02Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dc:contributor>Burkard, Guido</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-04-22T08:57:02Z</dcterms:available> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account