Triangulating non-archimedean probability

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

BRICKHILL, Hazel, Leon HORSTEN, 2018. Triangulating non-archimedean probability. In: The Review of Symbolic Logic. Cambridge University Press. 11(3), pp. 519-546. ISSN 1755-0203. eISSN 1755-0211. Available under: doi: 10.1017/S1755020318000060

@article{Brickhill2018-09Trian-48651, title={Triangulating non-archimedean probability}, year={2018}, doi={10.1017/S1755020318000060}, number={3}, volume={11}, issn={1755-0203}, journal={The Review of Symbolic Logic}, pages={519--546}, author={Brickhill, Hazel and Horsten, Leon} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/48651"> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48651"/> <dc:creator>Horsten, Leon</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/40"/> <dcterms:title>Triangulating non-archimedean probability</dcterms:title> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-14T13:45:25Z</dc:date> <dc:creator>Brickhill, Hazel</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-02-14T13:45:25Z</dcterms:available> <dcterms:issued>2018-09</dcterms:issued> <dc:contributor>Horsten, Leon</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/40"/> <dc:contributor>Brickhill, Hazel</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">We relate Popper functions to regular and perfectly additive such non-Archimedean probability functions by means of a representation theorem: every such non-Archimedean probability function is infinitesimally close to some Popper function, and vice versa. We also show that regular and perfectly additive non-Archimedean probability functions can be given a lexicographic representation. Thus Popper functions, a specific kind of non-Archimedean probability functions, and lexicographic probability functions triangulate to the same place: they are in a good sense interchangeable.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account