Critical force in active microrheology

Cite This

Files in this item

Checksum: MD5:285083a3ea15bd05699aa2717b11b3a1

GRUBER, Markus, Antonio M. PUERTAS, Matthias FUCHS, 2020. Critical force in active microrheology. In: Physical Review E. American Physical Society (APS). 101(1), 012612. ISSN 2470-0045. eISSN 2470-0053. Available under: doi: 10.1103/PhysRevE.101.012612

@article{Gruber2020-01-30Criti-48453, title={Critical force in active microrheology}, year={2020}, doi={10.1103/PhysRevE.101.012612}, number={1}, volume={101}, issn={2470-0045}, journal={Physical Review E}, author={Gruber, Markus and Puertas, Antonio M. and Fuchs, Matthias}, note={Article Number: 012612} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:contributor>Puertas, Antonio M.</dc:contributor> <dcterms:hasPart rdf:resource=""/> <dc:date rdf:datatype="">2020-01-31T10:29:34Z</dc:date> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <dc:creator>Gruber, Markus</dc:creator> <dcterms:title>Critical force in active microrheology</dcterms:title> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Fuchs, Matthias</dc:contributor> <dcterms:available rdf:datatype="">2020-01-31T10:29:34Z</dcterms:available> <dcterms:rights rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Fuchs, Matthias</dc:creator> <dc:contributor>Gruber, Markus</dc:contributor> <bibo:uri rdf:resource=""/> <dc:creator>Puertas, Antonio M.</dc:creator> <dcterms:abstract xml:lang="eng">Soft solids like colloidal glasses exhibit a yield stress, above which the system starts to flow. The microscopic analogon in microrheology is the untrapping or depinning of a tracer particle subject to an external force exceeding a threshold value in a glassy host. We characterize this delocalization transition based on a bifurcation analysis of the corresponding mode-coupling theory equations. A schematic model that allows analytical progress is presented first, and the full physical model is studied numerically next. This analysis yields a continuous dynamic transition with a critical power-law decay of the probe correlation functions with exponent −1/2. To compare with simulations with a limited duration, a finite-time analysis is performed, which yields reasonable results for not-too-small wave vectors. The theoretically predicted findings are verified by Langevin dynamics simulations. For small wave vectors we find anomalous behavior for the probe position correlation function, which can be traced back to a wave-vector divergence of the critical amplitude. In addition, we propose and test three methods to extract the critical force from experimental data, which provide the same value of the critical force when applied to the finite-time theory or simulations.</dcterms:abstract> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2020-01-30</dcterms:issued> </rdf:Description> </rdf:RDF>

Downloads since Jan 31, 2020 (Information about access statistics)

Gruber_2-1s5vb8kfbtf5m7.pdf 83

This item appears in the following Collection(s)

Search KOPS


My Account