Extended Laplace principle for empirical measures of a Markov chain

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

ECKSTEIN, Stephan, 2019. Extended Laplace principle for empirical measures of a Markov chain. In: Advances in Applied Probability. 51(1), pp. 136-167. ISSN 0001-8678. eISSN 1475-6064. Available under: doi: 10.1017/apr.2019.6

@article{Eckstein2019Exten-47128, title={Extended Laplace principle for empirical measures of a Markov chain}, year={2019}, doi={10.1017/apr.2019.6}, number={1}, volume={51}, issn={0001-8678}, journal={Advances in Applied Probability}, pages={136--167}, author={Eckstein, Stephan} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/47128"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-07T13:57:34Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/47128"/> <dc:creator>Eckstein, Stephan</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:title>Extended Laplace principle for empirical measures of a Markov chain</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-10-07T13:57:34Z</dcterms:available> <dcterms:issued>2019</dcterms:issued> <dcterms:abstract xml:lang="eng">We consider discrete-time Markov chains with Polish state space. The large deviations principle for empirical measures of a Markov chain can equivalently be stated in Laplace principle form, which builds on the convex dual pair of relative entropy (or Kullback– Leibler divergence) and cumulant generating functional f ↦ ln ʃ exp (f). Following the approach by Lacker (2016) in the independent and identically distributed case, we generalize the Laplace principle to a greater class of convex dual pairs. We present in depth one application arising from this extension, which includes large deviation results and a weak law of large numbers for certain robust Markov chains—similar to Markov set chains—where we model robustness via the first Wasserstein distance. The setting and proof of the extended Laplace principle are based on the weak convergence approach to large deviations by Dupuis and Ellis (2011).</dcterms:abstract> <dc:contributor>Eckstein, Stephan</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account