KOPS - The Institutional Repository of the University of Konstanz

The maximum multiplicity of the largest k-th eigenvalue in a matrix whose graph is acyclic or unicyclic

The maximum multiplicity of the largest k-th eigenvalue in a matrix whose graph is acyclic or unicyclic

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

ADM, Mohammad, Shaun M. FALLAT, 2019. The maximum multiplicity of the largest k-th eigenvalue in a matrix whose graph is acyclic or unicyclic. In: Discrete Mathematics. 342(10), pp. 2924-2950. ISSN 0012-365X. eISSN 1872-681X. Available under: doi: 10.1016/j.disc.2019.06.030

@article{Adm2019-10maxim-46998, title={The maximum multiplicity of the largest k-th eigenvalue in a matrix whose graph is acyclic or unicyclic}, year={2019}, doi={10.1016/j.disc.2019.06.030}, number={10}, volume={342}, issn={0012-365X}, journal={Discrete Mathematics}, pages={2924--2950}, author={Adm, Mohammad and Fallat, Shaun M.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/46998"> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:title>The maximum multiplicity of the largest k-th eigenvalue in a matrix whose graph is acyclic or unicyclic</dcterms:title> <dcterms:abstract xml:lang="eng">Given a graph G we are interested in studying the symmetric matrices associated to G with a fixed number of negative eigenvalues. For this class of matrices we focus on the maximum possible nullity. For trees this parameter has already been studied and plenty of applications are known. In this work we derive a formula for the maximum nullity and completely describe its behavior as a function of the number of negative eigenvalues. In addition, we also carefully describe the matrices associated with trees that attain this maximum nullity. The analysis is then extended to the more general class of unicyclic graphs. Further our work is applied to re-describing all possible partial inertias associated with trees, and is employed to study an instance of the inverse eigenvalue problem for certain trees.</dcterms:abstract> <dc:contributor>Adm, Mohammad</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-20T09:24:04Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-20T09:24:04Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Adm, Mohammad</dc:creator> <dc:contributor>Fallat, Shaun M.</dc:contributor> <dcterms:issued>2019-10</dcterms:issued> <dc:creator>Fallat, Shaun M.</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46998"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account