KOPS - The Institutional Repository of the University of Konstanz

Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point Method

Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point Method

Cite This

Files in this item

Checksum: MD5:3415b2862e2d2c8aa4e4db47e2f87b37

BANHOLZER, Stefan, Stefan VOLKWEIN, 2019. Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point Method

@techreport{Banholzer2019Hiera-46601, title={Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point Method}, year={2019}, author={Banholzer, Stefan and Volkwein, Stefan} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/46601"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46601/3/Banholzer_2-xd965ctqkqax3.pdf"/> <dcterms:title>Hierarchical Convex Multiobjective Optimization by the Euclidean Reference Point Method</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46601/3/Banholzer_2-xd965ctqkqax3.pdf"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Volkwein, Stefan</dc:creator> <dcterms:issued>2019</dcterms:issued> <dc:contributor>Banholzer, Stefan</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Banholzer, Stefan</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">In the present article convex multiobjective optimization problems with an arbitrary number of cost functions are considered. Since the weighted sum method has some deficiencies when it comes to approximating the Pareto front equidistantly, the Euclidean reference point method is investigated. However, for this method it is not clear how to choose reference points, i.e., the parameters in the scalarization function, guaranteeing a complete approximation of the Pareto front in the case of more than two cost functions. It is shown that by hierarchically solving subproblems of the original problem, it is possible to get a characterization of these reference points which is also numerically applicable independent of the number of cost functions. The resulting algorithm can thus be used for an arbitrary number of cost functions, which is shown in numerical tests for up to four cost functions.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-02T10:59:40Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46601"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-08-02T10:59:40Z</dcterms:available> <dcterms:rights rdf:resource="https://kops.uni-konstanz.de/page/termsofuse"/> <dc:contributor>Volkwein, Stefan</dc:contributor> </rdf:Description> </rdf:RDF>

Downloads since Aug 2, 2019 (Information about access statistics)

Banholzer_2-xd965ctqkqax3.pdf 60

This item appears in the following Collection(s)

Search KOPS


Browse

My Account