KOPS - The Institutional Repository of the University of Konstanz

Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution

Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

CAIRNS, Johannes, Lutz BECKS, Matti JALASVUORI, Teppo HILTUNEN, 2017. Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution. In: Philosophical Transactions of the Royal Society of London, Series B : Biological Sciences. 372(1712), 20160040. ISSN 0962-8436. eISSN 1471-2970. Available under: doi: 10.1098/rstb.2016.0040

@article{Cairns2017Suble-45700, title={Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution}, year={2017}, doi={10.1098/rstb.2016.0040}, number={1712}, volume={372}, issn={0962-8436}, journal={Philosophical Transactions of the Royal Society of London, Series B : Biological Sciences}, author={Cairns, Johannes and Becks, Lutz and Jalasvuori, Matti and Hiltunen, Teppo}, note={Article Number: 20160040} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/45700"> <dc:contributor>Hiltunen, Teppo</dc:contributor> <dc:creator>Jalasvuori, Matti</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <dc:contributor>Becks, Lutz</dc:contributor> <dc:creator>Becks, Lutz</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/28"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Hiltunen, Teppo</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-23T12:31:23Z</dcterms:available> <dc:creator>Cairns, Johannes</dc:creator> <dc:contributor>Jalasvuori, Matti</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-04-23T12:31:23Z</dc:date> <dcterms:issued>2017</dcterms:issued> <dc:contributor>Cairns, Johannes</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45700"/> <dcterms:title>Sublethal streptomycin concentrations and lytic bacteriophage together promote resistance evolution</dcterms:title> <dcterms:abstract xml:lang="eng">Sub-minimum inhibiting concentrations (sub-MICs) of antibiotics frequently occur in natural environments owing to wide-spread antibiotic leakage by human action. Even though the concentrations are very low, these sub-MICs have recently been shown to alter bacterial populations by selecting for antibiotic resistance and increasing the rate of adaptive evolution. However, studies are lacking on how these effects reverberate into key ecological interactions, such as bacteria-phage interactions. Previously, co-selection of bacteria by phages and antibiotic concentrations exceeding MICs has been hypothesized to decrease the rate of resistance evolution because of fitness costs associated with resistance mutations. By contrast, here we show that sub-MICs of the antibiotic streptomycin (Sm) increased the rate of phage resistance evolution, as well as causing extinction of the phage. Notably, Sm and the phage in combination also enhanced the evolution of Sm resistance compared with Sm alone. These observations demonstrate the potential of sub-MICs of antibiotics to impact key ecological interactions in microbial communities with evolutionary outcomes that can radically differ from those associated with high concentrations. Our findings also contribute to the understanding of ecological and evolutionary factors essential for the management of the antibiotic resistance problem.This article is part of the themed issue 'Human influences on evolution, and the ecological and societal consequences'.</dcterms:abstract> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account