Measuring the robustness of network community structure using assortativity


Dateien zu dieser Ressource

Prüfsumme: MD5:56fdff8cc678c2f98647d06597fceb2b

SHIZUKA, Daizaburo, Damien R. FARINE, 2016. Measuring the robustness of network community structure using assortativity. In: Animal behaviour. 112, pp. 237-246. ISSN 0003-3472. eISSN 1095-8282. Available under: doi: 10.1016/j.anbehav.2015.12.007

@article{Shizuka2016Measu-42842, title={Measuring the robustness of network community structure using assortativity}, year={2016}, doi={10.1016/j.anbehav.2015.12.007}, volume={112}, issn={0003-3472}, journal={Animal behaviour}, pages={237--246}, author={Shizuka, Daizaburo and Farine, Damien R.} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Shizuka, Daizaburo</dc:contributor> <dcterms:rights rdf:resource=""/> <dc:date rdf:datatype="">2018-07-11T09:43:54Z</dc:date> <dcterms:issued>2016</dcterms:issued> <dc:contributor>Farine, Damien R.</dc:contributor> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:available rdf:datatype="">2018-07-11T09:43:54Z</dcterms:available> <dcterms:abstract xml:lang="eng">The existence of discrete social clusters, or 'communities', is a common feature of social networks in human and nonhuman animals. The level of such community structure in networks is typically measured using an index of modularity, Q. While modularity quantifies the degree to which individuals associate within versus between social communities and provides a useful measure of structure in the social network, it assumes that the network has been well sampled. However, animal social network data is typically subject to sampling errors. In particular, the associations among individuals are often not sampled equally, and animal social network studies are often based on a relatively small set of observations. Here, we extend an existing framework for bootstrapping network metrics to provide a method for assessing the robustness of community assignment in social networks using a metric we call community assortativity (rcom). We use simulations to demonstrate that modularity can reliably detect the transition from random to structured associations in networks that differ in size and number of communities, while community assortativity accurately measures the level of confidence based on the detectability of associations. We then demonstrate the use of these metrics using three publicly available data sets of avian social networks. We suggest that by explicitly addressing the known limitations in sampling animal social network, this approach will facilitate more rigorous analyses of population-level structural patterns across social systems.</dcterms:abstract> <dc:creator>Farine, Damien R.</dc:creator> <dc:creator>Shizuka, Daizaburo</dc:creator> <bibo:uri rdf:resource=""/> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource=""/> <dcterms:title>Measuring the robustness of network community structure using assortativity</dcterms:title> <dspace:hasBitstream rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 11.07.2018 (Informationen über die Zugriffsstatistik)

Shizuka_2-17u3xy1expukt3.pdf 33

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto