Realtime Quality Assessment of Iris Biometrics under Visible Light


Dateien zu dieser Ressource

Prüfsumme: MD5:1c12fa3a13df901fe896309a60350726

JENADELEH, Mohsen, Marius PEDERSEN, Dietmar SAUPE, 2018. Realtime Quality Assessment of Iris Biometrics under Visible Light. CVPR 2018 : IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, Utah, USA, 18. Jun 2018 - 22. Jun 2018. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. Computer Vision Foundation, pp. 556-565

@inproceedings{Jenadeleh2018Realt-42587, title={Realtime Quality Assessment of Iris Biometrics under Visible Light}, url={}, year={2018}, publisher={Computer Vision Foundation}, booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops}, pages={556--565}, author={Jenadeleh, Mohsen and Pedersen, Marius and Saupe, Dietmar} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <bibo:uri rdf:resource=""/> <dc:language>eng</dc:language> <dcterms:hasPart rdf:resource=""/> <dcterms:title>Realtime Quality Assessment of Iris Biometrics under Visible Light</dcterms:title> <dc:contributor>Jenadeleh, Mohsen</dc:contributor> <dc:contributor>Pedersen, Marius</dc:contributor> <dcterms:issued>2018</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:available rdf:datatype="">2018-06-14T12:59:46Z</dcterms:available> <dc:date rdf:datatype="">2018-06-14T12:59:46Z</dc:date> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Saupe, Dietmar</dc:creator> <dspace:hasBitstream rdf:resource=""/> <dc:creator>Pedersen, Marius</dc:creator> <dcterms:abstract xml:lang="eng">Ensuring sufficient quality of iris images acquired by handheld imaging devices in visible light poses many challenges to iris recognition systems. Many distortions affect the input iris images, and the source and types of these distortions are unknown in uncontrolled environments. We propose a fast no-reference image quality assessment measure for predicting iris image quality to handle severely degraded iris images. The proposed differential sign-magnitude statistics index (DSMI) is based on statistical features of the local difference sign-magnitude transform, which are computed by comparing the local mean with the central pixel of the patch and considering the noticeable variations. The experiments, conducted with a reference iris recognition system and three visible light datasets, showed that the quality of iris images strongly affects the recognition performance. Using the proposed method as a quality filtering step improved the performance of the iris recognition system by rejecting poor quality iris samples.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:rights rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource=""/> <dc:creator>Jenadeleh, Mohsen</dc:creator> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 14.06.2018 (Informationen über die Zugriffsstatistik)

Jenadeleh_2-1db8odgkzm0gn5.pdf 70

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto