An Algebraic Perspective on Multivariate Tight Wavelet Frames

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

CHARINA, Maria, Mihai PUTINAR, Claus SCHEIDERER, Joachim STÖCKLER, 2013. An Algebraic Perspective on Multivariate Tight Wavelet Frames. In: Constructive Approximation. 38(2), pp. 253-276. ISSN 0176-4276. eISSN 1432-0940. Available under: doi: 10.1007/s00365-013-9191-5

@article{Charina2013-10Algeb-41883, title={An Algebraic Perspective on Multivariate Tight Wavelet Frames}, year={2013}, doi={10.1007/s00365-013-9191-5}, number={2}, volume={38}, issn={0176-4276}, journal={Constructive Approximation}, pages={253--276}, author={Charina, Maria and Putinar, Mihai and Scheiderer, Claus and Stöckler, Joachim} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/41883"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Recent advances in real algebraic geometry and in the theory of polynomial optimization are applied to answer some open questions in the theory of multivariate tight wavelet frames whose generators have at least one vanishing moment. Namely, several equivalent formulations of the so-called Unitary Extension Principle (UEP) are given in terms of Hermitian sums of squares of certain nonnegative Laurent polynomials and in terms of semidefinite programming. These formulations merge recent advances in real algebraic geometry and wavelet frame theory and lead to an affirmative answer to the long-standing open question of the existence of tight wavelet frames in dimension d=2. They also provide, for every d, efficient numerical methods for checking the existence of tight wavelet frames and for their construction. A class of counterexamples in dimension d=3 show that, in general, the so-called sub-QMF condition is not sufficient for the existence of tight wavelet frames. Stronger sufficient conditions for determining the existence of tight wavelet frames in dimension d≥3 are derived. The results are illustrated on several examples.</dcterms:abstract> <dc:contributor>Putinar, Mihai</dc:contributor> <dc:contributor>Stöckler, Joachim</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:title>An Algebraic Perspective on Multivariate Tight Wavelet Frames</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41883"/> <dc:creator>Putinar, Mihai</dc:creator> <dc:contributor>Charina, Maria</dc:contributor> <dc:language>eng</dc:language> <dc:creator>Stöckler, Joachim</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-21T12:36:58Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Charina, Maria</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-03-21T12:36:58Z</dcterms:available> <dcterms:issued>2013-10</dcterms:issued> <dc:creator>Scheiderer, Claus</dc:creator> <dc:contributor>Scheiderer, Claus</dc:contributor> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account