A semigroup approach to nonlinear Lévy processes

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

DENK, Robert, Michael KUPPER, Max NENDEL, 2020. A semigroup approach to nonlinear Lévy processes. In: Stochastic Processes and their Applications. Elsevier. 130(3), pp. 1616-1642. ISSN 0304-4149. eISSN 1879-209X. Available under: doi: 10.1016/j.spa.2019.05.009

@article{Denk2020semig-40474.2, title={A semigroup approach to nonlinear Lévy processes}, year={2020}, doi={10.1016/j.spa.2019.05.009}, number={3}, volume={130}, issn={0304-4149}, journal={Stochastic Processes and their Applications}, pages={1616--1642}, author={Denk, Robert and Kupper, Michael and Nendel, Max} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/40474.2"> <dc:contributor>Denk, Robert</dc:contributor> <dcterms:title>A semigroup approach to nonlinear Lévy processes</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2020</dcterms:issued> <dc:creator>Denk, Robert</dc:creator> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40474.2"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-11T11:37:11Z</dcterms:available> <dc:contributor>Kupper, Michael</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Kupper, Michael</dc:creator> <dcterms:abstract xml:lang="eng">We study the relation between Lévy processes under nonlinear expectations, nonlinear semigroups and fully nonlinear PDEs. First, we establish a one-to-one relation between nonlinear Lévy processes and nonlinear Markovian convolution semigroups. Second, we provide a condition on a family of infinitesimal generators (Aλ)λ∈Λ of linear Lévy processes which guarantees the existence of a nonlinear Lévy process such that the corresponding nonlinear Markovian convolution semigroup is a viscosity solution of the fully nonlinear PDE ∂tu=supλ∈ΛAλu . The results are illustrated with several examples.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-11T11:37:11Z</dc:date> <dc:creator>Nendel, Max</dc:creator> <dc:contributor>Nendel, Max</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Version History

Version Item Date Summary Publication Version

*Selected version

Search KOPS


Browse

My Account