Simultaneous weak measurement of non-commuting observables

Zitieren

Dateien zu dieser Ressource

Prüfsumme: MD5:05a158725a789e539ac2997c2cb7e2dd

OCHOA, Maicol A., Wolfgang BELZIG, Abraham NITZAN, 2017. Simultaneous weak measurement of non-commuting observables

@techreport{Ochoa2017-07-26T02:25:25ZSimul-39705, title={Simultaneous weak measurement of non-commuting observables}, year={2017}, author={Ochoa, Maicol A. and Belzig, Wolfgang and Nitzan, Abraham} }

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:dcterms="http://purl.org/dc/terms/" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/39705"> <dc:creator>Belzig, Wolfgang</dc:creator> <dcterms:rights rdf:resource="http://nbn-resolving.de/urn:nbn:de:bsz:352-20150914100631302-4485392-8"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T08:40:04Z</dc:date> <dc:contributor>Nitzan, Abraham</dc:contributor> <dc:creator>Nitzan, Abraham</dc:creator> <dcterms:abstract xml:lang="eng">In contrast to a projective quantum measurement in which the system is projected onto an eigenstate of the measured operator, in a weak measurement the system is only weakly perturbed while only partial information on the measured observable is obtained. A full description of such measurement should describe the measurement protocol and provide an explicit form of the measurement operator that transform the quantum state to its post measurement form. A simultaneous measurement of non-commuting observables cannot be projective, however the strongest possible such measurement can be defined as providing their values at the smallest uncertainty limit. Starting with the Arthurs and Kelly (AK) protocol for such measurement of position and momentum, we derive a systematic extension to a corresponding weak measurement along three steps: First, a plausible form of the weak measurement operator analogous to the Gaussian Kraus operator often used to model a weak measurement of a single observable is obtained by projecting a na\"ive extension (valid for commuting observable) onto the corresponding Gabor space. Second, we show that the so obtained set of measurement operators satisfies the normalization condition for the probability to obtain given values of the position and momentum in the weak measurement operation, namely that this set constitutes a positive operator valued measure (POVM) in the position-momentum space. Finally, we show that the so-obtained measurement operator corresponds to a generalization of the AK measurement protocol in which the initial detector wavefunctions is suitable broadened.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/39705"/> <dc:contributor>Belzig, Wolfgang</dc:contributor> <dcterms:issued>2017-07-26T02:25:25Z</dcterms:issued> <dc:contributor>Ochoa, Maicol A.</dc:contributor> <dc:creator>Ochoa, Maicol A.</dc:creator> <dcterms:title>Simultaneous weak measurement of non-commuting observables</dcterms:title> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-08-01T08:40:04Z</dcterms:available> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 01.08.2017 (Informationen über die Zugriffsstatistik)

Ochoa_0-416509.pdf 40

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto