Type of Publication: | Diploma thesis |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-0-257884 |
Author: | Sieg, Kevin |
Year of publication: | 2014 |
Summary: |
This work deals with population balance equations, investigating on a particle size distribution model developed by the Research Center Pharmaceutical Engineering in Graz to simulate crystallization processes. The model outlined in detail in this work consists of coupled population balance equations with non-local integro terms and takes crystal growth and aggregation processes into account. Solving the full order model takes a high computational effort, yet various solution snapshot sets from different parameters are required for investigating on the unknown parameters appearing in the model. Therefore, a reduced order model is set up from a full order solution snapshot set by applying the Galerkin projection with a basis computed through the proper orthogonal decomposition method. Numerical results of the model reduction are presented and further numerical approaches, for example greedy methods, are discussed.
|
Dissertation note: | Master thesis, Universität Konstanz |
Subject (DDC): | 510 Mathematics |
Keywords: | Population Balance Equations; Proper Orthogonal Decomposition; Particulate processes; Crystallization; Particle growth; Particle aggregation |
Link to License: | In Copyright |
SIEG, Kevin, 2014. Application of Proper Orthogonal Decomposition to Population Balance Equations of Particulate Processes [Master thesis]. Konstanz: Universität Konstanz
@mastersthesis{Sieg2014Appli-29237, title={Application of Proper Orthogonal Decomposition to Population Balance Equations of Particulate Processes}, year={2014}, address={Konstanz}, school={Universität Konstanz}, author={Sieg, Kevin} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/29237"> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29237/5/Sieg-0-257884.pdf"/> <dc:rights>terms-of-use</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:title>Application of Proper Orthogonal Decomposition to Population Balance Equations of Particulate Processes</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/29237"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/29237/5/Sieg-0-257884.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-13T07:09:22Z</dc:date> <dc:creator>Sieg, Kevin</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:issued>2014</dcterms:issued> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Sieg, Kevin</dc:contributor> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2014-11-13T07:09:22Z</dcterms:available> <dcterms:abstract xml:lang="eng">This work deals with population balance equations, investigating on a particle size distribution model developed by the Research Center Pharmaceutical Engineering in Graz to simulate crystallization processes. The model outlined in detail in this work consists of coupled population balance equations with non-local integro terms and takes crystal growth and aggregation processes into account. Solving the full order model takes a high computational effort, yet various solution snapshot sets from different parameters are required for investigating on the unknown parameters appearing in the model. Therefore, a reduced order model is set up from a full order solution snapshot set by applying the Galerkin projection with a basis computed through the proper orthogonal decomposition method. Numerical results of the model reduction are presented and further numerical approaches, for example greedy methods, are discussed.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Sieg-0-257884.pdf | 1134 |