KOPS - The Institutional Repository of the University of Konstanz

Effective quantum theories for Bloch dynamics in inhomogeneous systems with nontrivial band structure

Effective quantum theories for Bloch dynamics in inhomogeneous systems with nontrivial band structure

Cite This

Files in this item

Checksum: MD5:70030ec8560f4bf9c1d95d6a96dee1c2

WICKLES, Christian, Wolfgang BELZIG, 2013. Effective quantum theories for Bloch dynamics in inhomogeneous systems with nontrivial band structure. In: Physical Review B. 88(4). ISSN 1098-0121. eISSN 1095-3795. Available under: doi: 10.1103/PhysRevB.88.045308

@article{Wickles2013Effec-24550, title={Effective quantum theories for Bloch dynamics in inhomogeneous systems with nontrivial band structure}, year={2013}, doi={10.1103/PhysRevB.88.045308}, number={4}, volume={88}, issn={1098-0121}, journal={Physical Review B}, author={Wickles, Christian and Belzig, Wolfgang} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/24550"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dc:creator>Wickles, Christian</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-23T13:45:41Z</dcterms:available> <dcterms:title>Effective quantum theories for Bloch dynamics in inhomogeneous systems with nontrivial band structure</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Belzig, Wolfgang</dc:creator> <dcterms:bibliographicCitation>Physical Review B ; 88 (2013), 4. - 045308</dcterms:bibliographicCitation> <dc:contributor>Wickles, Christian</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-09-23T13:45:41Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2013</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dc:contributor>Belzig, Wolfgang</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24550/1/Wickles_245508.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:rights rdf:resource="https://kops.uni-konstanz.de/page/termsofuse"/> <dcterms:abstract xml:lang="eng">Starting from a general N-band Hamiltonian with weak spatial and temporal variations, we derive a low energy effective theory for transport within one or several overlapping bands. To this end, we use the Wigner representation that allows us to systematically construct the unitary transformation that brings the Hamiltonian into band-diagonal form. We address the issue of gauge invariance and discuss the necessity of using kinetic variables in order to obtain a low-energy effective description that is consistent with the original theory. Essentially, our analysis is a semiclassical one and quantum corrections appear as Berry curvatures in addition to quantities that are related to the appearance of persistent currents. We develop a transport framework, which is manifestly gauge invariant, and it is based on a quantum Boltzmann formulation along with suitable definitions of current density operators such that Liouville’s theorem is satisfied. Finally, we incorporate the effects of an external electromagnetic field into our theory.</dcterms:abstract> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/24550/1/Wickles_245508.pdf"/> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/24550"/> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

Wickles_245508.pdf 189

This item appears in the following Collection(s)

Search KOPS


Browse

My Account