KOPS - The Institutional Repository of the University of Konstanz

Application of Jacobi's Representation Theorem to locally multiplicatively convex topological real Algebras

Application of Jacobi's Representation Theorem to locally multiplicatively convex topological real Algebras

Cite This

Files in this item

Checksum: MD5:51ae7aec80763f76a3aad0cbb69f5016

GHASEMI, Mehdi, Salma KUHLMANN, Murray MARSHALL, 2012. Application of Jacobi's Representation Theorem to locally multiplicatively convex topological real Algebras

@unpublished{Ghasemi2012Appli-21264, title={Application of Jacobi's Representation Theorem to locally multiplicatively convex topological real Algebras}, year={2012}, author={Ghasemi, Mehdi and Kuhlmann, Salma and Marshall, Murray} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/21264"> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21264"/> <dc:contributor>Ghasemi, Mehdi</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">Let $A$ be a commutative unital $\mathbb{R}$-algebra and let $\rho$ be a seminorm on $A$ which satisfies $\rho(ab)\leq\rho(a)\rho(b)$. We apply T. Jacobi's representation theorem to determine the closure of a $\sum A^{2d}$-module $S$ of $A$ in the topology induced by $\rho$, for any integer $d\ge1$. We show that this closure is exactly the set of all elements $a\in A$ such that $\alpha(a)\ge0$ for every $\rho$-continuous $\mathbb{R}$-algebra homomorphism $\alpha : A \rightarrow \mathbb{R}$ with $\alpha(S)\subseteq[0,\infty)$, and that this result continues to hold when $\rho$ is replaced by any locally multiplicatively convex topology $\tau$ on $A$. We obtain a representation of any linear functional $L : A \rightarrow \reals$ which is continuous with respect to any such $\rho$ or $\tau$ and non-negative on $S$ as integration with respect to a unique Radon measure on the space of all real valued $\reals$-algebra homomorphisms on $A$, and we characterize the support of the measure obtained in this way.</dcterms:abstract> <dcterms:issued>2012</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Ghasemi, Mehdi</dc:creator> <dc:language>eng</dc:language> <dc:creator>Kuhlmann, Salma</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-28T10:16:55Z</dcterms:available> <dc:contributor>Marshall, Murray</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-28T10:16:55Z</dc:date> <dcterms:title>Application of Jacobi's Representation Theorem to locally multiplicatively convex topological real Algebras</dcterms:title> <dc:creator>Marshall, Murray</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21264/1/ghasemi_212648.pdf"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21264/1/ghasemi_212648.pdf"/> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

ghasemi_212648.pdf 111

This item appears in the following Collection(s)

Search KOPS


Browse

My Account