Type of Publication: | Preprint |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-212627 |
Author: | Kuhlmann, Salma; Matusinski, Mickael,; Shkop, Ahuva C. |
Year of publication: | 2012 |
ArXiv-ID: | arXiv:1204.0498 |
Summary: |
We consider a valued field of characteristic 0 with embedded residue field. We fix an additive complement to the valuation ring and its induced "constant term" map. We further assume that the valued field is endowed with an exponential map, and a derivation compatible with the exponential. We use a result of Ax to evaluate the transcendence degree of subfields generated by field elements which have constant term equal to 0 and are linearly independent. We apply our result to the examples of Logarithmic-Exponential power series fields, Exponential-Logarithmic power series fields, and Exponential Hardy fields.
|
Subject (DDC): | 510 Mathematics |
Link to License: | In Copyright |
Bibliography of Konstanz: | Yes |
KUHLMANN, Salma, Mickael MATUSINSKI, Ahuva C. SHKOP, 2012. A Note on Schanuel's Conjectures for Exponential Logarithmic Power Series Fields
@unpublished{Kuhlmann2012Schan-21262, title={A Note on Schanuel's Conjectures for Exponential Logarithmic Power Series Fields}, year={2012}, author={Kuhlmann, Salma and Matusinski, Mickael, and Shkop, Ahuva C.} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/21262"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Shkop, Ahuva C.</dc:creator> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21262"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-31T09:04:56Z</dcterms:available> <dcterms:issued>2012</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21262/1/kuhlmann_212627.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Kuhlmann, Salma</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">We consider a valued field of characteristic 0 with embedded residue field. We fix an additive complement to the valuation ring and its induced "constant term" map. We further assume that the valued field is endowed with an exponential map, and a derivation compatible with the exponential. We use a result of Ax to evaluate the transcendence degree of subfields generated by field elements which have constant term equal to 0 and are linearly independent. We apply our result to the examples of Logarithmic-Exponential power series fields, Exponential-Logarithmic power series fields, and Exponential Hardy fields.</dcterms:abstract> <dcterms:title>A Note on Schanuel's Conjectures for Exponential Logarithmic Power Series Fields</dcterms:title> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/21262/1/kuhlmann_212627.pdf"/> <dc:contributor>Kuhlmann, Salma</dc:contributor> <dc:contributor>Shkop, Ahuva C.</dc:contributor> <dc:contributor>Matusinski, Mickael,</dc:contributor> <dc:creator>Matusinski, Mickael,</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-31T09:04:56Z</dc:date> </rdf:Description> </rdf:RDF>
kuhlmann_212627.pdf | 156 |