KOPS - The Institutional Repository of the University of Konstanz

Towards a theory of electrical transport through atomic and molecular junctions

Towards a theory of electrical transport through atomic and molecular junctions

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

CUEVAS, Juan Carlos, Jan HEURICH, Fabian PAULY, Wolfgang WENZEL, Gerd SCHÖN, 2004. Towards a theory of electrical transport through atomic and molecular junctions. In: Phase Transitions. 77(1-2), pp. 175-189. ISSN 0141-1594. eISSN 1029-0338. Available under: doi: 10.1080/1411596310001622473

@article{Cuevas2004Towar-21144, title={Towards a theory of electrical transport through atomic and molecular junctions}, year={2004}, doi={10.1080/1411596310001622473}, number={1-2}, volume={77}, issn={0141-1594}, journal={Phase Transitions}, pages={175--189}, author={Cuevas, Juan Carlos and Heurich, Jan and Pauly, Fabian and Wenzel, Wolfgang and Schön, Gerd} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/21144"> <dc:contributor>Cuevas, Juan Carlos</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Cuevas, Juan Carlos</dc:creator> <dc:creator>Heurich, Jan</dc:creator> <dc:contributor>Pauly, Fabian</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-10T08:45:34Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2013-01-10T08:45:34Z</dcterms:available> <dcterms:title>Towards a theory of electrical transport through atomic and molecular junctions</dcterms:title> <dc:contributor>Heurich, Jan</dc:contributor> <dc:creator>Pauly, Fabian</dc:creator> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Wenzel, Wolfgang</dc:contributor> <dc:contributor>Schön, Gerd</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dc:creator>Wenzel, Wolfgang</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Schön, Gerd</dc:creator> <dcterms:bibliographicCitation>Phase Transitions ; 77 (2004), 1-2. - S. 175-189</dcterms:bibliographicCitation> <dcterms:abstract xml:lang="eng">Present trends in the miniaturization of electronic devices suggest that ultimately single atoms and molecules may be used as electronically active elements in a variety of applications. In this context, there is an obvious request for a theory that can elucidate the transport mechanisms at the single-molecule scale, and in turn help in the future engineering of molecular devices. We present here a candidate to such a theory, which based on the combination of quantum chemistry methods and Green functions techniques. Our main goal in this work is to show how the electronic structure of single atoms and molecules controls the macroscopic electrical properties of the circuits in which they are used as building blocks. In particular, we review our work on three basic problems that have received a special experimental attention in the last years: (i) the conductance of a single-atom contact; (ii) the conductance of a hydrogen molecule; and (iii) the current through single organic molecules.</dcterms:abstract> <bibo:uri rdf:resource="http://kops.uni-konstanz.de/handle/123456789/21144"/> <dc:language>eng</dc:language> <dcterms:issued>2004</dcterms:issued> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account