Comparison of 2D melting criteria in a colloidal system

Cite This

Files in this item

Checksum: MD5:1bc5d232297823afd005bc80da70cbc6

DILLMANN, Patrick, Georg MARET, Peter KEIM, 2012. Comparison of 2D melting criteria in a colloidal system. In: Journal of Physics: Condensed Matter. 24(46), 464118. ISSN 0953-8984. eISSN 1361-648X. Available under: doi: 10.1088/0953-8984/24/46/464118

@article{Dillmann2012-11-21Compa-20817, title={Comparison of 2D melting criteria in a colloidal system}, year={2012}, doi={10.1088/0953-8984/24/46/464118}, number={46}, volume={24}, issn={0953-8984}, journal={Journal of Physics: Condensed Matter}, author={Dillmann, Patrick and Maret, Georg and Keim, Peter}, note={Article Number: 464118} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:contributor>Keim, Peter</dc:contributor> <dc:contributor>Maret, Georg</dc:contributor> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:hasPart rdf:resource=""/> <dcterms:abstract xml:lang="eng">We use super-paramagnetic spherical particles which are arranged in a two-dimensional monolayer at a water/air interface to investigate the crystal to liquid phase transition. According to the KTHNY theory a crystal melts in thermal equilibrium by two continuous phase transitions into the isotropic liquid state with an intermediate phase, commonly known as the hexatic phase. We verify the significance of several criteria based on dynamical and structural properties to identify the crystal–hexatic and hexatic–isotropic liquid phase transitions for the same experimental data of the given setup. The criteria are the bond orientational correlation function, the Larson–Grier criterion, the 2D dynamic Lindemann parameter, the bond orientational susceptibility, the 2D Hansen–Verlet rule, the Löwen–Palberg–Simon criterion as well as a criterion based on the shape factor of Voronoi cells and Minkowski functionals. For our system with long-range repulsion, the bond order correlation function and bond order susceptibility work best to identify the hexatic–isotropic liquid transition and the 2D dynamic Lindemann parameter identifies unambiguously the hexatic–crystalline transition.</dcterms:abstract> <dc:creator>Keim, Peter</dc:creator> <dcterms:isPartOf rdf:resource=""/> <dcterms:title>Comparison of 2D melting criteria in a colloidal system</dcterms:title> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dspace:hasBitstream rdf:resource=""/> <dc:date rdf:datatype="">2012-11-14T10:47:15Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:available rdf:datatype="">2012-11-14T10:47:15Z</dcterms:available> <dc:creator>Maret, Georg</dc:creator> <dc:creator>Dillmann, Patrick</dc:creator> <dcterms:bibliographicCitation>Journal of Physics : Condensed Matter. - 24 (2012), 46. - 464118</dcterms:bibliographicCitation> <dcterms:rights rdf:resource=""/> <dc:contributor>Dillmann, Patrick</dc:contributor> <bibo:uri rdf:resource=""/> <dcterms:issued>2012-11-21</dcterms:issued> </rdf:Description> </rdf:RDF>

Downloads since Oct 1, 2014 (Information about access statistics)

Dillmann_208173.pdf 277

This item appears in the following Collection(s)

Search KOPS


My Account