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In this paper operator pencils A(x,D, λ) are studied which act on a manifold
with boundary and satisfy the condition of N-ellipticity with parameter, a gener-
alization of the notion of ellipticity with parameter as introduced by Agmon and
Agranovich–Vishik. Sobolev spaces corresponding to the Newton polygon are de-
fined and investigated; in particular it is possible to describe their trace spaces.
With respect to these spaces, an a priori estimate is proved for the Dirichlet
boundary value problem connected with an N-elliptic pencil.

1. Introduction

In this paper we consider operator pencils of the form

A(x,D, λ) = A2m(x,D) + λA2m−1(x,D) + · · ·+ λ2m−2µA2µ(x,D) (1.1)

acting on a smooth manifold M with smooth boundary ∂M . Here m and µ are integer
numbers with m > µ ≥ 0, A2µ, . . . , A2m are partial differential operators in M with infinitely
smooth coefficients and λ is a complex parameter. We assume that

Aj(x,D) =
∑
|α|≤j

aαj(x)D
α (j = 2µ, 2µ+ 1, . . . , 2m)

is a differential operator of order j with scalar coefficients aαj(x) ∈ C∞(M). As usual, we
use for multi-indices α = (α1, . . . , αn) the notation Dα = Dα1

1 · · ·Dαn
n , Dj = −i ∂

∂xj
and

|α| = α1 + . . .+ αn.
The operator pencil (1.1), supplemented with Dirichlet boundary conditions, serves

as an example of a polynomial operator pencil in the sense of [14]. The aim of the present
paper is to develop some ellipticity theory for such pencils using the so-called Newton polygon
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method. In particular, we will obtain a priori estimates in appropriately defined Sobolev
spaces.

The Newton polygon has proved to be an important tool in the theory of general
parabolic and elliptic problems. There is a close connection between such type of problems
and pencils of the form (1.1) which we want to describe briefly. For a given polynomial

P (ξ, λ) =
∑
α,k

pαkξ
αλk , (1.2)

where ξ ∈ Rn and λ ∈ C, let ν(P ) be the set of all integer points (i, k) such that an α

exists with |α| = i and pαk 6= 0. Then the Newton polygon N(P ) is defined as the convex
hull of all points in ν(P ), their projections on the coordinate axes and the origin. The
polynomial P (ξ, λ) is called N-parabolic (see [9], Chapter 2) if N(P ) has no edges parallel
to the coordinate axes and if the inequality

|P (ξ, λ)| ≥ δ
∑

(i,k)∈N(P )∩Z2

|ξ|i |λ|k (1.3)

holds for all λ ∈ C with Imλ < λ0 where δ > 0 and λ0 are constants. Similarly (see [5]),
the polynomial P (ξ, λ) is called N-elliptic with parameter along some ray L of the complex
plane if (1.3) holds for all ξ ∈ Rn and all λ ∈ L , |λ| ≥ R , with large enough R. This type of
polynomials appears, for instance, if one considers Douglis–Nirenberg systems A(x,D)−λI.
Such systems were investigated by Kozhevnikov in [11],[12] and by the authors in [5]. It
turned out that an equivalent condition for unique solvability of a Douglis–Nirenberg system
A(x,D)−λI on a closed manifold and sharp a priori estimates is the condition that for every
x the determinant

P (x, ξ, λ) = det(A(x, ξ)− λI)

satisfies inequality (1.3).
The basic idea of the Newton polygon method for the problems mentioned above is

to assign to λ various weights rj which are defined by the Newton polygon. For each of these
weights we obtain a different principal part of P (ξ, λ) which we denote by Prj

(ξ, λ). On a
manifold without boundary there is a finite open covering {Uj}j of the set of all (ξ, λ) and a
corresponding partition of unity

∑
j ψj(ξ, λ) ≡ 1 such that P (D,λ)ψj(D,λ) differs from the

corresponding principal part Prj
(D,λ)ψj(D,λ) only by a small regular perturbation. This

allows estimates and existence results for the operators P (D,λ), cf. [5] for N-elliptic systems
and [9] for parabolic problems.

As an example, let us consider an operator P (D,λ) being the product of two oper-
ators which are parabolic in the sense of Petrovskii, i.e.

P (D,λ) = (λ+ A2p(D)) (λ+ A2q(D)) ,

where λ + A2p(D) and λ + A2q(D) are 2p- and 2q-parabolic operators, respectively, with
p > q. For each weight r which we assign to the parameter λ we obtain the principal part
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Pr(D,λ) which is given by

Pr(D,λ) =



A2p(D) A2q(D) if r < 2q ,

A2p(D) A2q(D) + λ A2p(D) if r = 2q ,

λ A2p(D) if 2q < r < 2p ,

λ A2p(D) + λ2 if r = 2p ,

λ2 if r > 2p .

Note that for r = r2 = 2q the principal part Pr2(D,λ) is of the form (1.1). Now let us
consider a weight r3 with 2q < r3 < 2p. On a manifold without boundary the opera-
tor P (D,λ)ψ3(D,λ) is a small regular perturbation of the operator Pr3(D,λ)ψ3(D,λ) =
λA2p(D)ψ3(D,λ).

On a manifold with boundary, however, the situation is different. The operator
Pr3(D,λ) has to be supplied with p boundary conditions while the operator P (D,λ) needs
p + q boundary conditions. Thus we can see that now P (D,λ)ψ3(D,λ) is (after division
by λ) a singular perturbation of the principal part Pr3(D,λ)ψ3(D,λ). A similar situation
occurs if the weight of λ is larger than 2p+ 2q.

So we can see that, apart from its own importance as a singularly perturbed prob-
lem, operator pencils of the form (1.1) may serve as a model problem in the theory of general
N-parabolic and N-elliptic boundary value problems, including Douglis–Nirenberg systems.

Replacing λ by ε−1, we obtain a boundary value problem with small parameter as
studied by Vishik–Lyusternik [17], Nazarov, Frank and others. Nazarov obtained in [15] a
priori estimates under the assumption that the solutions of the model ODE problem fulfill
some estimates which are similar to those proved in Section 4 below. (The norms used in
[15] differ slightly from the norms used in the present paper.) In several papers Frank and
other authors investigated singular perturbed problems and corresponding a priori estimates,
cf. [7] and the references therein. The use of the Newton polygon method which gives the
connection to general parabolic problems as described above seems to be new even in the
context of singularly perturbed problems.

Finally, we want to mention another reason for studying pencils of the form (1.1).
Apart from the general connection to parabolic theory, these pencils arise directly in sta-
tionary problems corresponding to parabolic operators which are not resolved with respect
to the time derivative.

The present paper contains basic results on N-ellipticity for pencils of the form (1.1),
Sobolev spaces connected with the Newton polygon and the proof of an a priori estimate
for the Dirichlet boundary value problem connected with (1.1). These investigations are
continued in the forthcoming paper [6] where general boundary conditions are treated (in
particular we define in [6] the analogue of the Shapiro–Lopatinskii condition), the parametrix
construction is described and the necessity of the N-ellipticity conditions is proved.

We now turn to a more detailed exposition of the results of the present paper. We
will assume pencil (1.1) to be elliptic with parameter along the ray [0,∞) in the following
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sense: denote by
A

(0)
j (x, ξ) :=

∑
|α|=j

aαj(x)ξ
α (j = 2µ, . . . , 2m)

the principal symbol of Aj, where ξα = ξα1
1 · · · ξαn

n for ξ = (ξ1, . . . , ξn) = (ξ′, ξn), and by

A(0)(x, ξ, λ) := A
(0)
2m(x, ξ) + λA

(0)
2m−1(x, ξ) + . . .+ λ2m−2µA

(0)
2µ (x, ξ)

the principal symbol of A(x,D, λ). Then our main assumption is that the estimate

|A(0)(x, ξ, λ)| ≥ C|ξ|2µ (λ+ |ξ|)2m−2µ (ξ ∈ Rn, λ ∈ [0,∞), x ∈M) (1.4)

holds where the constant C does not depend on x, ξ or λ. Note that this inequality may be
considered as a particular case of (1.3) where now the Newton polygon associated to A is
a trapezoid (see Figure 2 below). However, in the present case one edge of the polygon is
parallel to one of the coordinate axes, which is excluded in the definition of N-parabolicity.

In the case µ = 0 the inequality (1.3) is the usual definition of ellipticity with
parameter which was introduced by Agmon [1] and Agranovich–Vishik [3]. Therefore we
may assume in the following that µ > 0. In this case even for λ 6= 0 the principal symbol
A(0)(x, ξ, λ) vanishes for ξ = 0 which causes the main difficulties in proving existence results
and estimates. Note that the symbol A(0)(x, ξ, λ) is homogeneous in ξ and λ of degree 2m,
as it is the case for the problems treated in [3].

The norms appearing in the a priori estimate will be parameter-dependent norms
connected with the Newton polygon. For this, we assign to each Newton polygon N(P ) a
weight function ΞP (ξ, λ) and a Sobolev space HΞ(Rn). On the half-space Rn

+ := {(x′, xn) ∈
Rn : xn > 0} and on the manifold M we can define HΞ in a standard way. Of particular
interest for the theory of N-elliptic boundary value problems is to describe the space of all
traces of functions u ∈ HΞ(Rn

+), i.e. the space {Dj−1
n u(x′, 0) : u ∈ HΞ(Rn

+)}. It turn out that

this trace space is given by HΞ(−j+1
2 )

(Rn−1) where Ξ(−j+ 1
2
)(ξ′, λ) denotes the weight function

corresponding to the Newton polygon which is constructed from N(P ) by a shift of length
j − 1

2
to the left parallel to the abscissa.

The description of the trace spaces on the boundary by a shifted Newton polygon
is an important part of this theory and holds for general Newton polygons. For future
purposes, we derive this result in this generality in Section 2, not restricting ourselves to the
case where the Newton polygon is a trapezoid.

The first step for proving estimates for the solutions is to obtain precise knowledge
of the zeros of the principal symbol A(0)(x, ξ, λ) considered as a polynomial in ξn. These
zeros can (for large λ) be arranged in two groups, one group remaining bounded for λ→∞,
the other group of zeros being exactly of order O(λ) for λ → ∞. To obtain this result we
have to impose an additional condition on the principal symbol A(0)(x, ξ, λ) which is the
analogue of the condition of regular degeneration which is known from the theory of singular
perturbations (cf. Vishik-Lyusternik [17]). See Section 3 for details.

In Sections 4 and 5 we turn to the Dirichlet boundary value problem connected
with (1.1). The proof of the a priori estimate for this boundary value problem is based on
estimates of the solution of an ordinary differential equation which arises from the bound-
ary value problem by fixing x ∈ ∂M , rewriting the boundary value problem in coordinates
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corresponding to x and taking the partial Fourier transform with respect to the first n− 1
variables. Estimates for the system of fundamental solutions of the resulting ordinary differ-
ential equation can be found in Section 4, and the a priori estimate is proved in Section 5.

Boundary value problems corresponding to operators of the form (1.1) can also be
treated using a combination of the parameter-independent Boutet de Monvel calculus and
its parameter-dependent version. This approach is described in the book of Grubb [10],
Section 4.7, see also the references therein. Here the degeneracy of the symbol of (1.1)
which appears for ξ = 0 is “divided out” by use of the parameter-independent calculus.
Roughly speaking (and ignoring several reductions and modifications), to find a solution u
of the Dirichlet boundary value problem connected with (1.1) one considers the parameter-
independent boundary value problem

A2µ(x,D)u = v in M,

(∂/∂ν)j−1u = ψj (j = 1, . . . , µ) on ∂M,

where ∂/∂ν stands for the normal derivative. Inserting its solution (or parametrix) into
the original problem, one obtains for v a parameter-elliptic problem in the sense of [10].
For a detailed realization of this approach many additional questions arise, and therefore
in the present paper we prefer the more elementary way which is based on the traditional
formulation of the ellipticity conditions and which directly leads to the desired a priori
estimates in terms of the Newton polygon.

2. Newton’s polygon and functional spaces corresponding to it

In this section we consider a polynomial P (ξ, λ) of the form (1.2) and its Newton poly-
gon N(P ) which was defined in the Introduction. For a detailed discussion of the Newton
polygon, we refer the reader to Gindikin-Volevich [9], Chapters 1 and 2, and to [5].

To construct function spaces corresponding to the Newton polygon, we consider the
weight function

ΞP (ξ, λ) :=
∑

(i,k)∈N(P )

|ξ|i |λ|k , (2.1)

where the summation on the right-hand side is extended over all integer points of N(P ). The
Sobolev space HΞ will arise as a special case of the following more general definition which is
taken from Volevich-Paneah [18]. It can be seen directly that the function σ(ξ) := ΞP (ξ, λ)
satisfies the condition which appears in this definition (cf. also Remark 2.4 below). In the
following, the Fourier transform F is defined by

Fu(ξ) =
1

(2π)
n
2

∫
Rn

e−ix·ξu(x) dx

for u ∈ S(Rn), the definition is extended in the usual way to distributions u ∈ S ′(Rn).

Definition 2.1. Let σ(ξ) be a continuous function on Rn with values in R+ and assume
that σ(ξ)σ−1(η) ≤ C(1 + |ξ − η|N) holds for all ξ, η ∈ Rn with constants C and N not

5



depending on ξ or η. Then Hσ is defined as the space of all distributions u in S ′(Rn) such
that σ(ξ)Fu(ξ) ∈ L2(Rn). The space Hσ is endowed with the norm

‖u‖σ,Rn :=
( ∫

Rn

σ2(ξ)|Fu(ξ)|2 dξ
)1/2

.

Proposition 2.2. (See Volevich-Paneah [18].) Let σ(ξ, λ) be a continuous function of ξ and
assume that

σ(ξ, λ)σ−1(η, λ) ≤ C1(1 + |ξ − η|N)

holds with a constant C1 not depending on ξ, η or λ. Let

σ′l(ξ
′, λ) :=

(∫ ∞

−∞

ξ2l
n

σ2(ξ′, ξn, λ)
dξn

)−1/2

<∞ .

Then Dl
nu(x

′, 0) is well-defined as an element of Hσ′l(Rn−1) for every u ∈ Hσ(Rn), and there
exists a constant C, independent of u and λ, such that

‖Dl
nu(x

′, 0)‖σ′l,Rn−1 ≤ C‖u‖σ,Rn .

We will apply Proposition 2.2 to the case where σ(ξ, λ) is given by ΞP (ξ, λ) (see
(2.1)). Let one of the functions σ(ξ, λ) or σ1(ξ, λ) for each λ satisfy the condition of Definition
2.1 and σ(ξ, λ) ≈ σ1(ξ, λ). The symbol ≈ means that there exist positive constants C1 and
C2, independent of ξ and λ, such that

C1σ(ξ, λ) ≤ σ1(ξ, λ) ≤ C2σ(ξ, λ) .

Then the other function also satisfies the condition of Definition 2.1 and, evidently, the
statement of Proposition 2.2 remains valid, if we replace σ by the equivalent function σ1.
In the following we will construct an equivalent function for ΞP (ξ, λ) (cf. [5], Section 2).
For this purpose we introduce some simple geometric notions connected with the Newton
polygon (see, e.g., [9], Chapter 1).

Let Γ1, . . . ,ΓS be the edges of the Newton polygon not lying on the coordinate axes
and indexed in the clockwise direction (cf. Fig. 1). Suppose that

(0, 0), (a1, b1), . . . , (aS+1, bS+1) , a1 = 0, bS+1 = 0 , (2.2)

are the vertices of the polygon N(P ). Then the edge Γs is given by

Γs = {(a, b) ∈ R2 : 1 · a+ rs · b = ds} (s = 1, . . . , S)

where rs = (as+1 − as)/(bs − bs+1). The vector (1, rs) is an exterior normal to Γs, where we
admit r1 = ∞ if Γ1 is horizontal. Let us assume in the following that the edge ΓS is not
vertical, i.e. that we have rS > 0. Since N(P ) is convex, we have

∞ ≥ r1 > . . . > rS > 0 .
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The rs-principal part of P is defined by

Prs(ξ, λ) :=
∑

|α|+rsk=ds

aαkξ
αλk . (2.3)

Here ds is the so-called rs-degree of P which may be defined by

ds := max
(a,b)∈N(P )

(1 · a+ rs · b) . (2.4)

Now we set
Ξ(s)(ξ, λ) = |ξ|−as |λ|−bs+1

∑
i+rsk=ds

|ξ|i|λ|k .

This function will be a polynomial of |ξ| and |λ|.
Repeating the argument in [9], Theorem 1.1.3, we can prove that

S∏
s=1

Ξ(s)(ξ, λ) =
S∑

s=1

|ξ|as |λ|bs + . . . , (2.5)

where the dots denote the sum of monomials |ξ|i|λ|k with (i, k) ∈ N(P ). For |λ| ≥ 1 the
right-hand side can be estimated from below by

1 +
S∑

s=1

|ξ|as |λ|bs .

This function can be estimated from below by ΞP (ξ, λ) (see [5], Subsection 3.2). From this
it follows that the left-hand side of (2.5) is equivalent to ΞP . Denote by 2ms the largest

degree of |ξ| in Ξ(s). It is obvious that Ξ(s) is equivalent to (|ξ|+ |λ|
1
rs )2ms , and consequently

ΞP (ξ, λ) ≈
S∏

s=1

(
|ξ|2 + |λ|

2
rs

)ms

. (2.6)

We will suppose further, as in the case of parabolic polynomials (cf. [9], Chapter
2), that m1, . . . ,mS are integers.
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Remark 2.3. For r1 = ∞ (i.e. Γ1 is horizontal) (2.3) and (2.4) have no sense and (2.3)
should be replaced by

Pr1(ξ, λ) :=
∑
|α|=a2

aαb1ξ
αλb1 .

As for the equivalence (2.6), it will be valid for |λ| > λ0 with arbitrary λ0 > 0 and the
equivalence constants, of course, depend on λ0.

Remark 2.4. The fact that Ξ(ξ, λ) satisfies the condition of Definition 2.1 is an immediate
consequence of (2.6) as this condition is fulfilled for each factor on the right-hand side.

Remark 2.5. From (2.6) it follows that the rs-degree ds (cf. (2.4)) is given by

ds = 2
( s∑

j=1

mj +
S∑

j=s+1

rs

rj

ms

)
. (2.7)

To see this, we use the relation

ΞP (tξ, trsλ) = tdsΞPrs
(ξ, λ) + o(tds), t→ +∞ ,

cf. [9], Section 1.1.2. In our case we obtain, denoting the right-hand side of (2.7) by d′s,

ΞP (tξ, trsλ) =
S∏

j=1

(
t2|ξ|2 + t

2 rs
rj |λ|

2
rj

)mj

= td
′
s

s∏
j=1

(
|ξ|2 + t

2( rs
rj
−1)|λ|

2
rj

)mj
S∏

j=s+1

(
t
2(1− rs

rj
)|ξ|2 + |λ|

2
rj

)mj

= td
′
sΞPrs

(ξ, λ) + o(td
′
s) ,

which shows ds = d′s.

Now we will describe the trace spaces of the spaces HΞ. For this we use the following
lemma:

Lemma 2.6. Let 1 ≤ a1 < a2 < . . . < aS < ∞ and m1, . . . ,mS ∈ N. For l ∈ N with
0 ≤ l < 2(m1 + . . .+mS) define the index κ by

2m1 + . . .+ 2mκ−1 ≤ l < 2m1 + . . .+ 2mκ . (2.8)

Then there exists a constant C > 0, independent of a1, . . . , aS, such that

C−1a2l+1−4m1−...−4mκ
κ

S∏
s=κ+1

a−4ms
s ≤

∫ ∞

−∞

t2l∏S
s=1(t

2 + a2
s)

2ms

dt

≤ Ca2l+1−4m1−...−4mκ
κ

S∏
s=κ+1

a−4ms
s .

In the case 0 ≤ l < 2m1, we set m0 = 0 in (2.8).
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Proof. Substituting in the integral t = aSτ , we obtain

I :=

∫ ∞

−∞
t2l

S∏
s=1

(t2 + a2
s)
−2msdt

= 2a2l+1−4m1−...−4mS
S

∫ ∞

0

t2l

S∏
s=1

(
t2 +

( as

aS

)2
)−2ms

dt.

For t ≥ 1 we use

t2l(1 + t2)−2m1−...−2mS ≤ t2l

S∏
s=1

(
t2 +

( as

aS

)2)−2ms

≤ t2l−4m1−...−4mS .

As l < 2
∑S

s=1ms, the left-hand and right-hand side of this inequality are integrable functions
over [1,∞), and we obtain

C−1
1 ≤

∫ ∞

1

t2l

S∏
s=1

(
t2 +

( as

aS

)2)−2ms

dt ≤ C1

for some C1 > 0.
For 0 ≤ t ≤ 1 we have 1 ≤ 1 + t2 ≤ 2, and therefore∫ 1

0

t2l

S∏
s=1

(
t2 +

a2
s

a2
S

)−2ms

dt ≈
∫ 1

0

t2l

S−1∏
s=1

(
t2 +

a2
s

a2
S

)−2ms

dt .

Now we substitute t = aS−1

aS
τ and see that the last integral is equivalent to(

aS−1

aS

)2l+1−4m1−...−4mS−1
∫ aS

aS−1

0

t2l

S−1∏
s=1

(
t2 +

a2
s

a2
S−1

)−2ms

dt .

Again we split up
∫ aS

aS−1

0 . . . =
∫ 1

0
. . . +

∫ aS
aS−1

1 . . . and use an estimate of the form C−1
2 ≤∫ aS

aS−1

1 . . . ≤ C2 for the second integral.
Proceeding in this way, we receive

I ≈ a2l+1−4m1−...−4mS
S

(
aS−1

aS

)2l+1−4m1−...−4mS−1

· . . .

·
(

aκ

aκ+1

)2l+1−4m1−...−4mκ
∫ aκ+1

aκ

0

t2l

κ∏
s=1

(
t2 +

a2
s

a2
κ

)−2ms

dt .

For the last integral we use

t2l(t2 + 1)−2m1−...−2mκ ≤ t2l

κ∏
s=1

(
t2 +

a2
s

a2
κ

)−2ms

≤ t2l−4m1−...−4mκ−1(t2 + 1)−2mκ .
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As 2m1 + . . .+ 2mκ−1 ≤ l < 2m1 + . . .+ 2mκ, the left-hand and the right-hand side of this
inequality are integrable functions on [0,∞). Therefore

I ≈ a2l+1−4m1−...−4mκ
κ a

−4mκ+1

κ+1 · . . . · a−4mS
S .

Remark 2.7. Using the substitution t = a1τ , it is easily seen that the condition a1 ≥ 1 in
Lemma 2.6 may be replaced by a1 > 0.

As in the Introduction, we denote by Ξ
(−l)
P (ξ, λ) the function corresponding to the

Newton polygon which is constructed from N(P ) by a shift of length l to the left parallel to
the abscissa. More explicitly, if the vertices of N(P ) are given by (2.2) and if

aκ−1 ≤ l < aκ ,

then an easy calculation shows that the vertices of the shifted Newton polygon are

(0, 0),
(
0,
bκ(l − aκ−1) + bκ−1(aκ − l)

aκ − aκ−1

)
, (aκ − l, bκ), . . . , (aS+1 − l, bS+1) .

We preserve the notation HΞ
(−l)
P (Rn−1) for the spaces in Rn−1 corresponding to the weight

functions Ξ
(−l)
P (ξ′, λ) := Ξ

(−l)
P (ξ′, 0, λ).

Lemma 2.8. Let λ0 > 0. Then for |λ| ≥ λ0 we have

σ′l(ξ
′, λ) ≈ Ξ(−l− 1

2
)(ξ′, λ) ,

where σ′l is defined by

σ′l(ξ
′, λ) :=

(∫ ∞

−∞

ξ2l
n

Ξ2
P (ξ, λ)

dξn

)− 1
2

.

Proof. Instead of ΞP we use the right-hand side of (2.6). From Lemma 2.6 with a2
s =

|ξ′|2 + |λ|
2
rs we obtain (see Remark 2.7) that

σ′l(ξ
′, λ) ≈

(
|ξ′|2 + |λ|

2
rκ

)m1+...+mκ− l
2
− 1

4

S∏
s=κ+1

(
|ξ′|2 + |λ|

2
rs

)ms

, (2.9)

where κ is chosen according to Lemma 2.6. From Remark 2.5 applied to σ′l(ξ
′, λ) we see that

the edges of the Newton polygon corresponding to the weight function (2.9) are given by

Γj = {(a, b) ∈ R2 : a+ rjb = d′j}

with d′j = dj − l − l
2

(j = κ, . . . , S). But this means that the Newton polygon for σ′l is

constructed fromN(P ) by a shift of l+ 1
2

to the left, i.e. we have σ′l(ξ
′, λ) ≈ Ξ

(−l− 1
2
)

P (ξ′, λ).

As an immediate consequence of Proposition 2.2 and Lemma 2.8, we obtain the
following theorem.

10



Theorem 2.9. For every λ0 > 0 there exists a constant C > 0, independent of u and λ,
such that

‖Dl
nu(x

′, 0)‖
Ξ

(−l− 1
2 )

P ,Rn−1
≤ C‖u‖ΞP ,Rn (l = 0, . . . , 2m1 + . . .+ 2mS − 1)

holds for u ∈ HΞP (Rn) and λ ∈ C with |λ| ≥ λ0.

In the following, we will also consider the function spaces in the half space Rn
+ which

correspond to Newton polygons. Using the binomial formula, it is easily seen that

Ξ2
P (ξ, λ) ≈

M∑
l=0

ξ2l
n

(
Ξ

(−l)
P (ξ′, λ)

)2

where M = 2m1 + · · ·+ 2mS. From this it follows that we can take( M∑
l=0

∫ ∞

−∞
‖(Dl

nu)(·, xn)‖2

Ξ
(−l)
P ,Rn−1

dxn

)1/2

(2.10)

as an equivalent norm in HΞP (Rn). Replacing the integral over R by the integral over xn ≥ 0
we define a norm in HΞP (Rn

+).

To define the space H
1

ΞP (Rn
+), we use the more general approach which can be

found, e.g., in [18]. Let σ(ξ) be a weight function fulfilling the condition in Definition 2.1.
Denote by Hσ(Rn)± the subspace of Hσ(Rn) consisting of elements with supports in the
closure of Rn

±. Then we set

Hσ(Rn
+) = Hσ(Rn)/Hσ(Rn)−

endowed with the natural quotient norm

‖f‖σ,Rn
+

= inf
f−∈Hσ(Rn)−

‖f0 + f−‖σ,Rn ,

where f0 is an arbitrary representative of the conjugacy class of f .
Suppose that σ(ξ′, ξn) for fixed ξ′ ∈ Rn−1 can be extended as a holomorphic function

in ξn of polynomial growth in the lower half-plane Im ξn < 0. In this case the quotient norm
of f ∈ Hσ(Rn

+) coincides with the norm

‖σ(D′, Dn)f0‖L2(Rn
+) (2.11)

which does not depend on the choice of the element f0 in the conjugacy class. In (2.11) the
pseudo-differential operator (ps.d.o.) σ(D′, Dn) = σ(D) is defined by

σ(D)f := F−1σ(ξ)(Ff)(ξ) .

In the case when

σ ≈
S∏

j=1

(|ξ|2 + |λ|2/rj)mj

11



we replace σ in the definition of Hσ(Rn
+) by

S∏
s=1

(
iξn + (|ξ′|2 + |λ|2/rs)1/2

)2ms

. (2.12)

In particular (cf. (2.6)), this gives us another equivalent description of HΞP (Rn
+). Replacing

in (2.12) the exponent ms by −ms, we obtain the space H1/ΞP (Rn
+).

3. The zeros of the symbol

Now we come back to the operator pencil (1.1) and consider the corresponding model problem
with constant coefficients and without lower order terms. Let A(ξ, λ) be a polynomial in
ξ ∈ Rn and λ ∈ C of the form

A(ξ, λ) = A2m(ξ) + λA2m−1(ξ) + . . .+ λ2m−2µA2µ(ξ) , (3.1)

where Aj(ξ) is a homogeneous polynomial in ξ of degree j. The Newton polygon correspond-
ing to A has the shape indicated in Figure 2 with r = 2m and s = 2µ.

-

6

i

k

@
@

@
@

@
@

@@

• •

•

rs

r − s

Fig. 2. The Newton polygon Nr,s.

Definition 3.1. The polynomial A(ξ, λ) is called N-elliptic with parameter in [0,∞) if the
estimate

|A(ξ, λ)| ≥ C |ξ|2µ (λ+ |ξ|)2m−2µ (ξ ∈ Rn, λ ∈ [0,∞)) (3.2)

holds with a constant C independent of ξ and λ.

Lemma 3.2. The polynomial A(ξ, λ) is N-elliptic with parameter in [0,∞) if and only if
the following conditions are satisfied:

(i) A2m(ξ) is elliptic, i.e. A2m(ξ) 6= 0 for ξ ∈ Rn\{0}.

(ii) A2µ(ξ) is elliptic.

(iii) A(ξ, λ) 6= 0 for ξ ∈ Rn\{0} and λ ∈ [0,∞).

12



Proof. From (3.2) we trivially obtain condition (iii) and, setting λ = 0, condition (i). Taking
ε = 1

λ
and dividing (3.2) by ε2µ−2m, we receive

|A2µ(ξ) + εA2µ+1(ξ) + . . .+ ε2m−2µA2m(ξ)| ≥ C|ξ|2µ(1 + ε|ξ|)2m−2µ .

Taking the limit for ε→ 0, we obtain (ii).
Now let conditions (i)–(iii) be fulfilled. For ξ ∈ Rn\{0} we write A(ξ, λ) in the form

A(ξ, λ) = A2µ(ξ)B2m−2µ(ξ, λ)

with

B2m−2µ(ξ, λ) =
A2m(ξ)

A2µ(ξ)
+ λ

A2m−1(ξ)

A2µ(ξ)
+ . . .+ λ2m−2µ .

The coefficients of B2m−2µ(ξ, λ) (considered as a polynomial in λ) are homogeneous functions
in ξ ∈ Rn\{0}, and therefore B(ξ, λ) is a homogeneous function in (ξ, λ) of degree 2m− 2µ.
From this and from conditions (ii) and (iii) it follows that

|A2µ(ξ)| ≥ C|ξ|2µ , |B2m−2µ(ξ, λ)| ≥ C(λ+ |ξ|)2m−2µ .

Multiplying these estimates, we see that A is N-elliptic with parameter in [0,∞).

Denote by τj(ξ
′, λ) (j = 1, . . . , 2m) the zeros of the algebraic equation

A(ξ′, τ, λ) = 0
(
ξ′ ∈ Rn−1\{0}, λ ∈ [0,∞)

)
.

Due to Lemma 3.2 (iii), this equation has no real roots. The number m+ of roots
with positive imaginary part is independent of (ξ′, λ) and therefore coincides with the cor-
responding number for λ = 0. It is easily seen (cf. [4], Section 1.2) that in the case n > 2
the set {(ξ′, λ) : ξ′ ∈ Rn−1\{0}, λ ∈ [0,∞)} is connected, and therefore we have m+ = m.
In the case n ≤ 2 the relation m+ = m is an additional condition which will be assumed
to hold in the following. We denote the roots of A(ξ′, τ, λ) with positive imaginary part by
τ1(ξ

′, λ), . . . , τm(ξ′, λ).
To investigate the elliptic pencil corresponding to A(ξ′, τ, λ) we will need an addi-

tional assumption which is closely related to the condition of regularity of degeneration in
the theory of singular perturbations (cf. Vishik-Lyusternik [17], Section 1.1). To formulate
this assumption we consider the auxiliary polynomial of degree 2m− 2µ given by

Q(τ) := τ−2µA(0, τ, 1) . (3.3)

From inequality (3.2) with ξ′ = 0 and λ = 1 we obtain for τ 6= 0 the estimate

|Q(τ)| ≥ C(|τ |+ 1)2m−2µ (3.4)

with a constant independent of τ . By continuity we obtain that Q(0) 6= 0, and thus Q(τ)
has no real roots.

Definition 3.3. The polynomial A(ξ′, τ, λ) is said to degenerate regularly for λ → ∞ if
the polynomial Q(τ) defined in (3.4) has exactly m − µ roots with positive imaginary part
(counted according to their multiplicities).
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Remark 3.4. a) Suppose that the polynomial A(ξ, λ) contains only terms of even order, i.e.

A(ξ, λ) = A2m(ξ) + λ2A2m−2(ξ) + . . .+ λ2m−2µ−2A2µ+2(ξ) + λ2m−2µA2µ(ξ) .

Then the polynomial Q(τ) is a polynomial of degree m − µ in the variable τ 2 and A(ξ, λ)
degenerates regularly for λ→∞.

b) (Cf. [17], Lemma 3.4.) Assume that A(ξ, λ) is the symbol of a differen-
tial operator Ã( ∂

∂x1
, . . . , ∂

∂xn
, λ) with real coefficients. Then the polynomials of even order

A2m−2j(ξ) (j = 0, . . . ,m − µ) are real and the polynomials of odd order A2m−2j−1(ξ) (j =
0, . . . ,m− µ− 1) are purely imaginary. Assume that Ã is strongly elliptic, i.e. we have

ReA(ξ, λ) ≥ C|ξ|2µ(λ+ |ξ|)2m−2µ .

Then we obtain that ReA = A2m + λ2A2m−2 + . . . + λ2m−2µA2µ satisfies (3.2), and due to
part a) the polynomial ReQ(τ) has m − µ roots with positive imaginary part and m − µ
roots with negative imaginary part. Since the polynomial

Qδ(τ) := ReQ(τ) + δi ImQ(τ) (0 ≤ δ ≤ 1)

satisfies
ReQδ(τ) ≥ C(|τ |+ 1)2m−2µ (0 ≤ δ ≤ 1) ,

the number of roots of Qδ in the upper half complex plane does not depend on δ ∈ [0, 1],
and A(ξ, λ) degenerates regularly for λ→∞.

Lemma 3.5. Let the polynomial A(ξ, λ) in (3.1) be N-elliptic with parameter in [0,∞) and
assume that A degenerates regularly for λ → ∞. Then, with a suitable numbering of the
roots τj(ξ

′, λ) of A(ξ′, τ, λ) with positive imaginary part, we have:
(i) Let S(ξ′) = {τ 0

1 (ξ′), . . . , τ 0
µ(ξ′)} be the set of all zeros of A2µ(ξ′, τ) with positive imaginary

part. Then for all r > 0 there exists a λ0 > 0 such that the distance between the sets
{τ1(ξ′, λ), . . . , τµ(ξ′, λ)} and S(ξ′) is less than r for all ξ′ with |ξ′| = 1 and all λ ≥ λ0.
(ii) Let τ 1

µ+1, . . . , τ
1
m be the roots of the polynomial Q(τ) (cf. (3.3)) with positive imaginary

part. Then
τj(ξ

′, λ) = λτ 1
j + τ̃ 1

j (ξ′, λ) (j = µ+ 1, . . . ,m) ,

and there exist constants Kj and λ1, independent of ξ′ and λ, such that for λ ≥ λ1 the
inequality

|τ̃ 1
j (ξ′, λ)| ≤ Kj|ξ′|

1
k1 λ

1− 1
k1 (|ξ′| ≤ λ)

holds, where k1 is the maximal multiplicity of the roots of Q(τ).

Proof. (i) We write ξ′ = ρω with |ω| = 1 and set τ̃ = τ
ρ
, ε = ρ

λ
. After division of A(ξ′, τ, λ)

by λ2m−2µρ2µ we obtain the equation

B(ω, τ̃ , ε) := A2µ(ω, τ̃) + εA2µ+1(ω, τ̃) + . . .+ ε2m−2µA2m(ω, τ̃) = 0 . (3.5)

For fixed ω let τ̃j = . . . = τ̃j+p−1 be a zero of B(ω, τ̃ , 0) = A2µ(ω, τ̃) of multiplicity p. Then
there exists an α = α(ω) > 0 such that

1

2πi

∫
|z−τ̃j |=α

d
dz
B(ω, z, ε)

B(ω, z, ε)
dz =

1

2πi

∫
|z−τ̃j |=α

d
dz
B(ω, z, 0)

B(ω, z, 0)
dz = p
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holds for all ε < ε0 = ε0(ω). Therefore, for every ε < ε0 the equation (3.5) has exactly p
roots in {z ∈ C : |z − τ̃j| < α} which we denote by τ̃j(ω, ε), . . . , τ̃j+p−1(ω, ε). Proceeding
in this way for all zeros of A2µ(ω, τ̃), we obtain the set S(ω, ε) := {τ̃1(ω, ε), . . . , τ̃µ(ω, ε)} of
zeros of B(ω, τ̃ , ε).

Now we assume that the statement in (i) is false. Then there exists a sequence
(ωn)n≥1 with |ωn| = 1 and a constant C > 0 such that dist(S(ωn), S(ωn, εn)) ≥ C for all
n ≥ 1 where we have set εn = 1

n
. Due to compactness, we may assume that ωn converges to

ω0. As the zeros of A2µ(ω, τ̃) depend continuously on ω, we obtain for large n that

dist(S(ω0), S(ωn, εn)) ≥ C

2
. (3.6)

But from the same considerations as above we see that for every sufficiently small α > 0
there exists an ε0 = ε0(ω0) and an s > 0 such that B(ω, τ̃ , ε) has exactly µ roots in

⋃
j{z ∈

C : |z − τ̃j(ω0)| < α} for all |ω − ω0| < s and 0 < ε < ε0. Taking α < C
2
, we obtain a

contradiction to (3.6).
(ii) We set ξ′ = ρω with |ω| = 1, τ = λτ̃ and λ = ρ/ε and obtain the equation

0 = A(εω, τ̃ , 1) = τ̃ 2µQ(̃τ) +
2m∑
k=1

εkak(ω, τ̃)

where ak(ω, τ̃) := 1
k!

( ∂
∂ε

)kA(εω, τ̃ , 1)|ε=0.
Let τ 1

j = . . . = τ 1
j+p−1 be a zero of Q(τ) of multiplicity p. Then we know from the

theory of algebraic functions that there exist p roots τ̃j(ω, ε), . . . , τ̃j+p−1(ω, ε) of A(εω, τ̃ , 1)
for which we have an expansion (Puiseux series) of the form

τ̃s(ω, ε) = τ 1
j +

∞∑
k=1

cjk(ω)εk/p (s = j, . . . , j + p− 1) (3.7)

(cf., e.g., [8], Section 7). In formula (3.7) we have to take the p different branches of the

function ε
1
p to obtain the zeros τ̃j(ε), . . . , τ̃j+p−1(ε). The series on the right-hand side is a

holomorphic function in ε
1
p for |ε| ≤ ε1(ω) for some ε1(ω) > 0.

From the construction of the Puiseux series (cf. [8], Section 8) we know that the
coefficients cjk(ω) in the series (3.7) depend continuously on the coefficients of the polynomial
B(ω, τ̃ , ε) and therefore on ω. Thus there exists an ε1 > 0, independent of ω, such that the

right-hand side of (3.7) is a holomorphic function in ε
1
p for |ε| ≤ ε1. As the function

(τ̃j(ω, ε)− τ 1
j )ε−

1
p =

∞∑
k=1

cjk(ω)ε
k−1

p

is continuous in ω and ε for |ω| = 1 and 0 ≤ ε ≤ ε0, it is bounded by some constant K1,
independent of ω and ε, which finishes the proof of part (ii).
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4. An estimate for the basic ordinary differential equation

In this section we consider the polynomial A(ξ, λ) given by (3.1) and assume that this
polynomial is N-elliptic with parameter in [0,∞) and degenerates regularly for λ→∞. For
fixed ξ′ ∈ Rn−1, λ ∈ [0,∞) and j = 1, . . . ,m we consider the ordinary differential equation
on the half-line

A(ξ′, Dt, λ)wj(t) = 0 (t > 0) , (4.1)

Dk−1
t wj(t)|t=0 = δjk (k = 1, . . . ,m) , (4.2)

wj(t) → 0 (t→ +∞) .

Here Dt stands for −i ∂
∂t

.

Theorem 4.1. For every ξ′ ∈ Rn−1\{0} and λ ∈ [0,∞) the ordinary differential equation
(4.1)–(4.2) has a unique solution wj(ξ

′, t, λ), and for l = 0, 1, . . . the estimate

‖Dl
twj(ξ

′, ·, λ)‖L2(R+) ≤ C


|ξ′|l−j+ 1

2 , j ≤ µ, l ≤ µ,

|ξ′|1+µ−j(λ+ |ξ′|)l−µ− 1
2 , j ≤ µ, l > µ

|ξ′|l−µ(λ+ |ξ′|)µ−j+ 1
2 , j > µ, l ≤ µ,

(λ+ |ξ′|)l−j+ 1
2 , j > µ, l > µ,

holds with a constant C not depending on ξ′ and λ.

Proof. The existence and the uniqueness of the solution follows immediately from the fact
that A(ξ′, τ, λ) (considered as a polynomial in τ) has exactly m roots with positive imaginary
part. Let γ(ξ′, λ) be a closed contour in the upper half of the complex plane enclosing all
roots τ1(ξ

′, λ), . . . , τm(ξ′, λ) with positive imaginary part. Then wj(ξ
′, t, λ) is given by

wj(ξ
′, t, λ) =

1

2πi

∫
γ(ξ′,λ)

Mj(ξ
′, τ, λ)

A+(ξ′, τ, λ)
eitτ dτ (4.3)

where

A+(ξ′, τ, λ) =
m∏

k=1

(
τ − τk(ξ

′, λ)
)

=:
m∑

k=0

ak(ξ
′, λ)τ k

and

Mj(ξ
′, τ, λ) =

m−j∑
k=0

ak(ξ
′, λ)τm−j−k .

(Cf., e.g., [2], Section 1.) The coefficients are given by the formula of Vieta,

ak(ξ
′, λ) =

∑
1≤l1<...<lk≤m

(−1)kτl1(ξ
′, λ) · . . . · τlk(ξ′, λ) . (4.4)

From (4.3) we see, substituting τ = rτ̃ , that

Dl
twj(ξ

′, t, λ) = r1−j+l(Dl
twj)

(
rξ′,

t

r
, rλ

)
,
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and therefore

‖Dl
twj(ξ

′, ·, λ)‖L2(R+) = r
1
2
−j+l

∥∥∥Dl
twj

(ξ′
r
, ·, λ

r

)∥∥∥
L2(R+)

.

If we set r = |ξ′| and ω′ = ξ′

|ξ′| we obtain

‖Dl
twj(ξ

′, ·, λ)‖L2(R+) = |ξ′|
1
2
−j+l

∥∥∥Dl
twj

(
ω′, ·, λ

|ξ′|

)∥∥∥
L2(R+)

.

The theorem will be proved if we show that for |ω′| = 1 we have

‖(Dl
twj)(ω

′, ·,Λ)‖L2(R+) ≤


C , j ≤ µ , l ≤ µ ,

C Λl−µ− 1
2 , j ≤ µ , l > µ

C Λµ−j+ 1
2 , j > µ , l ≤ µ ,

C Λl−j+ 1
2 , j > µ , l > µ ,

(4.5)

for Λ ≥ 1 and that the left-hand side is bounded by a constant for Λ ≤ 1.
The boundedness for Λ ≤ 1 easily follows from the ellipticity of A(ω′, τ,Λ) and the

continuity of A and thus of wj with respect to Λ.
For large Λ we write

γ(ω′,Λ) = γ(1)(ω′,Λ) ∪ γ(2)(ω′,Λ)

where γ(1)(ω′,Λ) encloses the zeros τ1(ω
′,Λ), . . . , τµ(ω′,Λ) and γ(2)(ω′,Λ) encloses the zeros

τµ+1(ω
′,Λ), . . . , τm(ω′,Λ). Here we assume that the zeros are numbered according to Lemma

3.5. According to this splitting of the contour γ, we write wj(ω
′, t,Λ) = w

(1)
j (ω′, t,Λ) +

w
(2)
j (ω′, t,Λ) with

w
(k)
j (ω′, t,Λ) :=

1

2πi

∫
γ(k)(ω′,t,Λ)

Mj(ω
′, τ,Λ)

A+(ω′, τ,Λ)
eitτ dτ (k = 1, 2) .

From Lemma 3.5 we know that

|τj(ω′,Λ)| ≤ C (|ω′| = 1, Λ ≥ Λ0, j = 1, . . . , µ)

|τj(ω′,Λ)| ≤ CΛ (|ω′| = 1, Λ ≥ Λ0, j = µ+ 1, . . . ,m) .

As A2µ is elliptic we have, with the notation of Lemma 3.5, |τj(ω′,Λ)| ≥ C for j = 1, . . . , µ
and |ω′| = 1, Λ ≥ Λ0. With our additional assumption we also have

|τj(ω′,Λ)| ≥ CΛ (|ω′| = 1, Λ ≥ Λ0, j = µ+ 1, . . . ,m),

as
τj(ω

′,Λ)

Λ
→ τ 1

j and Im τ 1
j > 0, cf. Lemma 3.5 (ii). Therefore

|A+(ω′, τ,Λ)| =
m∏

k=1

|τ − τk(ω
′,Λ)| ≥

{
CΛm−µ on γ(1) ,

CΛm on γ(2)
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(note that |τ | ≈ C on γ(1) and |τ | ≈ CΛ on γ(2)). Now we have to estimate |Mj(ω
′, τ,Λ)| in

(4.3). For this we use the fact that according to (4.4)

|ak(ω
′,Λ)| ≤

∑
l1<...<lk

|τl1| · . . . · |τlk | ≤

{
CΛk, k ≤ m− µ ,

CΛm−µ, k ≥ m− µ .

On γ(1) we have

Mj(ω
′, τ,Λ)| ≤

{
CΛm−µ, j ≤ µ ,

CΛm−j, j ≥ µ .

As length(γ(1)) ≤ C we obtain∣∣∣∣∫
γ(1)

(iτ)lMj(ω
′, τ,Λ)

A+(ω′, τ,Λ)
eitτ dτ

∣∣∣∣ ≤
{
C exp(−Ct) , j ≤ µ ,

CΛµ−j exp(−Ct), j ≥ µ ,

and therefore

‖(Dl
tw

(1)
j )(ω′, ·,Λ)‖L2(R+) ≤

{
C , j ≤ µ ,

CΛµ−j, j ≥ µ ,
(|ω′| = 1, Λ ≥ Λ0) . (4.6)

For an estimation on γ(2) we first remark that for every l ≥ 0 we have

|τ lMj(ω
′, τ,Λ)| ≤

m−j∑
k=0

|ak| |τm−j+l−k| ≤ CΛm−j+l .

Therefore the inequalities

|Dl
tw

(2)
j (ω′, t,Λ)| ≤ CΛl−j+1 exp(−CΛt)

and
‖Dl

tw
(2)
j (ω′, ·,Λ)‖L2(R+) ≤ CΛl−j+ 1

2 (l ≥ 0) (4.7)

hold. To find a sharper estimate in the case j ≤ µ we use the relation

τ lMj(ω
′, τ,Λ) = τ l−j

m−j∑
k=0

ak(ω
′,Λ)τm−k

= τ l−j
(
A+(ω′, τ,Λ)−

m∑
k=m−j+1

ak(ω
′,Λ)τm−k

)
which yields

Dl
tw

(2)
j (ω′, t,Λ) = − 1

2πi

∫
γ(2)

∑m
k=m−j+1 ak(ω

′,Λ)τm−k+l−j

A+(ω′, τ,Λ)
eitτ dt .

Here we used the fact that the contour γ(2) does not enclose the origin, and therefore τ l−jeitτ

is holomorphic inside γ(2).
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We obtain for the case j ≤ µ and for every l ≥ 0 that∣∣∣ m∑
k=m−j+1

akτ
m−k+l−j

∣∣∣ ≤ CΛm−µΛm−(m−j+1)+l−j = CΛm−µ+l−1

and
‖Dl

tw
(2)
j (ω′, ·,Λ)‖L2(R+) ≤ CΛl−µ− 1

2 (j ≤ µ, l ≥ 0) (4.8)

in view of Remark 2.3 for, say, Λ ≥ 1. Now we compare the right-hand sides of (4.6)–(4.8)
with the right-hand side of (4.5).

a) For j, l ≤ µ the norm of Dl
tw

(1) is O(1) and the norm of Dl
tw

(2) is estimated by
Λl−µ− 1

2 ≤ Λ− 1
2 .

b) For j ≤ µ and l > µ according to (4.8) the norm of Dl
tw

(2) is estimated by
Λl−µ− 1

2 ≥ Λ
1
2 and the norm of Dl

tw
(1) is estimated by a constant.

c) For j > µ and l ≤ µ according to (4.6) and (4.8) the norm of Dl
tw

(1) is estimated
by Λµ−j and the norm of Dl

tw
(2) is estimated by Λl−j+ 1

2 ≤ Λµ−j+ 1
2 .

d) For j, l > µ the norm of Dl
tw

(2) is estimated by Λl−j+ 1
2 and the norm of Dl

tw
(1)

is estimated by Λµ−j < Λl−j+ 1
2 .

Thus the inequality (4.5) holds, which finishes the proof of the theorem.

5. A priori estimates

Now we want to prove an a priori estimate for the Dirichlet boundary value problem corre-
sponding to the elliptic pencil A(x,D, λ) defined in (1.1). First we consider model problems
in Rn and Rn

+.
Let A be a polynomial of the form (3.1). As it was already mentioned at the

beginning of Section 4, the Newton polygonN2m,2µ of A(ξ, λ) has the form indicated in Figure
2 with r = 2m and s = 2µ. The a priori estimates which we will obtain below, however, do
not use the Sobolev spaces corresponding to this Newton polygon but the “energy spaces”
which are defined as the Sobolev spaces corresponding to the Newton polygon Nm,µ. For
this Newton polygon we have

Ξ(ξ, λ) := ΞNm,µ(ξ, λ) ≈ (1 + |ξ|)µ(λ+ |ξ|)m−µ .

As in Section 2, we will denote by Ξ(−l)(ξ, λ) the weight function corresponding to the shifted
Newton polygon (with a shift of length l to the left). The edges of the shifted polygon are
given by

(0, 0), (0,m− µ), (µ− l,m− µ), (m− l, 0) if l ≤ µ ,

(0, 0), (0,m− l), (m− l, 0) if µ < l < m .

It is easy to see the following continuity results, using Theorem 2.9 for part b). Here the
continuity of the operator means that the norm of this operator can be estimated by a
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constant independent of λ. Note also for the Sobolev spaces on the boundary that we have
the equivalence

Ξ(−j+ 1
2
)(ξ′, λ) ≈

{
(1 + |ξ′|)µ−j+1/2(λ+ |ξ′|)m−µ if j ≤ µ ,

(λ+ |ξ′|)m−j+1/2 if j > µ .

Lemma 5.1. a) The operator A(D,λ) acts continuously from HΞ(Rn) to H
1
Ξ (Rn).

b) The boundary operator Dj−1
n (j ≤ m) acts continuously from HΞ(Rn) to HΞ(−j+1

2 )

(Rn−1).

Proposition 5.2. (A priori estimate in Rn.) Let A(ξ, λ) be N-elliptic with parameter in
[0,∞). Then for every λ0 > 0 the inequality

‖u‖Ξ,Rn ≤ C
(
‖A(D,λ)u‖ 1

Ξ
,Rn + λm−µ‖u‖L2(Rn)

)
(5.1)

holds for all λ ≥ λ0 with a constant C = C(λ0) independent of u and λ.

Proof. By changing the constant in (3.2) we can rewrite the N-ellipticity condition in the
form

λ2m−2µ + C−1
1

|A(ξ, λ)|2

(1 + |ξ|2)µ(λ2 + |ξ|2)m−µ
≥ λ2m−2µ + |ξ|4µ (1 + |ξ|2)−µ(λ2 + |ξ|2)m−µ .

For |ξ| ≥ 1 the right-hand side can be estimated from below by

2−2µ(1 + |ξ|2)µ(λ2 + |ξ|2)m−µ

For |ξ| ≤ 1 and λ ≥ λ0 the right-hand side can be estimated from below by

λ2m−2µ = (1 + λ−2)−m+µ (1 + λ2)m−µ

≥ (1 + λ−2
0 )−m+µ 2−µ (1 + |ξ|2)µ (λ2 + |ξ|2)m−µ .

Combining these estimates we obtain for λ ≥ λ0

(1 + |ξ|2)µ(λ2 + |ξ|2)m−µ ≤ C(λ0)
( |A(ξ, λ)|2

(1 + |ξ|2)µ(λ2 + |ξ|2)m−µ
+ λ2m−2µ

)
.

Multiplying both sides by |Fu(ξ)|2 and integrating with respect to ξ we obtain the inequality

‖u‖2
Ξ,Rn ≤ C(λ0)

(
‖A(D,λ)u‖2

1
Ξ

,Rn + λ2m−2µ ‖u‖2
L2(Rn)

)
equivalent to (5.1).

Now we turn to estimates in the half space Rn
+.

Theorem 5.3. (A priori estimate in Rn
+.) Let A(ξ, λ) be N-elliptic with parameter in [0,∞)

and degenerate regularly for λ → ∞. Then for every λ0 > 0 there exists a constant C =
C(λ0) such that for all λ ≥ λ0 and all u ∈ HΞ(Rn

+) the estimate

‖u‖Ξ,Rn
+

≤ C
(
‖A(D,λ)u‖ 1

Ξ
,Rn

+

+
m∑

j=1

‖Dj−1
n u‖

Ξ(−j+1
2 ),Rn−1

+ λm−µ‖u‖L2(Rn
+)

)
(5.2)

holds.
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Proof. We will follow a standard plan in elliptic theory. In the first part of the proof we
reduce (5.2) to the case f := Au = 0. Then using Theorem 4.1, we treat the case of the
homogeneous equation.

1) Denote by E a linear operator of extension of functions defined in Rn
+ to functions

in Rn. If we use the well-known Hestenes construction then the operator E : L2(Rn
+) →

L2(Rn) and its restriction E : HΞ(Rn
+) → HΞ(Rn) are bounded operators. We will denote

by R the operator of restriction of functions on Rn onto Rn
+.

2) Let ψ(ξ) ∈ C∞(Rn) be a cut-off function, i.e. ψ(ξ) = 1 for |ξ| ≤ 1 and ψ(ξ) = 0
for |ξ| ≥ 2. We write

u = u1 + u2 + v = Rψ(D)Eu+R(1− ψ(D))A−1(D,λ)Ef + v (5.3)

where we have set Ef = A(D,λ)Eu.
First of all we show that u1 and u2 belong to HΞ(Rn

+) and their norms in this space
can be estimated by a constant times

‖f‖ 1
Ξ

,Rn
+

+ λm−µ ‖u‖L2(Rn
+) . (5.4)

3) Since the operator ψ(D) is infinitely smoothing we get for λ ≥ λ0 that

‖u1‖Ξ,Rn
+
≤ ‖ψ(D)Eu‖Ξ,Rn ≤ Cλm−µ‖Eu‖L2(Rn) ≤ C1λ

m−µ‖u‖L2(Rn
+) .

4) Using the Fourier transform we obtain

‖u2‖Ξ,Rn
+

≤ ‖(1− ψ(D))A−1(D,λ)Ef‖Ξ,Rn

= ‖Ξ(ξ, λ)(1− ψ(ξ))A−1(ξ, λ)(FEf)(ξ)‖L2(Rn) .

Since 1− ψ(ξ) = 0 for |ξ| ≤ 1, we obtain from the N-ellipticity condition that

Ξ(ξ, λ) |1− ψ(ξ)| |A−1(ξ, λ)| ≤ C Ξ−1(ξ, λ)

and
‖u2‖Ξ,Rn

+
≤ const ‖Ef‖ 1

Ξ
,Rn .

If the norm in HΞ−1
(Rn) is defined by means of the pseudodifferential operator(
(1 + |D′|2)1/2 + iDn

)−µ(
(λ2 + |D′|2)1/2 + iDn

)−m+µ

,

then according to Section 2
‖Ef‖ 1

Ξ
,Rn = ‖f‖ 1

Ξ
,Rn

+
.

5) Now we begin the estimation of v defined in (5.3). We have v = u − u1 − u2 ∈
HΞ(Rn

+) and

A(D,λ) v = 0 , (5.5)

Dj−1
n v(x)|xn=0 = hj(x

′) , (5.6)
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where we set hj(x
′) := Dj−1

n u(x′, 0) − Dj−1
n u1(x

′, 0) − Dj−1
n u2(x

′, 0). We shall prove the
inequality

‖v‖Ξ,Rn
+
≤ const

( m∑
j=1

‖hj‖Ξ(−j+1/2),Rn−1 + λm−µ‖u‖L2(Rn)

)
(5.7)

The a priori estimate (5.2) follows from this inequality because, due to Theorem 2.9,

‖Dj−1
n ui‖Ξ(−j+1/2),Rn−1 ≤ const ‖ui‖Ξ,Rn

+
(i = 1, 2) .

The right-hand side of this inequality is already estimated by the right-hand side of (5.2).
6) We define

Φ(ξ, λ) :=
∑
i,k

|ξ|iλk ,

where the sum extends over all integer points (i, k) belonging to the side of Nm,µ which is
not parallel to the coordinate lines. From this definition it follows that

Φ(ξ, λ) ≈ |ξ|µ(λ+ |ξ|)m−µ .

and ‖v‖Ξ,Rn
+

is equivalent to
‖v‖Φ,Rn

+
+ λm−µ‖v‖L2(Rn

+) .

The second term can be estimated by λm−µ(‖u‖L2(Rn
+) + ‖u1‖L2(Rn

+) + ‖u2‖L2(Rn
+)). Due to

steps 3) and 4), these terms are not greater than a constant times the expression (5.4).
Therefore, it is enough to estimate ‖v‖Φ,Rn

+
by the right-hand side of (5.7). Repeating the

argument in Section 2 (see (2.10)) we reduce our problem to the estimation of∫ ∞

0

‖(Dl
nv)(·, xn)‖2

Φ(−l),Rn−1 dxn (l = 0, . . . ,m)

or after the Fourier transform with respect to x′∫ ∞

0

∫
Rn−1

|Φ(−l)(ξ′, λ)(Dl
nF

′v)(ξ′, xn)|2 dξ′dxn (l = 0, . . . ,m) .

The function F ′v(ξ′, xn) =: w(ξ′, xn) is (for almost every ξ′ ∈ Rn−1) a solution of

A(ξ′, Dn, λ)w(xn) = 0 , (5.8)

Dj−1
n w(xn)|xn=0 = (F ′hj)(ξ

′) . (5.9)

Due to Theorem 4.1, this solution is unique and given by

w(ξ′, xn) =
m∑

j=1

wj(ξ
′, xn, λ)(F ′hj)(ξ

′) (5.10)

with wj(ξ
′, xn, λ) being the solution of (4.1)–(4.2).
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7) To obtain the estimate for w = F ′v we reformulate Theorem 4.1. It follows from
the definition of Nm,µ that

Φ(−r)(ξ, λ) ≤

{
|ξ|µ−r(λ+ |ξ|)m−µ, r ≤ µ,

(λ+ |ξ|)m−r, r > µ.

From this it follows that

Φ(−j+1/2)(ξ′, λ)

Φ(−l)(ξ′, λ)
≤


C|ξ′|l−j+ 1

2 , l ≤ µ, j ≤ µ,

C|ξ′|µ−j+ 1
2 (λ+ |ξ′|)l−µ, l > µ, j ≤ µ,

C|ξ′|l−µ(λ+ |ξ′|)µ−j+ 1
2 , l ≤ µ, j > µ,

C(λ+ |ξ′|)l−j+ 1
2 , l > µ, j > µ.

Comparing the right-hand sides of these inequalities with the right-hand side of (4.1) we see
that

‖Dl
nwj(ξ

′, xn, λ)‖L2(R+) ≤ C
Φ(−j+1/2)(ξ′, λ)

Φ(−l)(ξ′, λ)
.

From (5.10) and the last inequality it follows that

(Φ(−l)(ξ′, λ))2

∫ ∞

0

|Dl
nw(ξ′, xn, λ)|2 dxn ≤ C

∑
|Ξ(−j+ 1

2
)(ξ′, λ)(F ′hj)(ξ

′)|2 .

Integrating this inequality with respect to ξ′ we obtain the desired estimate.

Now we consider the Dirichlet boundary value problem for differential operators
with parameter acting on a smooth compact manifold M with smooth boundary ∂M . In
this case we can choose a finite number of coordinate systems. In each of these systems the
operator is of the form (1.1). The principal part of the operator is invariantly defined at
each of these systems and at every fixed point x0 ∈M it is of the form

A(0)(x0, D, λ) = A
(0)
2m(x0, D) + . . .+ λ2m−2µA

(0)
2µ (x0, D)

(here A
(0)
j denotes the principal part of Aj). We suppose that for each x0 ∈M our operator

is N-elliptic with parameter. From the reason of continuity and compactness the constant
C in inequality (3.2) can be chosen independent of x0.

We can suppose without loss of generality that the coefficients of A(x,D, λ) are of
the form

aαj(x) = aαj + a′αj(x), aαj ∈ D(Rn) .

Now we fix a point x0 ∈ ∂M and a coordinate system in the neighborhood of x0

such that in this system locally the boundary ∂M is given by the equation xn = 0. In this
case we can define an analog of the polynomial (3.3):

Q(x0, τ) = τ−2µA(0)(x0, 0, τ, 1) (5.11)

Suppose that at a point x0 ∈ ∂M and in a fixed coordinate system this polynomial has m−µ
roots in the upper half-plane of the complex plane. It easily follows from this fact that every
polynomial (5.11) corresponding to an arbitrary x0 ∈ ∂M has the same property. In this
case we say that the operator A(x,D, λ) degenerates regularly at the boundary ∂M .
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Lemma 5.4. For a(x) = a+a′(x) with a′ ∈ D(Rn) and f ∈ H 1
Ξ (Rn) we have af ∈ H 1

Ξ (Rn),
and the following statements hold:
a) There exists a constant C(a) depending on a but not on f or λ such that

‖af‖ 1
Ξ

,Rn ≤ C(a)‖u‖ 1
Ξ

,Rn .

b) There exists a constant C ′(a) depending only on a such that the inequality

‖af‖ 1
Ξ

,Rn ≤ sup
x∈Rn

|a(x)|‖f‖ 1
Ξ

,Rn + C ′(a)‖f‖Ψ,Rn

holds, where we have set

‖f‖Ψ,Rn :=

(∫
(1 + |ξ|)−2µ−2(λ+ |ξ|)−2m+2µ|f̂(ξ)|2 dξ

) 1
2

.

Proof. Part a) is a special case of the following more general result which is taken from [18],
Section I.2.4. Let σ be a weight function which satisfies

σ(ξ)σ−1(η) ≤ C(1 + |ξ − η|m) .

Then we have for a′ ∈ D(Rn) the inequality

‖a′f‖Hσ(Rn) ≤ c(a′)‖f‖Hσ(Rn)

with c(a′) := C
∫

(1 + |ξ|m)|(Fa′)(ξ)|dξ.
Part b) can be shown by standard arguments similar to those used in [13], Section

1.7.1, and [9], Lemma 1.4.5.

Using the above mentioned covering of M by local coordinate systems and a par-
tition of unity subordinated to this covering we can define the spaces HΞ(M), H

1
Ξ (M) and

HΞ(−j+3/2)
(∂M). From Lemma 5.4 and the trace results for model problems in Rn and Rn

+

we immediately obtain

Lemma 5.5. The operator
(
A(x,D, λ), u|∂M ,

∂
∂ν
u|∂M , . . . , (

∂
∂ν

)m−1u|∂M

)
as an operator

from HΞ(M) to H
1
Ξ (M)×

∏m
j=1H

Ξ(−j+1
2 )

(∂M) is continuous with norm bounded by a constant

independent of λ. Here ∂
∂ν

stands for the derivative in the direction of the inner normal to
the boundary.

Theorem 5.6. Let A(x,D, λ) be an operator pencil of the form (1.1), acting on the manifold
M with boundary ∂M . Let A be N-elliptic with parameter in [0,∞) and assume that A
degenerates regularly at the boundary ∂M . Then for λ ≥ λ0 there exists a constant C =
C(λ0), independent of u and λ, such that

‖u‖Ξ,M ≤ C
(
‖A(x,D, λ)u‖ 1

Ξ
,M +

m∑
j=1

∥∥∥( ∂

∂ν

)j−1

u
∥∥∥

Ξ(−j+1
2 ),∂M

+ λm−µ‖u‖L2(M)

)
. (5.12)
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Proof. For the proof we use the standard technique of localization (“freezing the coeffi-
cients”). We only indicate the main steps. By means of a partition of unity it is sufficient
to prove (5.12) for u ∈ HΞ(M) with small support suppu ⊂ U . In the case U ∩ ∂M = ∅,
we fix x0 ∈ U and use local coordinates. We obtain from the a priori estimate for the model
problem in Rn that

‖u‖Ξ,Rn ≤ C1

(
‖A(0)(x0, D)u‖ 1

Ξ
,Rn + λ2m−2µ‖u‖L2(Rn)

)
≤ C1

(
‖A(x,D)u‖ 1

Ξ
,Rn + λ2m−2µ‖u‖L2(Rn)

)
+C1‖(A(x,D)− A(0)(x0, D))u‖ 1

Ξ
,Rn (5.13)

with a constant C1 independent of u and λ.
We fix ε > 0. From Lemma 5.4 b) we obtain if the support of u is sufficiently small

that
‖(A(x,D)− A(0)(x0, D))u‖ 1

Ξ
,Rn ≤ ε‖u‖Ξ,Rn + C‖u‖Ξ(−1),Rn .

Now we use the interpolation inequality

‖u‖Ξ(−1),Rn ≤ ε‖u‖Ξ,Rn + Cλm−µ‖u‖L2(Rn)

which is a consequence of the interpolation inequality for the Sobolev spaces Hs(Rn) because
of

‖u‖Ξ(−1),Rn ≈ ‖u‖Hm−1(Rn) + λm−µ‖u‖Hµ−1(Rn) .

If we choose ε with C1ε < 1 we obtain

‖u‖Ξ,Rn ≤ C
(
‖A(x,D, λ)u‖ 1

Ξ
,Rn + λm−µ‖u‖L2(Rn)

)
.

In the case U ∩ ∂M 6= ∅ we choose x0 ∈ U ∩ ∂M , use local coordinates, and obtain in the
same way as above

‖u‖Ξ,Rn
+
≤ C

(
‖A(x,D, λ)u‖ 1

Ξ
,Rn

+
+

m∑
j=1

‖Dj−1
n u‖

Ξ(−j+1
2 ),Rn−1

+ λm−µ‖u‖L2(Rn)

)
,

where we used the a priori estimate for (A(0)(x0, D), (Dj−1
n )m

j=1).

Remark 5.7. The a priori estimate above deals with functions u ∈ HΞ(M). In the forth-
coming paper [6] estimates in spaces of functions of arbitrary smoothness will be obtained.
Additionally, in [6] the right parametrix for boundary value problems connected with pencils
of the form (1.1) will be constructed.
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[11] Kozhevnikov, A.: Asymptotics of the spectrum of Douglis–Nirenberg elliptic operators
on a closed manifold. Math. Nachr. 182 (1996), 261–293.

[12] Kozhevnikov, A.: Parameter-ellipticity for mixed-order systems elliptic in the sense of
Petrovskii. To appear in Commun. Appl. Anal.

[13] Lions, J. L., Magenes, E.: Non-Homogeneous Boundary Value Problems and Applica-
tions, Vol. I, Springer-Verlag, Berlin etc., 1972.

[14] Markus, A. S.: Introduction to the Spectral Theory of Polynomial Operator Pencils.
Transl. Math. Monogr. 71, Amer. Math. Soc., Providence, RI, 1988.

[15] Nazarov, S. A.: The Vishik–Lyusternik method for elliptic boundary value problems
in regions with conic points. I. The problem in a cone (Russian). Sibirsk. Mat. Zh. 22
(1981), No. 4, 142-163. English transl. in Siberian Math. J. 22 (1982), 594-611.

[16] Nazarov, S. A.: Justification of asymptotic expansions of the eigenvalues of nonselfad-
joint singularly perturbed elliptic boundary value problems (Russian). Mat. Sb. (N.S.)
129 (171) (1986), no. 3, 307–337, 447. English transl. in Math. USSR-Sb. 57 (1987),
no. 2, 317–349.

[17] Vishik, M. I., Lyusternik, L. A.: Regular degeneration and boundary layer for linear
differential equations with small parameter (Russian). Uspehi Mat. Nauk (N.S.) 12
(1957), No. 5 (77), 3-122. English transl. in Amer. Math. Soc. Transl. (2) 20 (1962),
239-364.

26



[18] Volevich, L. R., Paneah, B. P.: Some spaces of generalized functions and embedding
theorems (Russian). Uspehi Mat. Nauk 20 (1965), No. 1 (121), 3-74. English transl. in
Russian Math. Surv. 20 (1964), No. 1, 1-73.

R. Denk, R. Mennicken L. Volevich
NWF I - Mathematik Keldysh Institute of Applied Mathematics
Universität Regensburg Russian Acad. Sci.
D-93040 Regensburg Miusskaya sqr. 4
Germany 125047 Moscow

Russia

2000 Mathematics Subject Classification: 35J40, 46E35.

27


	Text6: First publ. in: Integral Equations and Operator Theory 38 (2000), pp. 410-436
	Text7: Konstanzer Online-Publikations-System (KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/5071/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-50716


