
The Construction of an SASL�Compiler

Torsten Grust

�������

Department of Mathematics and Computer Science
University of Konstanz� Germany

e	mail
 Torsten�Grust�uni�konstanz�de
web home
 http���www�informatik�uni�konstanz�de��grust�SASL�

September ��� ����

� Introduction

These notes are intended to guide students during the construction of a compiler for a lazy
pure functional language� The material covered here includes the lexing� parsing� and parse
tree construction phase� as well as the combinator compilation and reduction component of
a combinator reduction implementation of such a language�

When there has been the choice between the exhaustive theoretical presentation of a topic or
the discussion of the issues of its implementation� we chose the latter� After all it is the goal of
this course to get a working compiler within reasonable time� However� topics like grammar
transformation �for recursive descent parsing�� combinator compilation� and reduction are
discussed to a depth that should be su�cient to wake interest for the theoretical foundations�

The students are expected to be familiar with formal language concepts like BNF grammars�
production rules� and derivation� The knowledge of basic data structures� such as trees and
stacks� is a prerequisite� Experience with functional programming languages is not assumed�
though�

Starting with Section �� the material is intended as a handout to students� These notes have
been the successful basis for a second year student�s programming course in Konstanz� I make
them available in the hope that they turn out to be useful or might speed up the preparation
of a similar assignment�

	

http://www.inf.uni-konstanz.de/Preprints/

SASL� In contrast to various other compiler construction courses� we did not invent SASL
as a toy language speci
c to this course� SASL �St� Andrews Static Language� has been
developed by Prof� David Turner in 	��
 when Turner was with St� Andrews University�
Scotland� Turner published a series on articles on the language� and one of these reports
�Tur��� provides the basis this course is built on� Apart from the lexer and parser modules
�i�e� the complete syntactical analysis phase�� this article describes all techniques needed to
compile and execute SASL programs� In this article� Turner established a technique called
combinator reduction� variants of which are still successfully employed in the translation of
modern functional languages like Haskell or Miranda�

The combinator reduction technique is especially well suited for this course� because the SASL
compiler does not produce machine level code for some speci
c CPU� Rather� a reduction
machine�realized in software�is used� to perform a stepwise transformation of the graph

representation of the compiled program� until the
nal result is obtained� SASL is particularly
lazy in performing these transformations� a fact which lends interesting semantics to the
language� In SASL� it is perfectly reasonable to de
ne functions that compute in�nite lists
�the list of all prime numbers� say�� As long as the
nal result may be computed by examining
only a
nite number of list elements� the runtime system faces no problems� The graph
representaion of compiled programs is crucial for combinator reduction� This will have an
impact on the programs that have to be constructed during the course� The construction and
transformation of these graphs will be a dominating task�the parser will be responsible to
compile an SASL source text into its corresponding graph representation� while the reduction
machine will implement program execution by means of graph transformations �very often�
it will reduce the graph to one single node��

��� Implementation Language

At the University of Konstanz� students implemented the SASL compiler using the object�
oriented language Ei�el� which has been the
rst�year language for the students� This course
description does not depend in any way on a speci
c implementation language� although the
few small code examples given use Ei�el syntax� However� we are largely using the simple
procedural elements of Ei�el only� so that the code snippets should be easy to comprehend�
The students were referred to Bertrand Meyer�s �classic� Ei�el � The Language �Mey��� as
a reference� No further Ei�el material has been provided�

��� Running the Course

In order to complete the assignment in due time� students should not work as sole
ghters�
In Konstanz� two students made up a development group each� Using the overall architecture
of the compiler as an orientation� we proposed to cut the work to be done roughly in half� as
Figure 	 suggests�

The dashed line in this drawing suggests that the two halves are not independent of each
other� The two co�workers were forced to exchange their ideas and plans in great detail� This
was especially true when it came to the design of the graph representation data structure
which runs like the red thread through the whole project�

�

lexer parser compiler reduction

frontend backend

task � task �

Figure 	� The four stages of the SASL compiler�

When the project started� the co�workers commited themselves to work on either the frontend
part �lexer� parser� or the backend �compiler� reduction machine� of the compiler� During
the course� however� it was perfectly okay for the students to �switch sides� and help out if
needed�

��� Time Schedule

The course was scheduled to run for 	� weeks� After two to three weeks the students were
expected to
nish their initial planning and design phase� The actual coding phase then lasted
for the rest of the time�

��� Organization of this Document

Material that is suitable to hand out to students starts with Section �� in which we introduce
SASL to the depth needed� while types are only marginally mentioned �we will not dicuss the
implementation of a type checker for SASL here�� we review expressions and function appli�
cation in their gory details� Global and local de
nitions are covered in their own subsections�
since these pose some challenge during the backend implementation� An SASL grammar given
in extended Backus�Naur form completes this part�

Section � then walks through the four compiler stages we outlined in Figure 	� Basic tech�
niques and mechanisms are introduced� including grammar transformations for LL�	� parsing�
recursive descent parsers� SK combinator reduction� and the corresponding reduction ma�
chine� Optional optimzations to the SK reduction machine are
nally presented in Section ��

Two appendices conclude this paper� Appendix A contains a small library of functions in�
tended to serve as a small SASL prelude� Appendix B presents the above mentioned SASL

grammar in a form more suitable for the impatient parser implementor�

The material presented here is intended to be closed with respect to references to further
literature� However� reading �parts of� David Turner�s seminal original SASL paper �Tur���
as well as Simon Peyton�Jones� excellent book on implementing lazy functional programming
languages �PJ��� is always a pleasure and may turn out to be very useful�

�

Acknowledgements� I am particularly grateful for the feedback the students of the course
�Informatik IV� �winter 	��
���� provided me with� Special thanks go to Andres L�oh for
his useful remarks and considerations� Finally� I would like to thank Dave Turner for his
immediate and most helpful response to a question of mine�

� The Functional Programing Language SASL

As almost all functional languages� SASL is a conceptually simple and elegant programming
language� In fact� it is so simple that we can introduce the language completely in this section�
It is not necessary to be �uent in any other functional language to follow the upcoming
introduction of SASL� The de�nition and application of functions is the single major concept
in SASL� The term functional programming language stems from this observation�

Typing is not our primary concern here but we will start with a few words on types of
expressions� Expressions are built from SASL�s built�in operators as well as globally and
locally user�de
ned functions� These concepts are covered next� We conclude this section by
giving a grammar for SASL programs so that we account for SASL�s syntax� too�

��� Data Types

Atomic types� SASL provides num �negative and positive integers�� bool �consisting of the
two values true and false only�� and string �
nite sequences of characters enclosed in ���
as standard data types�

Type constructors� SASL allows for the construction of lists that may be built from values
of arbitrary types� This is a relaxation of the typing rules of most functional programming
languages which require lists to be built of values of a single type only� Consequently� there is
no type constructor � list in our implementation of SASL since� in general� the list elements
will not agree on a single type �� Rather� we will simply assign the type list to any value
constructed with the list constructors � and nil �see Subsection ��� on expressions below��

Note that this is not the way real�world functional programming languages go about the
problem� We can live with this simpli
ed view of things because we are not concerned with
type checking at all�

Functions map arguments to function result� we will denote their types as �� �� ��� where ��
and �� are the types of the argument and the result� respectively� For example� the function
is even has type num �� bool�

��� Expressions

Operators� SASL is equipped with the following arithmetic operators which only have
sensible de
nitions if applied to arguments of type num �in the following a� b� and c represent
expressions of type num��

�

a�b addition
�a unary plus
a�b subtraction
�a unary minus
a�b multiplication
a�b integer division ���� � 	�

The relational operators listed in the following table may be applied to values of type num

and string� 	 and
	 are also applicable to booleans or list values�

a	b equality
a
	b inequality
a�b less than
a�b greater than
a�	b less than or equal
a�	b greater than or equal

The boolean operators are listed below�

not a logical negation
a and b conjunction
a or b disjunction

if a then b else c conditional expression

Please note that if a then b else c is to be understood as an expression and not as a
statement� An expression always has a unique value� The value of if a then b else c is
b if a 	 true� and c otherwise� As a consequence� there is no conditional expression of the
form if a then b� which would be unde
ned for the case a 	 false�

The in
x operator � �read� cons� must be used to construct lists� The expression x�xs builds
a new list by prepending the element x to the already existing list xs� The constant value
nil denotes the empty list�

Examples�

� ��nil � a list containing element � only�

� true�false�true�nil � list of three elements of type bool� � associates to the right�
so that the expression is equivalent to true�
false�
true�nil���

� In SASL� you may use the abbreviation �a�b�c� for the expression a�b�c�nil� Thus�
we can equivalently write the above examples as ��� resp� �true�false�true�� Lists
may contains lists as elements� making �������nil���true�����a���b��� a valid ex�
pression� The empty list nil may be alternatively written as ���

If a is an expression then
a� is an expression as well �with the same value as a�� You may
use parentheses to circumvent the default operator priorities and associativites� We list the
priorities here�

�

priority operator

� f a �juxtaposition� see below�
� not � � �pre
x�

 � �

� � � �in
x�
� 	
	 � � �	 �	

� and

� or

	 �

 if�then�else

All binary operators associate to the left� with � �cons� being the only exception� See above�

A few examples of valid expressions �and the values SASL evaluates them to��

��� �
if true then �� else � ��
� � if not �	a	
 	b	� then ��
�� else nil ���
�������� ���

Function application� Applying a function is the major operation in SASL� Therefore� we
represent application by the simplest syntactic construct we can provide� the function and
its argument are simply written in sequence �juxtaposition�� f a represents the application
of f to a� where f is a function�valued expression �e�g� a function name� and a an arbitrary
expression� Function application has the highest operator priority�

The former paragraph talked about an expression f having a function as its value� Expressions
of this kind are unique to functional programming languages� SASL treats functions like
ordinary values� that is� there is no essential di�erence between function values and numbers
or strings� Functional programming languages draw their power and elegance from this fact� A
function may be argument to another function� functions may return functions �such functions
are called higher�order functions�� you may build lists containing functions� etc� You can even
compute a function on the �y and then pass this new function value around in your program�
This is essentially di�erent from imperative programming languages� where you can de
ne
and then call a function� you may not� however� assign a function to a variable for example�

A simple example is �let f and g be function values� e�g� names of user�de
ned functions�

if �
	 � then f else g� ��

in which we apply a function� namely if �
	 � then f else g� to the argument ��� The
if�then�else expression itself evaluates to a function� f in this case� which in turn is then
applied to ��� We will have a closer look at examples of this �avour and you will quickly get
used to it�

In addition to the SASL built�ins� functions may be de
ned by the programmer using the
keywords def and where �see below�� The operators �� �� �� or� � � � are pre�de
ned functions
built into SASL� The syntax allows you to use these in the more operator�wise in
x notation�
which exceptionally breaks the juxtaposition rule�

Currying� Every SASL function may take more than one argument� It may be instructive
to think about an application like f a b for a minute� What is actually meant here! Since
juxtaposition is just another operator �associating to the left as explained above�� we have to
read the above expression as �f a� b � f a is evaluated to a function which in turn is applied to
the argument b� This technique� well�known as Currying� makes use of SASL�s higher�order
functions� f is a function that� when applied to an argument �here a�� returns a function
value �which we can apply to b��

The type of f is � �� �� �� �� if �� �� and � denote the types of a� b� and the result�s type�
respectively� We provide one argument a of type � and obtain a function of type � �� �� By
applying this function to the �second� argument b we
nally get the result of type ��

An example �with a leap ahead to def�� A programmer de
nes the function plus as

def plus x y 	 x�y

The currying principle instructs us to read an expression like plus � � as
plus �� �� How�
ever� the expression
plus �� itself already has a sensible value� namely the function that
adds � to its argument� You can intuitively see that if you replace the variable x by � in the
function body of plus� The complete expressions plus � � therefore evaluates to �� The
type of plus unquestionable is num �� �num �� num�� Nobody stops us from de
ning

def incr 	 plus �

Given this� incr �increment� is the function that adds 	 to its argument� e�g� incr � evaluates
to �� incr�s type is num �� num� as expected�

Being so far� let us introduce a graphical notation that will turn out to be useful during the
whole course�

We will represent SASL expressions as binary trees� The leafs are labeled with values of any
type �num� bool� string� but also functions�� An inner node always represents a function
application� indicated by an � sign� The expression f a is drawn as

�

f
�� JJ

a

We will sometimes denote the above tree as f � a �read� f at a�� Our recent example
plus
�� � consequently is represented by the tree

�

�

�

plus
�� ��

�

�� JJ
�

More general� f x� x� � � � xn has the presentation

�

�

�

�

f
�� JJ

x�

�� JJ
x�

�� SS
� � �

�� JJ
xn

Tree structures of this kind will be generated by the parser and then manipulated by the
reduction machine� Section � will cover these issues to the depth needed�

��� Global De�nitions �def�

The programmer may assign globally visible names to values via a series of def de
nitions
�remember that values may be booleans� strings� and numbers� but also functions�� The last
def de
nition has to be terminated by a dot "��� A subsequent expression may then refer to
any global name de
ned� Any SASL program comprises an optional sequence of defs followed
by a single expression to be evaluated�

Some examples involving def�

def answer � double ��

def list � ��
�
�
��

def double x � ��x

def twice � double�

A de
nition may refer to names that are introduced later on �see double in the de
nition of
answer� there is no �forward� declaration or the like�� The last de
nition makes twice an
alias for the function double de
ned earlier� twice � evaluates to ��

def may be �mutually� recursive�

�

def fac n � if n�� then � else n � fac �n���

def one � � � two

def two � � � one�

While the de
nition of fac should be obvious� an evaluation of the expression one results
in the in�nite list �	� �� 	� �� 	� �� 	� � � � � Thanks to SASL�s semantics of expression evaluation
�which is performed lazily� we can actually do sensible operations on such �in
nitely large�
values� Section ��� comments on that�

��� Local De�nitions �where�

Every expression may be followed by local de
nitions that introduce names whose visibility
is restricted to just this expression� Local de
nitions are introduced by the keyword where�
multiple de
nitions are seperated by a semicolon ���� Arbitrary �mutual� recursion is allowed�
just like in the case of def�

Examples�

x where x � � �
x�y where x � �� 	

y � ��x

answer where answer � double ��� ��
double x � ��x

double � error� double not visible

��	 Prede�ned Functions

Our somewhat restricted version of the SASL language will further prede
ne two functions�
hd �head� and tl �tail�� Both operate on lists and are de
ned as follows�

hd
x�xs� � x

tl
x�xs� � xs

Both functions are allowed to return anything �read� are unde
ned� if applied to an empty
list� By virtue of hd and tl we are able to take apart a non�empty list into its head and tail
again� Together with the list constructors � and nil we now have a complete �list toolbox�
which allows us to de
ne any list operation we might wish for�

Example �of a function that determines the
rst n elements of a list l��

�

def first n l � if n�� or l�nil then nil

else x��first �n��� xs�

where x � hd l�

xs � tl l�

first � ��
�
�
�� ��� ��

Note� SASL�s lazy evaluation enables us to actually compute the value of e�g� first � one

and to print the correct result �	� �� 	� �remember the de
nition of the in
nite value one from
above�� A non�lazy programming language would rather try to evaluate all arguments to
the function first before first itself is applied� The argument � poses no problems� the
evaluation of one takes �forever�� however� These languages �normally attributed as being
strict or eager � all imperative languages like Pascal or C belong to this class� are unable to
evaluate expressions involving in
nite values like first � one� SASL�s laziness is one of the
core virtues of the language�

If your SASL implementation project works out well� the library of prede
ned functions is
a good point where you can extend your compiler� But see Appendix A which describes a
minimal SASL prelude�

��
 An SASL Grammar in EBNF

Table 	 displays the syntax of the SASL subset which is relevant to this course� It is given
in EBNF �extended Backus�Naur form�� You should scan through the grammar rules to get
a clear concept of what parts of the grammar represent speci
c parts of the SASL syntax
we described only informally up to now� The nonterminal hlisti� for example� describes the
handy abbreviating list notation using square brackets ����

A sequence of characters is a syntactically correct SASL program if it can be derived from the
grammar�s start symbol hsystemi� Grammars� rules� and derivation are concepts you already
should be familiar with� There are programs derivable from hsystemi� however� which do not
make much sense� We may derive ��true for example� In a real�world compiler� typing �aws
like this would have been detected by the the compiler�s type checker�

This course is not concerned with type checking in order to focus on the actual compilation
matters� Your compiler is allowed to do anything with a program like ��true� It may choke
or dump core�it may� however� also print a sensible error message if you implement a type
check on your own� Chapter � of �PJ��� covers the type checking phase� Otherwise� we follow
the gigo principle here �garbage in�garbage out��

Notes and a series of examples on the SASL language itself may be found in one of the
original references �Tur���� In these course notes you should only
nd minor syntactical
di�erences from what is described there �e�g� we substituted the somewhat more familiar
form if�then�else for Turner�s conditional expression operator ��������

	

hsystemi � hfuncdefsi � hexpri
j hexpri

hfuncdefsi � def hdefi
j hfuncdefsi def hdefi

hdefsi � hdefi
j hdefi � hdefsi

hdefi � hnamei habstractioni
habstractioni � 	 hexpri

j hnamei habstractioni
hexpri � hexpri where hdefsi

j hcondexpri
hcondexpri � if hexpri then hcondexpri else hcondexpri

j hlistexpri
hlistexpri � hopexpri � hlistexpri

j hopexpri
hopexpri � hpre�xi hopexpri

j hopexpri hin�xi hopexpri
j hcombi

hcombi � hcombi hsimplei
j hsimplei

hsimplei � hnamei
j hbuiltini
j hconstanti
j
 hexpri �

hnamei � hidi
hbuiltini � hd

j tl

hconstanti � hnumi
j hbooli
j hstringi
j nil

j hlisti
hlisti � � �

j � hlistelemsi �
hlistelemsi � hexpri

j hlistelemsi � hexpri
hpre�xi � � j � j not
hin�xi � � j � j � j � j 	 j
	 j � j � j �	 j �	 j and j or

hidi � �a� zA� Z���a� zA� Z��� ���

hnumi � ��� ���

hbooli � true j false
hstringi � �hASCII characteri��

Table 	� SASL grammar in EBNF

		

� The Compiler Stages

In what follows� we will have a close look at the several components of the SASL�Compiler�
Subsection ��� then describes the actual compilation process that translates SASL programs
into the tree structure we introduced in the previous section� We will use the previously
shown
gure as a roadmap for the next few sections�

frontend

lexer parser
�subsection ���� �subsection ����

backend

compiler reduction
�subsection �����subsection ����

A special part of the compiler�you may think of some superordinate control� often called the
compiler driver�will initiate the four compiler stages in sequence and takes care of passing
the intermediate compilation results from one phase to the next� In Ei�el� the driver could
look similar to the following skeleton�

lex � LEXER

parse � PARSER

comp � COMPILER

sk � REDUCER

p � PARSETREE

c � COMBINATOR�GRAPH

���

��lex�make�filename�� �� open the LEXER on the source

��parse�make�lex�� �� initialize the parser

p �� parse�parse� �� build the parse tree

��comp�make�p�� �� initialize the compiler

c �� comp�compile� �� compile the parse tree into a graph

��sk�make�c�� �� initialize the SK reducer

sk�reduce� �� start the graph reduction

Invoking the compiler� Users should give a command like

sasl hsasl�source��lei

	�

to invoke the compiler from the shell� The compiler should print a short but helpful message
about its proper usage if the argument is missing or otherwise incorrect �e�g� hsasl�source��lei
is unreadable�� The usage message� like any other warning or error message� should go to the
stderr �standard error� I�O channel�

The compiler will read the SASL source from the
le named hsasl�source��lei� compile it� and
then execute �i�e� reduce� the compiled program� The result of the reduction phase�a single
SASL value�is
nally output to the stdout �standard output� channel� This completes the
compiler run�

��� Lexer

The lexer has the single task to open and read the source
le� While it proceeds with reading
the
le� it converts the stream of characters in a more coarse grained �not character�wise�
stream of symbols �token� which are then consumed by the parser�

Example� suppose the lexer detects the three character sequence "d e f� in its input� The
lexer will then produce the single token �def� as its output� The parser operates on tokens
only� it does not cope with single characters� Imagine we decide to replace the keyword def

by define later� This replacement a�ects the lexer only� As long as it produces the �def�

token when encountering "d e f i n e� we do not have to change a single bit of the parser�

Token classi�cation� The following table suggests a classi
cation of the tokens that need
to be generated by the lexer�

token type example

keyword �def�� �if�� �where�
identi
er �id��answer��� �id��x��
constant �num����� �bool�true�� �string��foo��
symbol �leq� �	��� �plus� �#�
special �eof� �end of input�

Some tokens carry additional information with them �such as the value of an integer constant�
which can be used by the parser when it comes to the construction of a parse tree for the
program� Note that if would be su�cient to map all integer constants to the token �num� if
we were only interested in syntax checking� However� this does not su�ce if we want to build
a complete representation of the program�

Example� the lexer transforms the input "if �
	 � then f else g� into

�if� �num�	� �neq� �num� � �then� �id��f�� �else� �id��g��

The interface to the lexer will be as simple as a single routine that delivers the next token on
demand� The parser can look ahead into the source
le by requesting more and more tokens
from the lexer� Fortunately� the SASL grammar is simple in the sense that at any time a
lookahead of just one token is su�cient for the parser to decide what to do next �see below��
The last token delivered by the lexer is �eof��

	�

��� Parser

The parsing phase requests tokens from the lexer �by calling the lexer�s lookahead routine�
on demand� The output of this phase is a parse tree� a tree structure that represents the
abstract syntax of the program� In this course� we will employ the recursive descent pars�
ing technique� This methods allows for the construction of parsers by translating the BNF
grammar�s production rules into code in an almost one�to�one manner� However� we need to
�massage� the grammar rules before we can deduce the parser from its grammar� We come
to this next�

Recursive descent parsers contain exactly one routine for each nonterminal the grammar
features �nonterminals are enclosed in h�i in Table 	�� The routine body implements the
right�hand side �rhs� of the corresponding production rule�

� each nonterminal symbol on the rhs is translated into a call to the corresponding parser
routine�

� each terminal symbol on the rhs is compared to the next lookahead token� If the
comparison succeeds all is well and the parse goes on� On a failed match a syntax error
has been detected and the parser should give appropriate diagnostics about the failure�
In the code snippets below� the routine match takes care of these tasks�

This recipe leads to recursive calls of the parser routines in general� an observation from which
the technique�s name is deduced�

Example� the production rule

hcondexpri � if hexpri then hcondexpri else hcondexpri

may be implemented as follows�

lex � LEXER

���

condexpr is

do

match��if���

expr�

match��then���

condexpr�

match��else���

condexpr�

end �� condexpr

However� the complete production rule for hcondexpri reads

	�

hcondexpri � if hexpri then hcondexpri else hcondexpri
j hlistexpri

Which of the two alternatives seperated by j is the right one for the parser to follow! The
parser resolves this dilemma by looking at the lookahead token� We will transform the gram�
mar to ensure that it is su�cient to look only one token ahead to make the right decision
�see left factorization below�� In our example� the parser has to check for the occurence of an
�if� token� The corresponding Ei�el code might look like as follows�

condexpr is

do

if lex�lookahead � �if� then

match��if���

expr�

match��then���

condexpr�

match��else���

condexpr

else

listexpr

end

end �� condexpr

Note that in the previous example condexpr has been introduced as a routine� which� of
course� is not the full truth� Actually it has to be implemented as a function that returns a
parse tree representing the conditional expression�

Constructing parse trees� An important hint� Construct the parse tree using the explicit
function application convention �using �� introduced when we discussed currying� Understand
SASL�s built�in operators as ordinary functions� The expression � � � should be translated
into the parse tree

�

�

plus
�� ��

�

�� JJ
�

and not�as you might be used to�into

plus

�
�� JJ

�

	�

Life in the compilation phase �see Subsection ���� is a lot easier if you follow this convention
when constructing the trees� Remember currying� how would you represent the partial appli�
cation plus � using the latter variant! Stick to the explicit function application convention�
A
nal example� translate if a then b else c into the tree

�

�

�

cond
�� ��

a

�� TT
b

�� TT
c

i�e� transform the conditional expression into the function application cond a b c�

Elimination of left recursion� For production rules like the one below� we run into prob�
lems if we mechanically transform the rhs of the rule into a parser routine�

hfuncdefsi � def hdefi
j hfuncdefsi def hdefi

Note that the latter alternative on the rhs starts with the nonterminal that is just to be
de
ned$ This leads to endless recursive calls of the routine corresponding to hfuncdefsi �verify
this by translating the production�s rhs into a parser routine body�� We resolve this problem
by grammar rule rewriting� Rules of the general form �� denotes an arbitrary sequence of
�non�terminals� � denotes an arbitrary sequence of �non�terminals not starting with A�

A � A �

j �

are transformed into the equivalent form �
 represents the empty word i�e� a zero character
sequence�

A � � A�

A� � � A�

j

You can verify that both variants allow the derivation of ��� � � ��� For the hfuncdefsi example
we obtain

hfuncdefsi � def hdefi hfuncdefs�i
hfuncdefs�i � def hdefi hfuncdefs�i

j

	

after the rewriting� which is readily implemented as

funcdefs is

do

match��def���

def�

funcdefs�

end �� funcdefs

funcdefs� is

do

if lex�lookahead � �def� then

match��def���

def�

funcdefs�

else

�� epsilon

end

end �� funcdefs�

The
 alternative is always taken as the last resort�

Left factorization� The following grammar rule poses another di�culty�

hdefsi � hdefi
j hdefi � hdefsi

The parser is not able to make the decision for one of the two alternatives before he has seen
all the tokens normally consumed by the hdefi routine �does a � follow or not!�� This is a
contradicition to our claim that it is su�cient to look ahead one token only at any time� Once
again we are able to equivalently transform the production into a more convenient form for
the parser� Rules of the general form

A � � ��
j � ��

are rewritten into

A � � A�

A� � ��
j ��

before we implement the corresponding parser routines for the rhs�

	�

Lookahead ��rst sets�� We are facing a
nal complication with productions rules like
hfactori shown below� hfactori is neither left recursive nor a case for left factorization�

hfactori � hpre�xi hcombi
j hcombi

The problem lies in the fact that hpre�xi and hcombi are nonterminals� We cannot com�
pare nonterminals with the current lookahead token directly� We can solve the problem by
analyzing hpre�xi�

hpre�xi � � j � j not

The parser routine for hfactori should obviously choose the
rst alternative if the lookahead
token is �� �� or not� Otherwise the second alternative is the way to go� For this to work
correctly� it is crucial that we cannot derive strings starting with �� �� or not from hcombi as
well because our decision for one of the alternatives would be ambigious then�

To formalize the matter� parser construction theory associates every nonterminal with its
so�called �rst set which contains the
rst token of every token sequence that may derived
from that nonterminal� In our case we have �rst�hpre�xi� � f�plus�� �minus�� �not�g and
�rst�hpre�xi���rst�hcombi� � �� The latter is the essential condition that lets us safely decide
for one alternative �spend a minute and check this condition on your own��

prefixop�t � TOKEN� � BOOLEAN is

do

�� check for a token in the set �rst
hpre�xi�
Result �� t � �plus� or else t � �minus� or else t � �not�

end �� prefixop

factor is

do

if prefixop�lex�lookahead� then

prefix�

comb

else

comb

end

end �� factor

Operator precedence� The hopexpri production rule represents SASL�s pre
x and in
x
operator application� Operator precedence �or priority�� however� is not re�ected by the
grammar in Table 	� We need a means of expressing operator precedence in the grammar
in order to generate parse trees that re�ect the binding power of operators� Once again�
grammar transformations are the key to the problem�

	�

For every level of precedence �see Section �� we introduce a separate grammar rule�

Example� to implement the precedence levels
 �� und �� and � �� und �� we would transform
the original production

hopexpri � hopexpri hin�xi hopexpri
j hcombi

into the following rules �left recursion has been eliminated already�

haddi � hmuli hadd�i
hadd�i � haddopi hmuli hadd�i

j

hmuli � hfactori hmul�i
hmul�i � hmulopi hfactori hmul�i

j

haddopi � � j �
hmulopi � � j �

�for hfactori see above�� The method applies analogously for more than two precedence levels�
It is instructive to check that an expression like ����� is actually parsed as � # �� � ���

The next step in implementing the compiler should be clear by now� apply the several trans�
formations to the SASL grammar in Table 	 until it reaches a form that can be �rather easily�
converted into a recursive descent parser for it� Recursive descent parser tend to be quite
fast� However� for the sake of brevity� we entirely skipped error handling and recovery� so
that gigo strikes again here�

You should a
nd detailed treatment of the grammar transformation techniques in any book
on compiler construction��ASU�
� devotes several pages to this topic�

��� SASL Compilation and Combinators

Let us now turn to the core compilation phase�i�e�� the backend�of our project� This
phase expects the parse tree constructed by the frontend as input� It will construct a graph
representation of the program to be passed to the graph reduction machine for execution �see
Subsection �����

Removal of variables� If you have a closer look at the parse trees you will
nd that they
merely represent the application of built�in SASL functions to constant values� Inner nodes
are always labeled with �� In what follows� we will understand operators like �� �� and not

	�

as built�in functions just like hd and tl� If this would be really all about it� we could pass
the parse tree to the reduction machine directly�

Additional elements of SASL programs are user�de
ned functions that have been introduced
by def resp� where� as well as variables used in function de
nitions� The compilation phase
will remove all occurences of user�de
ned names and variables� The reduction machine oper�
ates on variable�free programs only�

At
rst glance� the complete removal of variables may seem odd� The technique we will
explain in the following has been developed in David Turner�s paper �Tur���� Chapter 	
 of
�PJ��� is a useful reference� too�

Global def de�nitions� Let

def v� 	 E�

def v� 	 E��

E

be a program with def de
nitions� The compiler undertakes the following two steps�

Step I� Construct the parse trees for E�� E�� and E �this is the frontend�s task��

Step II� Replace every occurence of vi �nodes labeled var
vi� in the parse tree� in E�� E�� or E
by a reference to the parse tree of Ei� This may result in cycles if the de
nitions of the
vi are �mutual� recursive� We end up with a graph for E�

The graph for E is then passed on to the reduction machine� An example might clarify the
matter�

Step I�

E E� E�

�

�
�
�
�

D
D
D
D
�
� ��

var
v��

�
�
�
�
�
�
�

D
D
D
D
D
D
D

�
�
�
�
�
�
�

D
D
D
D
D
D
D

�

Step II�

E

�

�
�
�
�

D
D
D
D
�
� �

�

�
�
�
�
�
�
�

D
D
D
D
D
D
D

E�

Note that we only deal with a single copy of the parse tree of E�� If there is more than one
occurence of v� in E� E�� or E�� there will be the same number of references to E�� Our toy
example program does not reference the parse tree of E� at all� Hence E� is not part of the

nal graph �since there are no references to it� a garbage�collected implementation language
like Ei�el will eventually free the memory occupied by E���

The de
nitions of v� and v� were simple in the sense that they did not de
ne functions with
parameters but simply introduced names for constant values �namely E� resp� E��� Things
get a bit more complicated if we have to remove variables from de
nitions like

def f x 	 E

In this case we are left with the task of �freeing� E of all occurences of x� We turn to this
now�

Combinators� E is either built of

� constants c�

� variables var
v�� or

� function applications f � a

�we do not use the tree notation here to save space� � associates to the left�� In order to
compile def f x 	 E we apply the operation �x� �to be de
ned below� read �x� as �abstract
x�� to E� Most importantly� we have f � �x�E� i�e� variable abstraction does not alter the
meaning of the program� �x�E is free of all occurences of x�

Let us de
ne �x� for the three possible cases�

�x�c � K � c

�x�var
v� �

�
I� if x � v

K � var
v� otherwise�

�x��f � a� � S � �x�f � �x�a

�	

The three symbols S� K� and I are special built�in functions of the reduction machine� We
will refer to them as combinators� a term which stems from the theory of the lambda calculus�
They are de
ned as follows�

S � f � g � x � f � x � �g � x�

K � x � y � x

I � x � x

S is a mnemonic for substitution� K represents a function being constant with respect to its
second argument �think of the german word konstant�� while I is the identity�

Example�
def incr x 	 � � x

The frontend generates the following parse tree for incr�s body�

�

�

plus
�� ��

�

�� ��
var
x�

The compiler abstracts x away and therefore computes

�x���plus � �� � var
x��

which we show step�wise here�

�x���plus � �� � var
x��

� S � �x��plus � �� � �x�var
x�

� S � �S � �x�plus � �x��� � I

� S � �S � �K � plus� � �K � ��� � I

Global de
nitions of the form
def f x� � � � xn 	 E

�i�e� de
nitions of function with more than one parameter� are transformed in n steps�

�x���� � � ��xn�����xn�E�� � � � �

The inner abstractions have to be performed
rst�

During abstraction� we treat built�in functions �like plus in this example� but also S� K� and
I� as constants� This is no surprise if you remember that functions are ordinary values in
SASL�

When the abstraction step has been completed� remaining occurences of var
v� are replaced
by references to their de
nitions as explained under Step II above�

��

We shall spend the time to convince ourselves that the combinator expression�the compiled
program�actually computes 	 # x when applied to the argument x� i�e� we will check that
the combinator expression implements incr� This involves the manual step�wise reduction of
the combinator expression� a task which the reduction machine will carry out later� As a rule
of thumb we will evaluate the left�most function
rst �we emulate the so�called normal order

reduction�� Details are to be found in Subsection ����

Let us evaluate �the combinator reduced is shown below the � sign� only the grey part of the
expression is a�ected by the next reduction step��

S � �S � �K � plus� � �K � ��� � I � x

�
S

S � �K � plus� � �K � �� � x � �I � x�

�
S

K � plus � x � �K � � � x� � �I � x�

�
K

plus � � K � � � x � � �I � x�

�
K

plus � � � � I � x �

�
I

plus � � � x

Because plus is a built�in function� the reduction machine is able to directly apply plus to
the two arguments given� The value of plus � x is then returned as the result�

Local where de�nitions� Since a where introduces local �potentially function�valued� vari�
ables� abstraction plus the fact that functions are
rst�class citizens in SASL immediately
provides us with a way to compile where de
nitions away�

Let us split the matter in two cases� wheres that contain exactly one de
nition� i�e� are of
the general form

E� where f 	 E�

and where expressions featuring a list �separated by �� of more than one de
nition� We will
dicuss the latter form later on�

The compilation rule for the above expression simply is

��f �E�� � E�

We turn E� into a function of f �by abstracting f from E�� and apply this new function to
E�� which results in replacing every occurence of f in E� with E�� Note that this replacement
of expressions is just what where de
nitions are all about�

If f is function�valued� i�e� if the program has the form

E� where f x 	 E�

we proceed by combining the methods we learned so far� we abstract x from E� in order to
compile the local function and additionally remove occurences of f from E�� We then have�

��f �E�� � ��x�E��

��

We generalize the where de
nition once more� how to compile a recursive local de
nition!
In the de
nition of f we refer to f itself as in�

E� where f x 	 � � � f � � �

In order to be able to detect this case� the compiler needs a means to check for the use of a
certain variable name �here f� in an expression� A simple parse tree traversal should do the
job�

At this point we employ a new combinator� the �xpoint combinator Y� whose de
nition is

Y � f � f � �Y � f�

Note that Y�s de
nition itself is recursive �it realizes the repeated application of f� and
we would have to expand Y an in
nite number of times to implement it properly� The
reduction machine will implement Y by rewriting it into a cycle in the program�s graph� See
Subsection ��� on this issue�

All we need to know during the compilation phase is that the above expression involving local
recursion has to be rewritten into

��f �E�� � �Y � �f ���x�E���

We abstract f from E� �as usual� and E�� making E� a function of f � The
xpoint combinator
then realizes the repeated application of this function to itself which implements the recursion�
This completes the case of a where de
nition introducing a single name only�

Multiple local where de�nitions� The most general form of a where expression� namely a
where followed by a list of de
nitions separated by semicolons� demands special consideration�
Consider�

E� where f x 	 E��

g y 	 E�

The compilation method will be similar to the single de
nition case but we have to employ yet
another combinator� U� which we will de
ne below� Do not be alarmed by the �complexity� of
the compilation rule� its structure is rather simple� The above expression has to be compiled
into

U � ��f ��U � �g��K � E���� � ��x�E���y�E��

Remember that �x�y� is a shorthand for � � x � �� � y � nil��

If the de
nition of f and�or g is recursive �this includes expression like

E� where f x 	 � � � g � � � �

g y 	 � � � f � � �

i�e� mutual recursion� we proceed just like in the case of single where de
nitions� we use Y
to express recursion� The compiled expression then is

U � ��f ��U � �g��K � E���� � �Y � �U � ��f ��U � �g��K � ��x�E���y�E�������

��

The combinator U is a mnemonic for uncurrying� It is de
ned �and thus implemented in the
reduction machine� by the equation

U � f � z � f � �hd � z� � �tl � z�

U realizes the application of f to two arguments �the head and tail of the list z� by applying
f to �hd z�
rst� The result is then applied to �tl z��

The following subsection will sketch the corresponding reduction machine which completes
the implementation of the backend� The reduction machine constitutes the SASL runtime if
you like� It will realize the
ve combinators S� K� I� Y� and U as well as the SASL built�in
functions�

��� SK Reduction Machine

The SK reduction machine �which draws its name from the two combinators� constitutes the
runtime system of our SASL project� It acts like a processor entirely realized in software�
The machine is remarkable because it does not operate on a machine code representation but
rather executes the compiled program �the graph� by transforming the program itself�

It is reasonable to think of a simpli�er transforming and simplyfying the graph built from
combinators� built�in functions� and constants� The simpli
cation process goes on until the
graph has been reduced to a single constant value �of type num� bool� string� or list�� This
value is then printed to stdout�which completes the compiler run�

In what follows we will use the terms �evaluation�� �simpli
cation�� and �reduction� as
synonyms� This subsection presents the simpli
cation rules used for the graph reduction
process� The rules implement the de
ning equations for the combinators S� K� I� Y� and U�
There will be additional rules for the built�in functions �like �� cond� or tl��

Lazy evaluation� The evaluation of function applications in SASL happens lazyily� This
is in contrast to the vast majority of programming languages whose evaluation semantics are
known to be strict� What does lazy evaluation mean!

A programming language with strict semantics evaluates the arguments of a function call
before the function is actually applied� An example might help here �using Ei�el syntax��

feature first�x
y � T� � T is

�� this implements K
 did you notice�

do

Result �� x

end �� first

���

first����
 ����

��

Before we actually apply first� we evaluate the arguments ��� and ��� and then pass them
to first� i�e� execute the call first
������ Half of the argument evaluation e�ort is for
nothing� of course� because first simply throws y�s value away� The following example is
even worse� Ei�el �read� any strict language� is not able to complete the evaluation at all�

feature bomb�n � INTEGER� � INTEGER is

do

Result �� bomb�n���

end �� bomb

���

first���
 bomb����

The evaluation of the second argument does not terminate�first will never be called�

SASL is lazy when it comes to the evaluation of arguments to a function call� every argument
is passed as�is to the function� The general principle is� perform reductions only when they
are absolutely necessary to compute the result� For example� in order to evaluate x � y it
is indispensable to reduce x and y to numbers before we can caryy out the addition �� is
said to be strict in x and y� The function first is neither strict in its
rst nor in its second
argument� SASL computes the correct results for both examples�

def first x y � x

def bomb n � bomb �n����

�first ��� ���
 first �� �bomb ���

This program reduces to ������� It is interesting to note that first returns its
rst argument
��� unevaluated� The addition is not done before the result has to be actually printed�

To conlcude� it is the point of lazy evaluation to delay the reduction of function arguments
as long as possible�� Arguments are passed as�is instead� If we return to the graphical
representation of function application�

�

f
�� JJ

a

we reduce the left branch before we reduce right branch �if we have to do so at all�� Literature
refers to this as normal order reduction� Strict languages evaluate the right branch
rst
�applicative order reduction�� Examples of lazy languages are Haskell� Miranda�� or Lazy ML�
Algol�s call�by�name implements a similar but more ine�cient evaluation strategy� More on
that later�

�Lazy functional programmers would add the requirement that arguments are evaluated at most once�
�
Miranda is a trademark of Research Software Ltd�

�

Control of reduction� The principal operation of the reduction machine is controlled by
the so�called left ancestors stack� The following algorithm implements normal order reduction
of our compiled programs with the help of this stack�

� When execution starts� a pointer to the �graph representation of the� complete compiled
program is the only element�the stack top�on the stack�

� As long as the operation at the stack top is a function application� i�e� a ��node� we
push the left ancestor of that ��node onto the stack� The stack derives its name from
this step�

� At some point in time the stack top will contain a combinator or another built�in
function� If so� we apply the graph reduction rule �see below� that corresponds to the
stack top� The arguments to the function call are easily accessed� a pointer to the n�th
argument may be found at the n�th position above the stack top� The function and its
arguments are popped from the stack and replaced by the reduction result�

� After a reduction step has been completed� the machine continues its operation by
examining the stack top again� if an ��node is encountered� push the left ancestor� else
reduce�

The machine halts if the stack top contains a �printable� object� i�e� a value of type num�
bool� string� or a list value constructed by a pair node �pair nodes are introduced on
the evaluation of the � list constructor and are used to represent list values as trees� see
��s reduction rule below�� Since SASL�s evaluation is lazy it might well be that some or all
elements of a list value have not yet been reduced� i�e� the left �head� and�or right �tail�
ancestor of a pair constructor still is a function application� Thus� in order to print the
list value� the reduction machine has to call itself recursively on these elements� it is not
uncommon for a list�valued SASL program to complete its evaluation in very few reduction
steps� However� the �real work� starts when the routine has to reduce the single list elements
to be able to print their value�

Let us shed some light on this� Suppose the following global de
nitions �length l determines
the lenght of its list argument l� while map f l applies function f to every element of the list
l��

def length l � if l � nil then �

else ��length �tl l�

def map f l � if l � nil then nil

else f x � map f xs

where x � hd l�

xs � tl l�

A call like length ��a���b���c�� eventually leads to the evaluation of the expression 	 #
�	 # �	 # �� � � whose size is linear in the size of input list� The result can be printed after

��

the summation took place� The reduction of map f ������ however� produces the following
intermediate result after only a few reduction steps�no matter how long the argument list
may be$ We abbreviate the combinator expressions for map and f by map resp� f here�

pair

�

f
		 LL

�

hd
�� JJ

�����

 aaa

�

�

map
�� AA

f

�� ll
�

tl
�� JJ

�����

The top pair node represents the list�valued result produced by our call to map and the
reduction algorithm starts to print the result� However� to succeed in this there still remains
the reduction work for the head of the list� f
hd ������� as well as its tail� map f
tl

������ to be done� the print routine calls the reduction machine on both�

A reduction step� To further illustrate how reduction proceeds� let us re�enact a single
reduction step� Let f � g� and x denote arbitrary compiled expressions� The combinator
expression S � f � g � x eventually leads to the following con
guration of the left ancestors
stack after we have walked down the �spine� of ��nodes �stacks grow downwards��

�

�

�

f

x

g

SS

The combinator S at the stack top instructs us to apply its corresponding reduction rule

S � f � g � x � f � x � �g � x�

This leads to the following combinator graph resp� stack content�

�

x

�

�

g

f

��

The stack top now contains the root node of f �s combinator representation� It determines
how the reduction machine will proceed�

Note that� after the reduction� the code for x has not been copied but is shared by f and
g� If x has to be evaluated at all we have to do so at most once� The sharing of common
code �or the detection of common subexpressions� is one crucial optimization the e�ciency
of the reduction machine relies on� Normal order reduction and sharing together make SASL

a fully lazy language� Optimizations of this kind are equivalence�preserving because SASL is
side�e�ect free �aka pure��

Indirection Nodes� To get the full bene
t from this self�optimzing behaviour of the re�
duction machine one has to be careful when rewriting the combinator graph�

Let us trace the reduction of a K combinator� The stack con
guration is depicted below�

�

�

K x

y

K

Suppose that the dashed arrow in �a� below is an additional second reference to x �this may
happen when an S combinator has been reduced before� for example��

x

x

�b
 �c

�

�

y

x

�a

�

xI
K

Following the reduction rule for K� i�e� K � x � y � x� we obtain the situation �b� in which
two copies of x exist� If we reduce one of the copies� the other copy does not bene
t from this
e�ort and laziness is lost� In situations like these we therefore introduce indirection nodes

�see �c�� that allow to preserve the sharing property� The identity combinator I is well suited
for this task�

K � x � y � I � x

still is a correct reduction� Indirection nodes a�ect the graph transformation only� The left
ancestors stack may of course point to x directly�

��

�

I x

Every time a reference to I � x is encountered� the machine may elide the indirection by
replacing it with a reference to x� After the last reference to the indirection has been removed
it will be reclaimed by the garbage collector �if present��

Reduction rules� There remains nothing to be done but giving the rules for the reduction
of the combinators as well as SASL�s built�in functions�which are nothing else but rather
specialized combinators� If a reduction involves the generation of indirection nodes� they are
explicitly shown in the following table�

combinator reduction

�

�

�

f

x

g

S

�

f x

�

�

g

�

�

K x

y
�

I x

�

Y f

�

f

Table �� Reduction rules

�

combinator reduction

�

�

f

z

U

�

f

�

�

zhd

�

tl

�

�

x

y

plus

�

I x� y

�

�

x

y

�

pair

yx

�

I

�

�

cond

x

�

y

true

�

I x

�

�

cond

�

y

false

x

�

I y

Table �� Reduction rules

�	

Notes�

� Realize that �tying the knot� in the reduction of Y actually implements the purpose of
Y� i�e� the repeated application of a function to itself�

Y � f � f � �Y � f� � f � �f � �Y � f�� � � � � � f � �f � �f � �� � � � � � � ��

� The implementation of the built�in operators is completely analogous to the rule for
plus� Since these operators are strict you have to call the reduction machine recursively
on their arguments� you cannot add two expressions until they have been actually
reduced to numbers� cond is strict in its
rst argument only�

� A pair node represents a list x�y that has been built by the � �cons� list constructor�
The built�in functions hd and tl reduce their argument to a pair�but not any further�
and return x resp� y� x and y themselves are not reduced�

� Optimizing SK Compilation

The SK compilation and reduction scheme as stated here is simple and elegant� the compiled
epxressions however tend to be quite large� resulting in space�consuming combinator graphs
and high reduction times�

Fortunately� it is as easy to optimize the reduction process� The optimizations discussed
in short below are not necessarily needed to get the compiler working� but they render the
system a lot more usable�

SK optimzation involves the introduction of a series of new combinators� namely B� B�� C�
C�� and S�� We brie�y motivate the introducion of B here and then give the optimization
rewrite rules� For a full review of the optimization process� please refer to Chapter 	
 of
�PJ����

Suppose we have to compile the function de
nition def neg x 	 not x� Variable abstraction
produces the combinator equivalent S � �K � not� � I for neg� If you have a closer look at
the reduction of the expression neg x� you will notice that in the second step K discards its
second argument x�

�

�

�

S
�� AA

�

K
�� TT

not

		 LL
I

		 LL
x

�
S

�

�

�

K
�� TT

not

		 LL
x

�� ��
�

I
		 LL

x

�
K

�

not
�� AA

�

I
		 LL

x

�
I

�

not
�� AA

x

��

Passing x to K in this situation is wasted e�ort� In general� any combinator expression of
the form S � �K � f� � g leads to such an unnecessary reduction step�

The new combinator B� de
ned by

B � f � g � x � f � �g � x�

avoids passing x to f and therefore saves a reduction step in a situation like above� A suitable
SK optimizer will include an optimzation rule

S � �K � f� � g � B � f � g

thus replacing a combination of S and K by B if possible� The new combinator code for neg
now is B � not � I� Compared to the original combinator expression� we get code that is of
smaller size and additionally reducable in fewer steps�

The introduction of B�� C� C�� and S� pursues very similar goals� We conclude this section
by giving their de
nitions as well as the optimization rules�

Additional combinators�

B � f � g � x � f � �g � x�
C � f � g � x � f � x � g

S� � c � f � g � x � c � �f � x� � �g � x�
B� � c � f � g � x � c � �f � �g � x��
C� � c � f � g � x � c � �f � x� � g

Optimization rules�

S � �K � f� � �K � g� � K � �f � g�
S � �K � f� � I � f

S � �K � f� � �B � g � h� � B� � f � g � h

S � �K � f� � g � B � f � g

S � �B � f � g� � �K � h� � C� � f � g � h

S � f� � �K � g� � C � f � g

S � �B � f � g� � h � S� � f � g � h

You may expect signi�cant speed�ups if you completely implement these rules in your reduc�
tion machine�

References

�ASU�
� Alfred V� Aho� Ravi Sethi� and Je�rey D� Ullman� Compilers�Principles� Tech�

niques� and Tools� Addison Wesley� 	��
�

�Mey��� Betrand Meyer� Ei�el � The Language� Object�Oriented Series� Prentice�Hall� 	����

��

�PJ��� Simon L� Peyton Jones� The Implementation of Functional Programming Languages�
International Series in Computer Science� Prentice�Hall� 	����

�Tur��� David A� Turner� A New Implementation Technique for Applicative Languages�
Software�Practice and Experience� ���	���� 	����

A An SASL Prelude

Some programming tasks are so common and repeating when dealing with functional lan�
guages that it is a good habit to provide the compiler with a library of prede
ned functions�
often referred to as prelude� A well�designed prelude can signi
cantly increase the user�
friendliness and usefulness of the SASL system� Traditionally� the prelude is loaded at the
compiler�s startup so that user�s may refer to names de
ned in the prelude when they write
their own programs�

Below we list some of the functions that deserve a place in a decent SASL prelude� This
includes the higher�order list processing functions map� filter� fold� append� reverse� stan�
dard functions like id or comp �� or function composition�� several iterators� aggregation
functions like sum and product� but also an insertion sort and
nally curried versions of the
arithmetic and relational operators �plus� leq� and friends�� There is no limit�

The prelude functions may additionally serve as further SASL program examples as well as
test cases for the student�s compiler�

def id x � x

def until p f x � if p x then x else until p f �f x�

def comp f g x � f �g x�

def map f l � if l�nil then nil

else f x�map f xs where x � hd l�

xs � tl l

def fold m z l � if l�nil then z

else m x �fold m z xs� where x � hd l�

xs � tl l

def append l� l� � if l��nil then l�

else x�append xs l� where x � hd l��

xs � tl l�

def reverse l � if l�nil then nil

else append �reverse �tl l�� �hd l�

��

def filter p l � if l�nil then nil

else if p x then x�filter p xs

else filter p xs where x � hd l�

xs � tl l

def sort p l � if l�nil then nil

else insert p �hd l� �sort p �tl l��

where

insert pp e ll � if ll�nil then �e�

else

if pp e �hd ll� then e�ll

else

�hd ll��insert pp e �tl ll�

def drop n l � if n
�� then l

else if l�nil then nil

else drop �n��� �tl l�

def take n l � if n�� or l�nil then nil

else x�take �n��� xs where x � hd l�

xs � tl l

def at n l � if n�� then hd l

else at �n��� �tl l�

def length l � if l�nil then �

else ��length �tl l�

def null l � l�nil

def init l � if xs�nil then nil

else x�init xs where x � hd l�

xs � tl l

def iterate f x � x � iterate f �f x�

def repeat x � xs where xs�x�xs

def cycle xs � xs� where xs��append xs xs�

def splitAt n l � if n
�� then ���l

else if l�nil then �����

else ��hd l��xs���xs�

where

xs � splitAt �n��� �tl l��

xs� � hd xs�

xs� � tl xs

��

def takeWhile p l � if l�nil then nil

else if p x then x�takeWhile p xs

else nil

where

x � hd l�

xs � tl l

def sum � fold plus �

def product � fold mul �

def plus x y � x�y

def mul x y � x�y

def div x y � x�y

def div� y x � x�y

def minus x y � x�y

def minus� y x � x�y

def lt x y � x
y

def leq x y � x
�y

def eq x y � x�y

def neq x y � x��y

def geq x y � x��y

def gt x y � x�y

The SASL input
le containing the prelude may be downloaded from the web homepage of
this course�

http���www�informatik�uni�konstanz�de�
grust�SASL�

B The Transformed SASL Grammar

The SASL grammar presented here is equivalent to the one given in Table 	 in the sense
that both grammars accept the same language� This version of the grammar has been left�
factorized� it is free of left recursion� and accounts for operator precedence� It should be a
straightforward task to construct its LL�	� recursive descent parser� See Section ��� on these
issues�

hsystemi � hfuncdefsi � hexpri
j hexpri

hfuncdefsi � def hdefi hfuncdefs�i
hfuncdefs�i � def hdefi hfuncdefs�i

j

hdefsi � hdefi hdefs�i
hdefs�i � � hdefi hdefs�i

j

Table �� A massaged SASL grammar

�

hdefi � hnamei habstractioni
habstractioni � 	 hexpri

j hnamei habstractioni
hexpri � hcondexpri hexpr�i
hexpr�i � where hdefsi hexpr�i

j

hcondexpri � if hexpri then hcondexpri else hcondexpri
j hlistexpri

hlistexpri � hopexpri hlistexpr�i
hlistexpr�i � � hexpri

j

hopexpri � hconjuncti hopexpr�i
hopexpr�i � or hconjuncti hopexpr�i

j

hconjuncti � hcompari hconjunct�i
hconjunct�i � and hcompari hconjunct�i

j

hcompari � haddi hcompar�i
hcompar�i � hrelopi haddi hcompar�i

j

haddi � hmuli hadd�i
hadd�i � haddopi hmuli hadd�i

j

hmuli � hfactori hmul�i
hmul�i � hmulopi hfactori hmul�i

j

hfactori � hpre�xi hcombi
j hcombi

hcombi � hsimplei hcomb�i
hcomb�i � hsimplei hcomb�i

j

hsimplei � hnamei
j hbuiltini
j hconstanti
j
 hexpri �

hnamei � hidi
hbuiltini � hd

j tl

hconstanti � hnumi
j hbooli
j hstringi
j nil

j hlisti
hlisti � � hlist�i
hlist�i � �

j hlistelemsi �
Table �� A massaged SASL grammar

��

hlistelemsi � hexpri hlistelems�i
hlistelems�i � � hexpri hlistelems�i

j

hpre�xi � � j � j not
haddopi � � j �
hmulopi � � j �
hrelopi � 	 j
	 j � j � j �	 j �	

hidi � �a� zA� Z���a� zA� Z��� ���

hnumi � ��� ���

hbooli � true j false
hstringi � �hASCII characteri��

Table �� A massaged SASL grammar

��

	Title
	1 Introduction
	1.1 Implementation Language
	1.2 Running the Course
	1.3 Time Schedule
	1.4 Organization of this Document

	2 The Functional Programing Language SASL
	2.1 Data Types
	2.2 Expressions
	2.3 Global Definitions (def)
	2.4 Local Definitions (where)
	2.5 Predefined Functions
	2.6 An SASL Grammar in EBNF

	3 The Compiler Stages
	3.1 Lexer
	3.2 Parser
	3.3 SASL Compilation and Combinators
	3.4 SK Reduction Machine

	4 Optimizing SK Compilation
	References
	A An SASL Prelude
	B The Transformed SASL Grammar

	Text4: First publ. as: Konstanzer Schriften in Mathematik und Informatik. Nr. 43/1997

