First publ. as: Konstanzer Schriften in Mathematik und Informatik. Nr. 43/1997

The Construction of an SASL-Compiler

Torsten Grust
43/1997

Department of Mathematics and Computer Science
University of Konstanz, Germany

e-mail: Torsten.Grust@uni-konstanz.de
web home: http://www.informatik.uni-konstanz.de/"grust/SASL/

September 24, 1997

1 Introduction

These notes are intended to guide students during the construction of a compiler for a lazy
pure functional language. The material covered here includes the lexing, parsing, and parse
tree construction phase, as well as the combinator compilation and reduction component of
a combinator reduction implementation of such a language.

When there has been the choice between the exhaustive theoretical presentation of a topic or
the discussion of the issues of its implementation, we chose the latter. After all it is the goal of
this course to get a working compiler within reasonable time. However, topics like grammar
transformation (for recursive descent parsing), combinator compilation, and reduction are
discussed to a depth that should be sufficient to wake interest for the theoretical foundations.

The students are expected to be familiar with formal language concepts like BNF grammars,
production rules, and derivation. The knowledge of basic data structures, such as trees and
stacks, is a prerequisite. Experience with functional programming languages is not assumed,
though.

Starting with Section 2, the material is intended as a handout to students. These notes have
been the successful basis for a second year student’s programming course in Konstanz. I make
them available in the hope that they turn out to be useful or might speed up the preparation
of a similar assignment.

http://www.inf.uni-konstanz.de/Preprints/

SASL. In contrast to various other compiler construction courses, we did not invent SASL
as a toy language specific to this course. SASL (St. Andrews Static Language) has been
developed by Prof. David Turner in 1976 when Turner was with St. Andrews University,
Scotland. Turner published a series on articles on the language, and one of these reports
[Tur79] provides the basis this course is built on. Apart from the lexer and parser modules
(i.e. the complete syntactical analysis phase), this article describes all techniques needed to
compile and execute SASL programs. In this article, Turner established a technique called
combinator reduction, variants of which are still successfully employed in the translation of
modern functional languages like Haskell or Miranda.

The combinator reduction technique is especially well suited for this course, because the SASL
compiler does not produce machine level code for some specific CPU. Rather, a reduction
machine—realized in software—is used, to perform a stepwise transformation of the graph
representation of the compiled program, until the final result is obtained. SASL is particularly
lazy in performing these transformations, a fact which lends interesting semantics to the
language. In SASL, it is perfectly reasonable to define functions that compute infinite lists
(the list of all prime numbers, say). As long as the final result may be computed by examining
only a finite number of list elements, the runtime system faces no problems. The graph
representaion of compiled programs is crucial for combinator reduction. This will have an
impact on the programs that have to be constructed during the course. The construction and
transformation of these graphs will be a dominating task—the parser will be responsible to
compile an SASL source text into its corresponding graph representation, while the reduction
machine will implement program execution by means of graph transformations (very often,
it will reduce the graph to one single node).

1.1 Implementation Language

At the University of Konstanz, students implemented the SASL compiler using the object-
oriented language Eiffel, which has been the first-year language for the students. This course
description does not depend in any way on a specific implementation language, although the
few small code examples given use Eiffel syntax. However, we are largely using the simple
procedural elements of Eiffel only, so that the code snippets should be easy to comprehend.
The students were referred to Bertrand Meyer’s “classic” Fiffel — The Language [Mey92] as
a reference. No further Eiffel material has been provided.

1.2 Running the Course

In order to complete the assignment in due time, students should not work as sole fighters.
In Konstanz, two students made up a development group each. Using the overall architecture
of the compiler as an orientation, we proposed to cut the work to be done roughly in half, as
Figure 1 suggests:

The dashed line in this drawing suggests that the two halves are not independent of each
other. The two co-workers were forced to exchange their ideas and plans in great detail. This
was especially true when it came to the design of the graph representation data structure
which runs like the red thread through the whole project.

frontend backend

lexer parser compiler > reduction

task 1 task 2

Figure 1: The four stages of the SASL compiler.

When the project started, the co-workers commited themselves to work on either the frontend
part (lexer, parser) or the backend (compiler, reduction machine) of the compiler. During
the course, however, it was perfectly okay for the students to “switch sides” and help out if
needed.

1.3 Time Schedule

The course was scheduled to run for 12 weeks. After two to three weeks the students were
expected to finish their initial planning and design phase. The actual coding phase then lasted
for the rest of the time.

1.4 Organization of this Document

Material that is suitable to hand out to students starts with Section 2, in which we introduce
SASL to the depth needed: while types are only marginally mentioned (we will not dicuss the
implementation of a type checker for SASL here), we review expressions and function appli-
cation in their gory details. Global and local definitions are covered in their own subsections,
since these pose some challenge during the backend implementation. An SASL grammar given
in extended Backus-Naur form completes this part.

Section 3 then walks through the four compiler stages we outlined in Figure 1. Basic tech-
niques and mechanisms are introduced, including grammar transformations for LL(1) parsing,
recursive descent parsers, SK combinator reduction, and the corresponding reduction ma-
chine. Optional optimzations to the SK reduction machine are finally presented in Section 4.

Two appendices conclude this paper: Appendix A contains a small library of functions in-
tended to serve as a small SASL prelude. Appendix B presents the above mentioned SASL
grammar in a form more suitable for the impatient parser implementor.

The material presented here is intended to be closed with respect to references to further
literature. However, reading (parts of) David Turner’s seminal original SASL paper [Tur79]
as well as Simon Peyton-Jones’ excellent book on implementing lazy functional programming
languages [PJ87] is always a pleasure and may turn out to be very useful.

Acknowledgements. I am particularly grateful for the feedback the students of the course
“Informatik IV” (winter 1996/97) provided me with. Special thanks go to Andres Loh for
his useful remarks and considerations. Finally, T would like to thank Dave Turner for his
immediate and most helpful response to a question of mine.

2 The Functional Programing Language SASL

As almost all functional languages, SASL is a conceptually simple and elegant programming
language. In fact, it is so simple that we can introduce the language completely in this section.
It is not necessary to be fluent in any other functional language to follow the upcoming
introduction of SASL. The definition and application of functions is the single major concept
in SASL. The term functional programming language stems from this observation.

Typing is not our primary concern here but we will start with a few words on types of
expressions. HExpressions are built from SASL’s built-in operators as well as globally and
locally user-defined functions. These concepts are covered next. We conclude this section by
giving a grammar for SASL programs so that we account for SASL’s syntax, too.

2.1 Data Types

Atomic types. SASL provides num (negative and positive integers), bool (consisting of the
two values true and false only), and string (finite sequences of characters enclosed in "")
as standard data types.

Type constructors. SASL allows for the construction of lists that may be built from values
of arbitrary types. This is a relaxation of the typing rules of most functional programming
languages which require lists to be built of values of a single type only. Consequently, there is
no type constructor alist in our implementation of SASL since, in general, the list elements
will not agree on a single type . Rather, we will simply assign the type 1list to any value
constructed with the list constructors : and nil (see Subsection 2.2 on expressions below).

Note that this is not the way real-world functional programming languages go about the
problem. We can live with this simplified view of things because we are not concerned with
type checking at all.

Functions map arguments to function result; we will denote their types as 71 —=> 7o, where 7y
and 79 are the types of the argument and the result, respectively. For example, the function
1s_even has type num -> bool.

2.2 Expressions

Operators. SASL is equipped with the following arithmetic operators which only have
sensible definitions if applied to arguments of type num (in the following a, b, and ¢ represent
expressions of type num):

a+b | addition

+a | unary plus

a=-b | subtraction

-a | unary minus

a*b | multiplication

a/b | integer division (5/3 = 1)

The relational operators listed in the following table may be applied to values of type num
and string, = and ~= are also applicable to booleans or list values:

a=b | equality

a~=b | inequality

a<b | less than

a>b | greater than

a<=b | less than or equal
a>=b | greater than or equal

The boolean operators are listed below:

not a logical negation
a and b conjunction
a or b disjunction
if a then b else c | conditional expression

Please note that if a then b else c is to be understood as an expression and not as a
statement. An expression always has a unique value. The value of if a then b else c is
b if ¢ = true, and c otherwise. As a consequence, there is no conditional expression of the
form if ¢ then b, which would be undefined for the case ¢ = false.

The infix operator : (read: cons) must be used to construct lists. The expression x:xs builds
a new list by prepending the element x to the already existing list xs. The constant value
nil denotes the empty list.

Examples:

e 1:nil — a list containing element 1 only.

e true:false:true:nil — list of three elements of type bool; : associates to the right,
so that the expression is equivalent to true: (false: (true:nil)).

e In SASL, you may use the abbreviation [a,b,c] for the expression a:b:c:nil. Thus,
we can equivalently write the above examples as [1] resp. [true,false,true]. Lists
may contains lists as elements, making [[1,2],nil, [[truel]l,["a","b"]] a valid ex-
pression. The empty list nil may be alternatively written as [].

If ¢ is an expression then (a) is an expression as well (with the same value as). You may
use parentheses to circumvent the default operator priorities and associativites. We list the
priorities here:

‘ priority ‘ operator ‘

8 f a (juxtaposition, see below)
7 not + - (prefix)

6 * /

5 - + (infix)

4 = "=< > <= >=

3 and

2 or

1 :

0 if-then-else

All binary operators associate to the left, with : (cons) being the only exception. See above.

A few examples of valid expressions (and the values SASL evaluates them to):

2+3)
if true then 42 else 0 42
1 : if not ("a" < "b") then [2,3] else nil [1]
-(4+2)*3 —18

Function application. Applying a function is the major operation in SASL. Therefore, we
represent application by the simplest syntactic construct we can provide: the function and
its argument are simply written in sequence (juztaposition). fa represents the application
of f to a, where f is a function-valued expression (e.g. a function name) and a an arbitrary
expression. Function application has the highest operator priority.

The former paragraph talked about an expression f having a function as its value. Expressions
of this kind are unique to functional programming languages. SASL treats functions like
ordinary values, that is, there is no essential difference between function values and numbers
or strings. Functional programming languages draw their power and elegance from this fact. A
function may be argument to another function, functions may return functions (such functions
are called higher-order functions), you may build lists containing functions, etc. You can even
compute a function on the fly and then pass this new function value around in your program.
This is essentially different from imperative programming languages, where you can define
and then call a function; you may not, however, assign a function to a variable for example.

A simple example is (let £ and g be function values, e.g. names of user-defined functions)
(if 1 "= 0 then f else g) 42

in which we apply a function, namely if 1 "= 0 then f else g, to the argument 42. The
if-then-else expression itself evaluates to a function, £ in this case, which in turn is then
applied to 42. We will have a closer look at examples of this flavour and you will quickly get
used to it.

In addition to the SASL built-ins, functions may be defined by the programmer using the
keywords def and where (see below). The operators +, -, <, or, ... are pre-defined functions
built into SASL. The syntax allows you to use these in the more operator-wise infix notation,
which exceptionally breaks the juxtaposition rule.

Currying. Every SASL function may take more than one argument. It may be instructive
to think about an application like fab for a minute. What is actually meant here? Since
juxtaposition is just another operator (associating to the left as explained above), we have to
read the above expression as (fa) b : f ais evaluated to a function which in turn is applied to
the argument b. This technique, well-known as Currying, makes use of SASL’s higher-order
functions: f is a function that, when applied to an argument (here a), returns a function
value (which we can apply to b).

The type of fisa => (B ->) if a, §, and v denote the types of a, b, and the result’s type,
respectively. We provide one argument ¢ of type a and obtain a function of type 8 -> 7. By
applying this function to the “second” argument b we finally get the result of type .

An example (with a leap ahead to def). A programmer defines the function plus as
def plus x y = x+y

The currying principle instructs us to read an expression like plus 2 3 as (plus 2) 3. How-
ever, the expression (plus 2) itself already has a sensible value, namely the function that
adds 2 to its argument. You can intuitively see that if you replace the variable x by 2 in the
function body of plus. The complete expressions plus 2 3 therefore evaluates to 5. The
type of plus unquestionable is num -> (num -> num). Nobody stops us from defining

def incr = plus 1
Given this, incr (increment) is the function that adds 1 to its argument, e.g. incr 6 evaluates

to 7. incr’s type is num -> num, as expected.

Being so far, let us introduce a graphical notation that will turn out to be useful during the
whole course.

We will represent SASL expressions as binary trees. The leafs are labeled with values of any
type (num, bool, string, but also functions). An inner node always represents a function
application, indicated by an @ sign. The expression f a is drawn as

/ N\

We will sometimes denote the above tree as f @ a (read: f at a). Our recent example (plus
2) 3 consequently is represented by the tree

/ N\
7N\

plus 2

More general, f 1 x2 - -+ x, has the presentation

Tree structures of this kind will be generated by the parser and then manipulated by the
reduction machine. Section 3 will cover these issues to the depth needed.

2.3 Global Definitions (def)

The programmer may assign globally visible names to values via a series of def definitions
(remember that values may be booleans, strings, and numbers, but also functions). The last
def definition has to be terminated by a dot ‘.’. A subsequent expression may then refer to
any global name defined. Any SASL program comprises an optional sequence of defs followed
by a single expression to be evaluated.

Some examples involving def:

def answer = double 21
def list = [1,2,3,4]
def double x = 2*x

def twice = double.

A definition may refer to names that are introduced later on (see double in the definition of
answer; there is no “forward” declaration or the like). The last definition makes twice an
alias for the function double defined earlier. twice 2 evaluates to 4.

def may be (mutually) recursive:

def fac n = if n=0 then 1 else n * fac (n-1)
def one 1 : two
def two 2 : one.

While the definition of fac should be obvious, an evaluation of the expression one results
in the infinite list [1,2,1,2,1,2,1,... . Thanks to SASL’s semantics of expression evaluation
(which is performed lazily) we can actually do sensible operations on such “infinitely large”
values. Section 3.4 comments on that.

2.4 Local Definitions (where)

Every expression may be followed by local definitions that introduce names whose visibility
is restricted to just this expression. Local definitions are introduced by the keyword where,
multiple definitions are seperated by a semicolon (;). Arbitrary (mutual) recursion is allowed,
just like in the case of def.

Examples:
X where x = 3 3
x+y where x = 3; 9
y = 2%x
answer where answer = double 21; 42
double x = 2%x
double 2 error: double not visible

2.5 Predefined Functions

Our somewhat restricted version of the SASL language will further predefine two functions:
hd (head) and t1 (tail). Both operate on lists and are defined as follows:

hd (z:zs) = =x
tl (z:zs) = zs

Both functions are allowed to return anything (read: are undefined) if applied to an empty
list. By virtue of hd and t1 we are able to take apart a non-empty list into its head and tail
again. Together with the list constructors : and nil we now have a complete “list toolbox”
which allows us to define any list operation we might wish for.

Example (of a function that determines the first n elements of a list 1):

def first n 1 = if n=0 or 1=nil then nil
else x:(first (n-1) xs)
where x = hd 1;
XS tl 1.
first 2 [1,2,3,4] [l,ﬂ

Note. SASL’s lazy evaluation enables us to actually compute the value of e.g. first 3 one
and to print the correct result [1,2, 1] (remember the definition of the infinite value one from
above). A non-lazy programming language would rather try to evaluate all arguments to
the function first before first itself is applied. The argument 3 poses no problems, the
evaluation of one takes “forever”, however. These languages (normally attributed as being
strict or eager; all imperative languages like Pascal or C belong to this class) are unable to
evaluate expressions involving infinite values like first 3 one. SASL’s laziness is one of the
core virtues of the language.

If your SASL implementation project works out well, the library of predefined functions is
a good point where you can extend your compiler. But see Appendix A which describes a
minimal SASL prelude.

2.6 An SASL Grammar in EBNF

Table 1 displays the syntax of the SASL subset which is relevant to this course. It is given
in EBNF (extended Backus-Naur form). You should scan through the grammar rules to get
a clear concept of what parts of the grammar represent specific parts of the SASL syntax
we described only informally up to now. The nonterminal (list), for example, describes the
handy abbreviating list notation using square brackets [-].

A sequence of characters is a syntactically correct SASL program if it can be derived from the
grammar’s start symbol (system). Grammars, rules, and derivation are concepts you already
should be familiar with. There are programs derivable from (system), however, which do not
make much sense. We may derive 3*xtrue for example. In a real-world compiler, typing flaws
like this would have been detected by the the compiler’s type checker.

This course is not concerned with type checking in order to focus on the actual compilation
matters. Your compiler is allowed to do anything with a program like 3*true. It may choke
or dump core—it may, however, also print a sensible error message if you implement a type
check on your own; Chapter 9 of [PJ87] covers the type checking phase. Otherwise, we follow
the gigo principle here (garbage in—garbage out).

Notes and a series of examples on the SASL language itself may be found in one of the
original references [Tur79]. In these course notes you should only find minor syntactical
differences from what is described there (e.g. we substituted the somewhat more familiar
form if-then-else for Turner’s conditional expression operator -=>-;-).

10

(system) — (funcdefs) . (expr)
| (eap)
(funcdefs) — def (def)
| (funcdefs) def (def)
(defs) — (def)
| (def) ; (defs)
(defy — (name) (abstraction)
(abstraction) — = (expr)
| (name) (abstraction)
(expr) — (expr) where (defs)
| (condezpr)
(condexpr) — if (expr) then (condexpr) else (condexpr)
| (listezpr)
(listexpr)y — (opexpr) : (listexpr)
| (open)
(opexpr) — (prefix) (opezpr)
| {opeapr) (infiz) {opezpr)
| (comb)
(comb) — (comb) (simple)
| (simple)
(simple) — (name)
| (builtin)
| (constant)
| ((expr))
(name) — (id)
(builtin) — hd
| tl
(constant) — (num)
| (bool)
| (string)
| nil
| (list)
(listy — L[]
| [(listelems)]
(listelems) — {expr)
| (listelems) , (expr)
(prefiry — - |+ | not
(infiry — +|-|%|/|=]"=|<|>|<=|>=and|or
(id) — [a—zA—Z_]la—zA—Z_0—9]*
(num) — [0—9]"
(bool) — true | false
(string) — "(ASCII character)*"

Table 1: SASL grammar in EBNF

11

3 The Compiler Stages

In what follows, we will have a close look at the several components of the SASL-Compiler.
Subsection 3.3 then describes the actual compilation process that translates SASL programs
into the tree structure we introduced in the previous section. We will use the previously
shown figure as a roadmap for the next few sections:

frontend backend

compiler »| reduction
(subsection 3.3) (subsection 3.4)

lexer parser
(subsection 3.1) (subsection 3.2)

A special part of the compiler—you may think of some superordinate control, often called the
compiler driver—will initiate the four compiler stages in sequence and takes care of passing
the intermediate compilation results from one phase to the next. In Eiffel, the driver could
look similar to the following skeleton:

lex : LEXER

parse : PARSER

comp : COMPILER

sk : REDUCER

p : PARSETREE

G : COMBINATOR_GRAPH

!1lex.make(filename) ; —-— open the LEXER on the source
! lparse.make (lex) ; —-— initialize the parser

P := parse.parse; -- build the parse tree

!'! comp.make (p) ; -— initialize the compiler

c := comp.compile; -- compile the parse tree into a graph
'1sk.make(c); -- initialize the SK reducer
sk.reduce; -- start the graph reduction

Invoking the compiler. Users should give a command like

sasl (sasl-source-file)

12

to invoke the compiler from the shell. The compiler should print a short but helpful message
about its proper usage if the argument is missing or otherwise incorrect (e.g. (sasl-source-file)
is unreadable). The usage message, like any other warning or error message, should go to the
stderr (standard error) I/O channel.

The compiler will read the SASL source from the file named (sasl-source-file), compile it, and
then execute (i.e. reduce) the compiled program. The result of the reduction phase—a single
SASL value—is finally output to the stdout (standard output) channel. This completes the
compiler run.

3.1 Lexer

The lexer has the single task to open and read the source file. While it proceeds with reading
the file, it converts the stream of characters in a more coarse grained (not character-wise)
stream of symbols (token) which are then consumed by the parser.

Example: suppose the lexer detects the three character sequence ‘d e f’ in its input. The
lexer will then produce the single token <defr> as its output. The parser operates on tokens
only; it does not cope with single characters. Imagine we decide to replace the keyword def
by define later. This replacement affects the lexer only. As long as it produces the <def>
token when encountering ‘d e £ i n e’ we do not have to change a single bit of the parser.

Token classification. The following table suggests a classification of the tokens that need
to be generated by the lexer:

‘ token type ‘ example ‘

keyword | <defr, <ifp, <wherepr

identifier | <id:"answer'>, <id:"x">

constant | <num:42p, <bool:{ruer, dstring:"foo'>
symbol | <legr (<=), <plus> (+)

special | <eof> (end of input)

Some tokens carry additional information with them (such as the value of an integer constant)
which can be used by the parser when it comes to the construction of a parse tree for the
program. Note that if would be sufficient to map all integer constants to the token <num> if
we were only interested in syntax checking. However, this does not suffice if we want to build
a complete representation of the program.

Example: the lexer transforms the input ‘if 1 "= 0 then f else g’ into
<ifp <num: 1> <negr <num:0> <then> <id:"f'"p> <elser <id:"g">

The interface to the lexer will be as simple as a single routine that delivers the next token on
demand. The parser can look ahead into the source file by requesting more and more tokens
from the lexer. Fortunately, the SASL grammar is simple in the sense that at any time a
lookahead of just one token is sufficient for the parser to decide what to do next (see below).
The last token delivered by the lexer is <eofp.

13

3.2 Parser

The parsing phase requests tokens from the lexer (by calling the lexer’s lookahead routine)
on demand. The output of this phase is a parse tree, a tree structure that represents the
abstract syntax of the program. In this course, we will employ the recursive descent pars-
ing technique. This methods allows for the construction of parsers by translating the BNF
grammar’s production rules into code in an almost one-to-one manner. However, we need to
“massage” the grammar rules before we can deduce the parser from its grammar. We come
to this next.

Recursive descent parsers contain exactly one routine for each nonterminal the grammar
features (nonterminals are enclosed in (-) in Table 1). The routine body implements the
right-hand side (rhs) of the corresponding production rule:

e cach nonterminal symbol on the rhs is translated into a call to the corresponding parser
routine,

e cach terminal symbol on the rhs is compared to the next lookahead token. If the
comparison succeeds all is well and the parse goes on. On a failed match a syntax error
has been detected and the parser should give appropriate diagnostics about the failure.
In the code snippets below, the routine match takes care of these tasks.

This recipe leads to recursive calls of the parser routines in general, an observation from which
the technique’s name is deduced.

Example: the production rule
(condexpr)y — if (expr) then (condexpr) else (condexpr)

may be implemented as follows:

lex : LEXER

condexpr is

do
match (<if>) ;
expr;
match (<thenp) ;
condexpr;
match(<elser);
condexpr;

end —- condexpr

However, the complete production rule for (condexpr) reads

14

(condexpry — if (expr) then (condexpr) else (condexpr)
| (listexpr)

Which of the two alternatives seperated by | is the right one for the parser to follow? The
parser resolves this dilemma by looking at the lookahead token. We will transform the gram-
mar to ensure that it is sufficient to look only one token ahead to make the right decision
(see left factorization below). In our example, the parser has to check for the occurence of an
<aifp token. The corresponding Eiffel code might look like as follows:

condexpr is
do
if lex.lookahead = <if> then
match (<if>) ;
expr;
match(<then>) ;
condexpr;
match(delse>) ;
condexpr
else
listexpr
end
end —- condexpr

Note that in the previous example condexpr has been introduced as a routine, which, of
course, is not the full truth. Actually it has to be implemented as a function that returns a
parse tree representing the conditional expression.

Constructing parse trees. An important hint. Construct the parse tree using the explicit
function application convention (using @) introduced when we discussed currying. Understand
SASL’s built-in operators as ordinary functions. The expression 2 + 3 should be translated
into the parse tree

d
/ N\
e 3
/N

plus 2

and not—as you might be used to—into

plus

/ N\

15

Life in the compilation phase (see Subsection 3.3) is a lot easier if you follow this convention
when constructing the trees. Remember currying: how would you represent the partial appli-
cation plus 2 using the latter variant? Stick to the explicit function application convention.
A final example: translate if a then b else c into the tree

¢}

/ N\

(@] c
/ N\
@ b
7/ N\

cond a

i.e. transform the conditional expression into the function application cond a b c.

Elimination of left recursion. For production rules like the one below, we run into prob-
lems if we mechanically transform the rhs of the rule into a parser routine:

(funcdefs)y — def (def)
| (funcdefs) def (def)

Note that the latter alternative on the rhs starts with the nonterminal that is just to be
defined! This leads to endless recursive calls of the routine corresponding to (funcdefs) (verify
this by translating the production’s rhs into a parser routine body). We resolve this problem
by grammar rule rewriting. Rules of the general form (« denotes an arbitrary sequence of
(non)terminals, 3 denotes an arbitrary sequence of (non)terminals not starting with A)

are transformed into the equivalent form (e represents the empty word i.e. a zero character
sequence)

A — pA
A = aA

| e

You can verify that both variants allow the derivation of Sac« - - - . For the (funcdefs) example
we obtain

(funcdefs) — def (def) (funcdefs’)
(funcdefs’y — def (def) (funcdefs’)

| €

16

after the rewriting, which is readily implemented as

funcdefs is
do
match («def>) ;
def;
funcdefsl
end -- funcdefs

funcdefsl is
do
if lex.lookahead = <def> then
match («def>) ;
def;
funcdefsl
else
-- epsilon
end
end -- funcdefsl

The € alternative is always taken as the last resort.

Left factorization. The following grammar rule poses another difficulty:

(defs) — (def)
| (def) 5 (defs)

The parser is not able to make the decision for one of the two alternatives before he has seen
all the tokens normally consumed by the (def) routine (does a ; follow or not?). This is a
contradicition to our claim that it is sufficient to look ahead one token only at any time. Once
again we are able to equivalently transform the production into a more convenient form for
the parser. Rules of the general form

A = « ,31
| a B
are rewritten into
A = aA
A — ,31
| B2

before we implement the corresponding parser routines for the rhs.

17

Lookahead (first sets). We are facing a final complication with productions rules like
(factor) shown below. (factor) is neither left recursive nor a case for left factorization:

(factor) — (prefiz) (comb)
| (comb)

The problem lies in the fact that (prefiz) and (comb) are nonterminals. We cannot com-
pare nonterminals with the current lookahead token directly. We can solve the problem by

analyzing (prefiz):
(prefiry — +|-|not

The parser routine for (factor) should obviously choose the first alternative if the lookahead
token is -, +, or not. Otherwise the second alternative is the way to go. For this to work
correctly, it is crucial that we cannot derive strings starting with -, +, or not from (comb) as
well because our decision for one of the alternatives would be ambigious then.

To formalize the matter, parser construction theory associates every nonterminal with its
so-called first set which contains the first token of every token sequence that may derived
from that nonterminal. In our case we have first({prefiz)) = {<plus>, <minus>,<not>} and
first({prefiz)) N first({comb)) = (). The latter is the essential condition that lets us safely decide
for one alternative (spend a minute and check this condition on your own).

prefixop(t : TOKEN) : BOOLEAN is

do

-- check for a token in the set first((prefiz))

Result := t = <plus> or else t = <minus> or else t = <not>
end —- prefixop

factor is
do
if prefixop(lex.lookahead) then
prefix;
comb
else
comb
end
end -- factor

Operator precedence. The (opezpr) production rule represents SASL’s prefix and infix
operator application. Operator precedence (or priority), however, is not reflected by the
grammar in Table 1. We need a means of expressing operator precedence in the grammar
in order to generate parse trees that reflect the binding power of operators. Once again,
grammar transformations are the key to the problem.

18

For every level of precedence (see Section 2) we introduce a separate grammar rule.

Example: to implement the precedence levels 6 (* und /) and 5 (+ und -) we would transform
the original production

(opexpr) — (opexpr) (infiz) (operpr)
| (comb)

into the following rules (left recursion has been eliminated already)

(addy — (mul) (add’)
(add’) —>| (addop) (mul) (add’)

€

(mul) — (factor) (mul’)
(mul’) —>| (mulop) (factor) (mul’)

(addop)
(mulop)

- o+ |-

- x|/

(for (factor) see above). The method applies analogously for more than two precedence levels.
It is instructive to check that an expression like 2+3*4 is actually parsed as 2 + (3 * 4).

The next step in implementing the compiler should be clear by now: apply the several trans-
formations to the SASL grammar in Table 1 until it reaches a form that can be (rather easily)
converted into a recursive descent parser for it. Recursive descent parser tend to be quite
fast. However, for the sake of brevity, we entirely skipped error handling and recovery, so
that gigo strikes again here.

You should a find detailed treatment of the grammar transformation techniques in any book
on compiler construction—[ASU86] devotes several pages to this topic.

3.3 SASL Compilation and Combinators

Let us now turn to the core compilation phase—i.e., the backend—of our project. This
phase expects the parse tree constructed by the frontend as input. It will construct a graph
representation of the program to be passed to the graph reduction machine for execution (see
Subsection 3.4).

Removal of variables. If you have a closer look at the parse trees you will find that they
merely represent the application of built-in SASL functions to constant values. Inner nodes
are always labeled with @. In what follows, we will understand operators like +, :, and not

19

as built-in functions just like hd and t1. If this would be really all about it, we could pass
the parse tree to the reduction machine directly.

Additional elements of SASL programs are user-defined functions that have been introduced
by def resp. where, as well as variables used in function definitions. The compilation phase
will remove all occurences of user-defined names and variables. The reduction machine oper-
ates on variable-free programs only.

At first glance, the complete removal of variables may seem odd. The technique we will
explain in the following has been developed in David Turner’s paper [Tur79]. Chapter 16 of
[PJ87] is a useful reference, too.

Global def definitions. Let

def v = E1
def vy = E2 .
E

be a program with def definitions. The compiler undertakes the following two steps:

Step I. Construct the parse trees for Ey, Es, and E (this is the frontend’s task).

Step I1. Replace every occurence of v; (nodes labeled var (v;) in the parse tree) in Ey, Fs, or E
by a reference to the parse tree of F;. This may result in cycles if the definitions of the
v; are (mutual) recursive. We end up with a graph for E.

The graph for E is then passed on to the reduction machine. An example might clarify the
matter:

Step I:

)

N

var (vy)

20

Step II:

@

Ey

Note that we only deal with a single copy of the parse tree of E;. If there is more than one
occurence of vy in E, Ey, or Es, there will be the same number of references to E;. Our toy
example program does not reference the parse tree of Fs at all. Hence Fs is not part of the
final graph (since there are no references to it, a garbage-collected implementation language
like Eiffel will eventually free the memory occupied by Es).

The definitions of v; and vs were simple in the sense that they did not define functions with
parameters but simply introduced names for constant values (namely F; resp. Fy). Things
get a bit more complicated if we have to remove variables from definitions like

def fx=F

In this case we are left with the task of “freeing” E of all occurences of . We turn to this
now.

Combinators. FE is either built of

e constants c,

e variables var (v), or

e function applications f @ a
(we do not use the tree notation here to save space; @ associates to the left). In order to
compile def f x = E we apply the operation [z] (to be defined below; read [z]| as “abstract

z”) to E. Most importantly, we have f = [z]E, i.e. variable abstraction does not alter the
meaning of the program. [z]E is free of all occurences of z.

Let us define [z] for the three possible cases:

z]le = K@c
evar(e) = L ifo=uv
K @ var(v) otherwise.

[](f @a) = Se[z]fefz]a

21

The three symbols S, K, and I are special built-in functions of the reduction machine. We
will refer to them as combinators, a term which stems from the theory of the lambda calculus.
They are defined as follows:

Sefegezr = f@zrQ(g90x)
Koezoy = x
Iezx = =z

S is a mnemonic for substitution, K represents a function being constant with respect to its
second argument (think of the german word konstant), while I is the identity.

Example:
def incr z =1 + z

The frontend generates the following parse tree for incr’s body:

Q

/N

@ var (x)

/N

plus 1

The compiler abstracts z away and therefore computes
[z]((plus @ 1) @ var(z))
which we show step-wise here:

[z]((plus @ 1) @ var(z))
= S @ [z](plus @ 1) @ [z]var(z)
Se(Saezjpluse(z]l)eI
= Se(Se(Keplus)e(Ket1)) el

Global definitions of the form
def f z1-- -z, = E

(i.e. definitions of function with more than one parameter) are transformed in n steps:
[21](- - ([en—1]([zn] B)) - --)
The inner abstractions have to be performed first.

During abstraction, we treat built-in functions (like plus in this example, but also S, K, and
I) as constants. This is no surprise if you remember that functions are ordinary values in

SASL.

When the abstraction step has been completed, remaining occurences of var(v) are replaced
by references to their definitions as explained under Step II above.

22

We shall spend the time to convince ourselves that the combinator expression—the compiled
program—actually computes 1 + z when applied to the argument z, i.e. we will check that
the combinator expression implements incr. This involves the manual step-wise reduction of
the combinator expression, a task which the reduction machine will carry out later. As a rule
of thumb we will evaluate the left-most function first (we emulate the so-called normal order
reduction). Details are to be found in Subsection 3.4.

Let us evaluate (the combinator reduced is shown below the = sign; only the grey part of the
expression is affected by the next reduction step):

Se(Se(Keplus)@ (Ke1)elox

Se(Ke@eplus)@ (K@e1)@zxz @ (I@x)

wn|l

3 Koeplusezr 0 (K@e1@zx)e@(IQx)
= pluse(Ke@e1ez)e (Iox)

= plus@i1@(I@

~ Plus (Iew)

n plus@1 @<z

Because plus is a built-in function, the reduction machine is able to directly apply plus to
the two arguments given. The value of plus 1 z is then returned as the result.

Local where definitions. Since a where introduces local (potentially function-valued) vari-
ables, abstraction plus the fact that functions are first-class citizens in SASL immediately
provides us with a way to compile where definitions away.

Let us split the matter in two cases: wheres that contain exactly one definition, i.e. are of
the general form
E1 where f = E2

and where expressions featuring a list (separated by ;) of more than one definition. We will
dicuss the latter form later on.

The compilation rule for the above expression simply is
([f]E1) @ By

We turn E; into a function of f (by abstracting f from Ej) and apply this new function to
E5, which results in replacing every occurence of f in F; with Es. Note that this replacement
of expressions is just what where definitions are all about.

If f is function-valued, i.e. if the program has the form
Fy where f x = FE»

we proceed by combining the methods we learned so far: we abstract « from FE, in order to
compile the local function and additionally remove occurences of f from E;. We then have:

([F1E1) @ ([z]E)

23

We generalize the where definition once more: how to compile a recursive local definition?
In the definition of f we refer to f itself as in:

FEy where fz=...f...

In order to be able to detect this case, the compiler needs a means to check for the use of a
certain variable name (here f) in an expression. A simple parse tree traversal should do the
job.

At this point we employ a new combinator, the fizxpoint combinator Y, whose definition is
Yo/ = fe(Yef)

Note that Y’s definition itself is recursive (it realizes the repeated application of f) and
we would have to expand Y an infinite number of times to implement it properly. The
reduction machine will implement Y by rewriting it into a cycle in the program’s graph. See
Subsection 3.4 on this issue.

All we need to know during the compilation phase is that the above expression involving local
recursion has to be rewritten into

([F1£1) @ (Y e [f]([x] E2))

We abstract f from F; (as usual) and Eo, making Es a function of f. The fixpoint combinator
then realizes the repeated application of this function to itself which implements the recursion.
This completes the case of a where definition introducing a single name only.

Multiple local where definitions. The most general form of a where expression, namely a
where followed by a list of definitions separated by semicolons, demands special consideration.
Consider:
Fy where fx = Fo;
gy = E3
The compilation method will be similar to the single definition case but we have to employ yet
another combinator, U, which we will define below. Do not be alarmed by the “complexity” of
the compilation rule, its structure is rather simple. The above expression has to be compiled
into
U e ([f](U e [¢](K e E,))) e [[z]E;,[y]Es]

Remember that [z,y] is a shorthand for : @ z @ (: @ y @ nil).

If the definition of f and/or g is recursive (this includes expression like

FE, where fz = ...g..
gy = ...f...

i.e. mutual recursion) we proceed just like in the case of single where definitions: we use Y
to express recursion. The compiled expression then is

Ue ([fl(Ue[g](KeE))e(Ye(Ue([f[(Ue[g(K e [[z]E,[y]E31)))))

24

The combinator U is a mnemonic for uncurrying. It is defined (and thus implemented in the
reduction machine) by the equation

Uefez = fe(hd@z) @ (tlQz)

U realizes the application of f to two arguments (the head and tail of the list z) by applying
f to (hd z) first. The result is then applied to (t1 z).

The following subsection will sketch the corresponding reduction machine which completes
the implementation of the backend. The reduction machine constitutes the SASL runtime if
you like. It will realize the five combinators S, K, I, Y, and U as well as the SASL built-in
functions.

3.4 SK Reduction Machine

The SK reduction machine (which draws its name from the two combinators) constitutes the
runtime system of our SASL project. It acts like a processor entirely realized in software.
The machine is remarkable because it does not operate on a machine code representation but
rather executes the compiled program (the graph) by transforming the program itself.

It is reasonable to think of a simplifier transforming and simplyfying the graph built from
combinators, built-in functions, and constants. The simplification process goes on until the
graph has been reduced to a single constant value (of type num, bool, string, or list). This
value is then printed to stdout—which completes the compiler run.

In what follows we will use the terms “evaluation”, “simplification”, and “reduction” as
synonyms. This subsection presents the simplification rules used for the graph reduction
process. The rules implement the defining equations for the combinators S, K, I, Y, and U.
There will be additional rules for the built-in functions (like +, cond, or t1).

Lazy evaluation. The evaluation of function applications in SASL happens lazyily. This
is in contrast to the vast majority of programming languages whose evaluation semantics are
known to be strict. What does lazy evaluation mean?

A programming language with strict semantics evaluates the arguments of a function call
before the function is actually applied. An example might help here (using Eiffel syntax):

feature first(x,y : T) : T is
-- this implements K, did you notice?
do
Result := x
end -- first

first(1+2, 3x4)

25

Before we actually apply first, we evaluate the arguments 1+2 and 3*4 and then pass them
to first, i.e. execute the call first(3,12). Half of the argument evaluation effort is for
nothing, of course, because first simply throws y’s value away. The following example is
even worse. Eiffel (read: any strict language) is not able to complete the evaluation at all:

feature bomb(n : INTEGER) : INTEGER is
do
Result := bomb(n+1)
end -- bomb

first (42, bomb(0))

The evaluation of the second argument does not terminate—first will never be called.

SASL is lazy when it comes to the evaluation of arguments to a function call: every argument
is passed as-is to the function. The general principle is: perform reductions only when they
are absolutely necessary to compute the result. For example, in order to evaluate z + y it
is indispensable to reduce z and y to numbers before we can caryy out the addition (+ is
said to be strict in © and y. The function first is neither strict in its first nor in its second
argument. SASL computes the correct results for both examples:

def first x y = x
def bomb n = bomb (n+1).

[first 1+2 3%4, first 42 (bomb 0)]

This program reduces to [3,42]. It is interesting to note that first returns its first argument
1+2 unevaluated. The addition is not done before the result has to be actually printed.

To conlcude, it is the point of lazy evaluation to delay the reduction of function arguments
as long as possible'. Arguments are passed as-is instead. If we return to the graphical
representation of function application,

/ N\

we reduce the left branch before we reduce right branch (if we have to do so at all). Literature
refers to this as normal order reduction. Strict languages evaluate the right branch first
(applicative order reduction). Examples of lazy languages are Haskell, Miranda?, or Lazy ML.
Algol’s call-by-name implements a similar but more inefficient evaluation strategy. More on
that later.

!Lazy functional programmers would add the requirement that arguments are evaluated at most once.
2Miranda is a trademark of Research Software Ltd.

26

Control of reduction. The principal operation of the reduction machine is controlled by
the so-called left ancestors stack. The following algorithm implements normal order reduction
of our compiled programs with the help of this stack.

e When execution starts, a pointer to the (graph representation of the) complete compiled
program is the only element—the stack top—on the stack.

e As long as the operation at the stack top is a function application, i.e. a @-node, we
push the left ancestor of that @-node onto the stack. The stack derives its name from
this step.

e At some point in time the stack top will contain a combinator or another built-in
function. If so, we apply the graph reduction rule (see below) that corresponds to the
stack top. The arguments to the function call are easily accessed: a pointer to the n-th
argument may be found at the n-th position above the stack top. The function and its
arguments are popped from the stack and replaced by the reduction result.

e After a reduction step has been completed, the machine continues its operation by
examining the stack top again: if an @-node is encountered, push the left ancestor, else
reduce.

The machine halts if the stack top contains a “printable” object, i.e. a value of type num,
bool, string, or a list value constructed by a pair node (pair nodes are introduced on
the evaluation of the : list constructor and are used to represent list values as trees; see
:’s reduction rule below). Since SASL’s evaluation is lazy it might well be that some or all
elements of a list value have not yet been reduced, i.e. the left (head) and/or right (tail)
ancestor of a pair constructor still is a function application. Thus, in order to print the
list value, the reduction machine has to call itself recursively on these elements: it is not
uncommon for a list-valued SASL program to complete its evaluation in very few reduction
steps. However, the “real work” starts when the routine has to reduce the single list elements
to be able to print their value.

Let us shed some light on this. Suppose the following global definitions (length 1 determines
the lenght of its list argument 1, whilemap f 1 applies function f to every element of the list
1):

if 1 = nil then O
else 1+length (tl 1)

def length 1

if 1 = nil then nil
else f x : map f xs
where x = hd 1;
xs = tl 1.

def map f 1

A call like length ["a","b","c"] eventually leads to the evaluation of the expression 1 +
(14 (1 4+0)) = 3 whose size is linear in the size of input list. The result can be printed after

27

the summation took place. The reduction of map f [1,2], however, produces the following
intermediate result after only a few reduction steps—no matter how long the argument list
may be! We abbreviate the combinator expressions for map and £ by map resp. f here:

pair
_— ™~
@ (@]
/\ VRN
f o 0 e
/ \ / \ / \
hd [1,2] map f tl [1,2]

The top pair node represents the list-valued result produced by our call to map and the
reduction algorithm starts to print the result. However, to succeed in this there still remains
the reduction work for the head of the list, £ (hd [1,2]), as well as its tail, map f (t1
[1,2]) to be done: the print routine calls the reduction machine on both.

A reduction step. To further illustrate how reduction proceeds, let us re-enact a single
reduction step. Let f, g, and x denote arbitrary compiled expressions. The combinator
expression S @ f @ g @ x eventually leads to the following configuration of the left ancestors
stack after we have walked down the “spine” of @-nodes (stacks grow downwards):

/@\x
N
/@

9

RN
S f

/
./
P
S

The combinator S at the stack top instructs us to apply its corresponding reduction rule
Sefegez=f0z0(g0@x)

This leads to the following combinator graph resp. stack content:
¢
//I N,
7\

— f T

28

The stack top now contains the root node of f’s combinator representation. It determines
how the reduction machine will proceed.

Note that, after the reduction, the code for z has not been copied but is shared by f and
g. If z has to be evaluated at all we have to do so at most once. The sharing of common
code (or the detection of common subexpressions) is one crucial optimization the efficiency
of the reduction machine relies on. Normal order reduction and sharing together make SASL
a fully lazy language. Optimizations of this kind are equivalence-preserving because SASL is
side-effect free (aka pure).

Indirection Nodes. To get the full benefit from this self-optimzing behaviour of the re-
duction machine one has to be careful when rewriting the combinator graph.

Let us trace the reduction of a K combinator. The stack configuration is depicted below:

Q
— 7,
— RN

K K T

Suppose that the dashed arrow in (a) below is an additional second reference to = (this may
happen when an S combinator has been reduced before, for example):

¢
/N 0
@ Yy
VRN P .- I =
K x

(a) (b) (c)

Following the reduction rule for K, i.e. K @ z @ y = z, we obtain the situation (b) in which
two copies of z exist. If we reduce one of the copies, the other copy does not benefit from this
effort and laziness is lost. In situations like these we therefore introduce indirection nodes
(see (c)) that allow to preserve the sharing property. The identity combinator I is well suited
for this task:

Kexey=I0z

still is a correct reduction. Indirection nodes affect the graph transformation only. The left
ancestors stack may of course point to x directly:

29

0

RN

I T

A

Every time a reference to I @ z is encountered, the machine may elide the indirection by
replacing it with a reference to z. After the last reference to the indirection has been removed
it will be reclaimed by the garbage collector (if present).

Reduction rules. There remains nothing to be done but giving the rules for the reduction
of the combinators as well as SASL’s built-in functions—which are nothing else but rather
specialized combinators. If a reduction involves the generation of indirection nodes, they are
explicitly shown in the following table.

‘ combinator ‘ reduction ‘

¢ ¢

©/\x \

/N /
¢ g < g

RN RN
S f

0

¢
@/ \y /©\
/\ I x

K T

Q

RN

(@)

Table 2: Reduction rules

30

combinator reduction
Q
/ AN
¢ ¢
7\ /
@ z ¢ tl
7\ 7\
U f f Q
7\
hd z
Q
7\ e
/©\ / I/ \x+y
plus T
Q 0
7\ sy
Q Y I pair
:/ \x x/ \y
@
7N\
Q Y ¢
@/ \x I/ \:v
7\
cond true
¢
7N\
Q Y 6]
7\ 7\
¢ T I Yy
N
cond false

Table 2: Reduction rules

31

Notes.

e Realize that “tying the knot” in the reduction of Y actually implements the purpose of
Y, i.e. the repeated application of a function to itself:

Yef=fe(Yef)=fe(fe(Yef)=--=fe(fe(fa(-):))

e The implementation of the built-in operators is completely analogous to the rule for
plus. Since these operators are strict you have to call the reduction machine recursively
on their arguments: you cannot add two expressions until they have been actually
reduced to numbers. cond is strict in its first argument only.

e A pair node represents a list 2::y that has been built by the : (cons) list constructor.
The built-in functions hd and t1 reduce their argument to a pair—but not any further—
and return x resp. y; £ and y themselves are not reduced.

4 Optimizing SK Compilation

The SK compilation and reduction scheme as stated here is simple and elegant, the compiled
epxressions however tend to be quite large, resulting in space-consuming combinator graphs
and high reduction times.

Fortunately, it is as easy to optimize the reduction process. The optimizations discussed
in short below are not necessarily needed to get the compiler working, but they render the
system a lot more usable.

SK optimzation involves the introduction of a series of new combinators, namely B, B*, C,
C’, and S’. We briefly motivate the introducion of B here and then give the optimization
rewrite rules. For a full review of the optimization process, please refer to Chapter 16 of
[PJ87].

Suppose we have to compile the function definition def neg x = not x. Variable abstraction
produces the combinator equivalent S @ (K @ not) @ I for neg. If you have a closer look at
the reduction of the expression neg z, you will notice that in the second step K discards its
second argument x:

@ ¢} @ @
/\ < /N = / \ - / N\
e =z S 6] (6] K not (@] I not =
/\ /\ /\ /\
e I e x 1 T I T
/ \ / \
S @ K not
/ \
K not

32

Passing z to K in this situation is wasted effort. In general, any combinator expression of
the form S @ (K @ f) @ g leads to such an unnecessary reduction step.

The new combinator B, defined by
Befegoer=f0(g@x)

avoids passing x to f and therefore saves a reduction step in a situation like above. A suitable
SK optimizer will include an optimzation rule

Se(Kef)eg — Baefeg

thus replacing a combination of S and K by B if possible. The new combinator code for neg
now is B @ not @ I. Compared to the original combinator expression, we get code that is of
smaller size and additionally reducable in fewer steps.

The introduction of B*, C, C’, and S’ pursues very similar goals. We conclude this section
by giving their definitions as well as the optimization rules.

Additional combinators.

Befegaox
Cefegox
S’@c@ fe@g@x
B*ecefegex

fe(gex)
fezxeg
c@(fex)@(gQx)
ce(fe(geux)

C’ec@efe@g@xr = c@(fe@x)Qg
Optimization rules.
Se(Kef)e(Keg) — Koae(faeg)
Se(Kef)el — f
Se(Kefle(Begeh) — B*efegah
Se(Kef)eg — Befaeg
SeBefeg e(Keh) — Cefegeh
Sef)e(Keg — Cefaeg
SeBefeg eh — SQ@fQgQh

You may expect significant speed-ups if you com
tion machine.

References

pletely implement these rules in your reduc-

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers—Principles, Tech-
niques, and Tools. Addison Wesley, 1986.

[Mey92] Betrand Meyer. Fiffel - The Language. Object-Oriented Series. Prentice-Hall, 1992.

33

[PJ87] Simon L. Peyton Jones. The Implementation of Functional Programming Languages.
International Series in Computer Science. Prentice-Hall, 1987.

[Tur79] David A. Turner. A New Implementation Technique for Applicative Languages.
Software—Practice and Ezperience, 9:31-49, 1979.

A An SASL Prelude

Some programming tasks are so common and repeating when dealing with functional lan-
guages that it is a good habit to provide the compiler with a library of predefined functions,
often referred to as prelude. A well-designed prelude can significantly increase the user-
friendliness and usefulness of the SASL system. Traditionally, the prelude is loaded at the
compiler’s startup so that user’s may refer to names defined in the prelude when they write
their own programs.

Below we list some of the functions that deserve a place in a decent SASL prelude. This
includes the higher-order list processing functions map, filter, fold, append, reverse, stan-
dard functions like id or comp (o or function composition), several iterators, aggregation
functions like sum and product, but also an insertion sort and finally curried versions of the
arithmetic and relational operators (plus, leq, and friends). There is no limit.

The prelude functions may additionally serve as further SASL program examples as well as
test cases for the student’s compiler.

def id x = x
def until p £ x = if p x then x else until p £ (f x)
def comp f g x = £ (g x)

def map £ 1 = if 1=nil then nil

else f x:map f xs where x = hd 1;
xs = tl 1
def fold m z 1 = if 1=nil then z
else m x (fold m z xs) where x = hd 1;
xs = tl 1

def append 11 12 = if 11=nil then 12
else x:append xs 12 where x
Xs =

I
& B
H
e
[RI

def reverse 1 = if 1=nil then nil
else append (reverse (tl 1)) [hd 1]

34

def filter p 1 = if 1=nil then nil
else if p x then x:filter p xs
else filter p xs where x
Xs

hd 1;
tl 1

def sort p 1 = if 1=nil then nil
else insert p (hd 1) (sort p (tl 1))
where
insert pp e 11 = if 11=nil then [e]
else
if pp e (hd 11) then e:11
else
(hd 11):insert pp e (tl 11)

if n<=0 then 1
else if 1=nil then nil
else drop (n-1) (t1 1)

def drop n 1

def take n

=
1}

if n=0 or 1=nil then nil
else x:take (n-1) xs where x = hd 1;
xs = tl 1

def at n 1 = if n=0 then hd 1
else at (n-1) (t1 1)

def length 1 = if 1=nil then 0
else 1+length (t1l 1)

def null 1 = 1=nil
def init 1 = if xs=nil then nil
else x:init xs where x = hd 1;
xs = tl 1
def iterate f x = x : iterate f (f x)
def repeat x = xs where xs=x:Xs
def cycle xs = xsl where xsl=append xs xsl
def splitAt n 1 = if n<=0 then []:1

else if 1=nil then []:[]
else ((hd 1):xsl):xs2

where
xs = splitAt (n-1) (t1 1);
xsl = hd xs;
xs2 = tl xs

35

def takeWhile p 1 = if 1=nil then nil
else if p x then x:takeWhile p xs
else nil
where
x = hd 1;
xs = tl 1

def sum fold plus O
def product = fold mul 1

def plus x y = xty
def mul x y = XXy
def div x y = x/y
def div2 y x = x/y
def minus x y = x-y
def minus2 y x = x-y
def 1t x y = x<y
def leq x y = x<=y
def eq x y = xX=y
def neq x y = x"=y
def geq x y = x>=y
def gt x y = x>y

The SASL input file containing the prelude may be downloaded from the web homepage of
this course:

http://www.informatik.uni-konstanz.de/"“grust/SASL/

B The Transformed SASL Grammar

The SASL grammar presented here is equivalent to the one given in Table 1 in the sense
that both grammars accept the same language. This version of the grammar has been left-
factorized, it is free of left recursion, and accounts for operator precedence. It should be a
straightforward task to construct its LL(1) recursive descent parser. See Section 3.2 on these
issues.

€

(system) —>| Efunc;lefs) . {expr)
expr
(funcdefs)y — def (def) (funcdefs’)
(funcdefs’) —>| def (def) (funcdefs’)
(defs) — (def) (defs’)
(defs’) —>| ; (def) (defs’)

Table 3: A massaged SASL grammar

36

(defy — (name) (abstraction)
(abstraction) — = (expr)
| (name) (abstraction)
(expry — (condexpr) (expr’)
(expr’) — where (defs) (expr’)
| e
(condexpry — if (expr) then (condexpr) else (condexpr)
| (listezpr)
(listexpr) — (opexpr) (listexpr’)
(listexpr’y — : (expr)
| e
(opexpry — (conjunct) (opexpr’)
(opexpr’y — or (conjunct) (opexpr’)
| e
(conjuncty — (compar) (conjunct’)
(conjunct’y — and (compar) {conjunct’)
| e
(compar) — (add) (compar’)
(compar’y — (relop) (add) {compar’)
| e
(addy — (mul) (add’)
(add’y — (addop) (mul) (add’)
| e
(muly — (factor) (mul’)
(muly — (mulop) (factor) (mul’)
| e
(factor) — (prefix) (comb)
| (comb)
(comb)y — (simple) (comb’)
(comb’y — (simple) (comb’)
| e
(simple) — (name)
| (builtin)
| (constant)
| C{epr))
(name) — (id)
(builtin) — hd
| tl
(constant) — (num)
| (bool)
| (string)
| mnil
| (list)
(listy — [(list’)
(listhy —
|

]
(listelems)]
Table 3: A massaged SASL grammar

37

(listelems) — (expr) (listelems’)
(listelems”y — , (expr) (listelems’)
| e
(prefiry — - |+|not
(addop)y — +| -
(mulop) — %]/
(relopy — =|"=|<|>]|<=|>=
(id) — [a—zA—Z_]Jla—zA—Z_0—9]*
(num) — [0—9]"
(bool) — true | false
(string) — "(ASCII character)*"

Table 3: A massaged SASL grammar

38

	Title
	1 Introduction
	1.1 Implementation Language
	1.2 Running the Course
	1.3 Time Schedule
	1.4 Organization of this Document

	2 The Functional Programing Language SASL
	2.1 Data Types
	2.2 Expressions
	2.3 Global Definitions (def)
	2.4 Local Definitions (where)
	2.5 Predefined Functions
	2.6 An SASL Grammar in EBNF

	3 The Compiler Stages
	3.1 Lexer
	3.2 Parser
	3.3 SASL Compilation and Combinators
	3.4 SK Reduction Machine

	4 Optimizing SK Compilation
	References
	A An SASL Prelude
	B The Transformed SASL Grammar

	Text4: First publ. as: Konstanzer Schriften in Mathematik und Informatik. Nr. 43/1997

