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Abstract

In this paper data-driven algorithms for �tting SEMIFAR models (Beran,

1999) are proposed. The algorithms combine the data-driven estimation of

the nonparametric trend and maximum likelihood estimation of the param-

eters. For selecting the bandwidth, the proposal of Beran and Feng (1999)

based on the iterative plug-in idea (Gasser et al., 1991) is used. Asymptotic

properties of the proposed algorithms are investigated. A large simulation

study illustrates the practical performance of the methods.

Key Words: semiparametric models, long-range dependence, fractional ARIMA,

antipersistence, nonparametric regression, bandwidth selection.

1 Introduction

The so-called SEMIFAR (semiparametric fractional autoregressive) model, intro-

duced by Beran (1999), provides a uni�ed approach that allows for simultaneous

modelling of deterministic trends, stochastic trends and stationary short-memory,

long-memory and antipersistent components. Beran (1999) and Beran and Ocker

(1999a) investigate the basic properties of this model. The usefulness of SEMIFAR

models in practice, especially for analyzing �nancial time series, is shown in Beran

and Ocker (1999a, b). Estimation of the SEMIFAR model requires a data-driven

algorithm. Such an algorithm was originally proposed in Beran (1999) and Beran

and Ocker (1999a). Beran and Feng (1999) propose a general bandwidth selector

for nonparametric regression with short-memory, long-memory and antipersistence.

In this paper, several data-driven algorithms for estimating the SEMIFAR model

are proposed using the bandwidth selector in Beran and Feng (1999). Asymptotic
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properties of the methods are investigated. The practical performance is investigated

in an extended simulation study.

A SEMIFAR model (Beran, 1999) is a Gaussian process Yi with an existing

smallest integer m 2 f0; 1g such that

�(B)(1� B)�f(1� B)mYi � g(ti)g = �i; (1)

where ti = (i=n), � 2 (�0:5; 0:5), g is a smooth function on [0; 1], B is the backshift

operator, �(x) = 1 � Pp
j=1 �jx

j is a polynomial with roots outside the unit circle

and �i (i = :::;�1; 0; 1; 2; :::) are iid zero mean normal with var (�i) = �2� . Where, the

fractional di�erence (1�B)� introduced by Granger and Joyeux (1980) and Hosking

(1981) is de�ned by

(1� B)� =
1X
k=0

�k(�)B
k (2)

with

�k(�) = (�1)k �(� + 1)

�(k + 1)�(� � k + 1)
: (3)

Model (1) allows us to analyze stationary (m = 0) or di�erence-stationary (m = 1)

processes with or without deterministic trends, as well as with short-range depen-

dence (� = 0), long-range dependence (� > 0) and antipersistence (� < 0). See

Beran (1999) and Beran and Ocker (1999a, b) for detailed remarks on di�erent

special cases of model (1).

The paper is organized as follows. Section 2 summarizes the basic estimation

methods. Bandwidth selection for estimating ĝ is discussed in section 3. Section 4

proposes the data-driven algorithms for �tting SEMIFAR models and investigates

their asymptotic properties. Results of the simulation study are summarized in

section 5. Detailed results of this simulation may be found in a discussion paper

(Beran and Feng, 2000) as a supplement of the current paper. Section 6 contains

some �nal remarks. Proofs of the results are listed in the appendix.
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2 Estimation of the SEMIFAR methods

The estimation of SEMIFAR models consists of two parts: nonparametric estimation

of the trend g and estimation of the parameters m, �, p and �1, ..., �p. In this

paper the trend g will be estimated by a kernel method (Hall and Hart, 1990 and

Beran, 1999). The parameters will be estimated based on the approximate maximum

likelihood approach proposed by Beran (1995).

2.1 Estimation of the trend

Under de�nition (1) either Yi (m = 0) or the �rst di�erence BYi = Yi�Yi�1 (m = 1)

is a nonparametric regression model with errors having quit di�erent dependent

structures. Denote by Ui = Yi for m = 0 or Ui = Yi � Yi�1 for m = 1 (in this case

de�ne U1 := 0), and de�ne Xi = Ui � g(ti). Then we have

Ui = g(ti) +Xi; (4)

whereXi is a stationary fractional autoregressive process. Equation (4) is a nonpara-

metric regression model with a time series error process whose long-term dependence

structure depends on the value of �. The spectral density of Xi in (4) has the form

f(�) � cf j�j�� (as �! 0) (5)

with � = 2�, where cf is the value of the spectral density of the AR(p) process

Zi := (1�B)�Xi at the origin. Hence, Xi has long-memory if � > 0. In this case the

autocovariances 
(k) of Xi are proportional to k
2��1 (as k !1) and hence are non-

summable. If � = 0, Xi has short-memory and spectral density f(�) converges to a

positive constant cf at the origin with cf = (2�)�1
P
1

k=�1 
(k). If � < 0, then the

spectral density f(�) of Xi converges to zero at the origin. This is sometimes called

\antipersistence". In this case we have
P
1

k=�1 
(k) = 0. For details on time series

with long-memory see Beran (1994) and references therein. All of the discussions in

this paper are valid for the whole range � 2 (�0:5; 0:5).
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The kernel estimator as proposed by Hall and Hart (1990) and Beran (1999) will

be used to estimate the trend g. Assume that m = 0, then for a given bandwidth

h > 0 and a second order kernel function K, the kernel estimator of g is de�ned by

ĝ(t; h) =
1

nh

nX
i=1

K(
t� ti

h
)Yi: (6)

A similar estimator can be de�ned for m = 1 replacing Yi by Ui = Yi � Yi�1.

Asymptotic properties of ĝ are discussed by Beran (1999). Results for � � 0 may

also be found in Hall and Hart (1990). Let � > 0 be a small positive constant,

which is introduced to avoid the so-called boundary e�ect of the kernel estimator.

De�ne

I(g
00

) =

Z 1��

�
[g

00

(t)]2dt (7)

and

I(K) =

Z 1

�1
x2K(x)dx: (8)

Under the assumptions of Theorem 1 in Beran (1999) we have the following asymp-

totic formulas for the bias, variance and mean integrated squared error (MISE) of

ĝ.

(i) Bias:

E[ĝ(t)� g(t)] = h2
g

00

(t)I(K)

2
+ o(h2) (9)

uniformly in � < t < 1��;

(ii) Variance:

var(ĝ(t)) =
1

(nh)
1�2�

[V + o(1)] (10)

uniformly in � < t < 1��, where V is a constant depending on cf and the

kernel function;

(iii) MISE: The mean integrated squared error in [�; 1��] is given by

E

(Z 1��

�
[ĝ(t)� g(t)]2dt

)
= h4

I(g
00

)I2(K)

4
+ (nh)2��1V (1� 2�)

+ o(max(h4; (nh)2��1)): (11)

Formulas for V (with � 2 (�0:5; 0:5)) may be found in Beran and Feng (1999).
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2.2 Estimation of the parameters

The parameters of the SEMIFAR models, including m and �, may be estimated by

maximum likelihood (Beran, 1995, 1999). Note that, since m is an integer, m and �

correspond to one parameter d = m+ � only, through m = [d+ 0:5] and � = d�m,

where [�] denotes the integer part. Let �0 = (�2�;0; d
0; �01; :::; �

0
p)
T = (�2�;0; �

0)T be the

true unknown parameter vector in (1) where d0 = m0 + �0, �0:5 < �0 < 0:5 and

m0 2 f0; 1g. For a constant trend function g = �, maximum likelihood estimation of

�0, based on the autoregressive representation of the process, is considered in Beran

(1995). Beran (1999) extended this idea to estimate �0 in the SEMIFAR model with

a general nonparametric trend function g. Note that

�(B)(1� B)�
0f(1�B)m

0

Yi � g(ti)g =
1X
j=0

aj(�
0)Bjfcj(�0)Yi � g(ti)g

=
1X
j=0

aj(�
0)fcj(�0)Yi�j � g(ti�j)g;

where the coe�cients aj and ajcj are obtained by matching the powers of B. Hence,

Yi admits an in�nite autoregressive representation

1X
j=0

aj(�
0)fcj(�0)Yi�j � g(ti�j)g = �i: (12)

Let h be a bandwidth such that h ! 0 and nh ! 1 as n ! 1, and let ĝ(ti) =

ĝ(ti;m) be the estimated trend function obtained from (4). Consider now �i as a

function of �. For a chosen value of � = (�2� ; m+ �; �1; :::; �p)
T = (��; �)

T, denote by

ei(�) =
i�m�2X
j=0

aj(�)fcj(�)Yi�j � ĝ(ti�j;m)g (13)

the (approximate) residuals and by ri(�) = ei(�)=
p
�1 the standardized residuals.

Assuming that f�i(�0)g are independent zero mean normal with variance �2� , an

approximate maximum likelihood estimate of �0 is obtained by maximizing the ap-

proximate log-likelihood

l(Yi; :::; Yn; �) = �n

2
log 2� � n

2
log �2� �

1

2
n�1

nX
i=m+2

r2i (14)

with respect to � and hence by solving the equations

_l(Yi; :::; Yn; �) = 0; (15)
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where _l is the vector of partial derivatives with respect to �j (j = 1; :::; p+2). More

explicitly, �̂ is obtained by minimizing

Sn(�) =
1

n

nX
i=m+2

e2i (�) (16)

with respect to � and setting

�̂2� =
1

n

nX
i=m+2

e2i (�̂): (17)

For the case where g is known to be constant, it follows from Beran (1995) that,

if the constant g = � is estimated consistently, then (as n ! 1) �̂ converges in

probability to �0, and
p
n(�̂ � �0) converges in distribution to a normal random

variable with zero mean vector and covariance matrix equal to the inverse Fisher-

Information matrix. Here, both, the fractional di�erencing parameter � and the

integer di�erencing parameter m are estimated from the data. Also, the asymptotic

covariance matrix does not depend on m. This result also holds for SEMIFAR

models. If g is estimated consistently, then
p
n(�̂ � �0) converges in distribution to

a normal random variable with zero mean vector and covariance matrix

� = 2D�1; (18)

where

Dij = (2�)�1
(Z �

��

@

@�i
log f(x)

@

@�j
log f(x)dx

)
j�=�0

�

(19)

with �0
�
= (�2�;0; �

0; �01; :::; �
0
p)
T (see Theorem 2 in Beran, 1999). This result can be

extended to the case where the innovations �i are not normal and satisfy suitable

moment conditions.

These results are given under the assumption that the order p = p0 of the autore-

gressive polynomial in (1) is known. This cannot be assumed in practice. Thus, p0

should be selected by applying a suitable model choice criterion. In this paper p0 will

be selected by BIC (Bayesian information criterion) (Schwarz, 1978, Akaike, 1979).

Consistency properties of the BIC were shown in Beran et al. (1998) for FARIMA

(fractional autoregressive integrated moving average) models without trend. For an

extension to SEMIFAR models see Beran (1999). Note that in Algorithms B and C

described in section 4, m0 will also be selected by BIC to reduce computing time.
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3 Bandwidth selection

Data-driven bandwidth selection is a crucial problem in the practical use of non-

parametric regression. Recent proposals for bandwidth selection in nonparametric

regression with independent or short-range dependent data may be found e.g. in

M�uller (1985), Gasser et al. (1991), H�ardle et al. (1992), Herrmann et al. (1992),

Fan and Gijbels (1995), Ruppert et al. (1995) and Heiler and Feng (1998).

A bandwidth selector for nonparametric regression with long-range dependence

based on the iterative plug-in idea (Gasser et al., 1991) is proposed by Ray and

Tsay (1997). Beran (1999), Beran and Ocker (1999a) and Beran and Feng (1999)

proposed a bandwidth selector for data with several dependence structures (long-

memory, short-memory and antipersistence) using a variant of the iterative plug-in

approach. A special case of the proposal in Beran and Feng (1999) with k = 2 and

l = 4 will be discussed here in detail.

The optimal bandwidth, which minimizes the MISE, will be denoted by hM.

The so-called asymptotically optimal bandwidth, hA, that minimizes the asymptotic

MISE, is given by

hA = C � n(2��1)=(5�2�) (20)

with

C =

 
(1� 2�)V (1� 2�)

I(g00)I2(K)

!1=(5�2�)
: (21)

Here it is assumed that I(g00) > 0. When the uniform kernel is used, the constant

C in (20) has the explicit form

C =

 
9(1� 2�)�(�)(1� 2�)cf

I(g00)

!1=(5�2�)

(22)

with cf as de�ned before and

�(�) =
22��(1� 2�) sin(��)

�(2� + 1)
(23)

for all �0:5 < � < 0:5 (see Beran, 1999).

Plug-in estimators for hM use formula (20), replacing the unknown constants �,

V as well as I(g00) by some consistent estimators. Note that the estimation of V is
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equivalent to that of cf . Following section 2.2, both, � and V may be estimated root

n consistently. Hence the key problem is to estimate I(g00). This will be discussed

in the following. Let ĝ00(t; h2) be a kernel estimator for g00 with a kernel K2 of order

4 (see e.g. Gasser and M�uller, 1984) and a bandwidth h2, which is di�erent from

the bandwidth h for estimating g. And let I(g00) be estimated as follows

Î(g00) = n�1
n�[n�]X
i=[n�]

fĝ00(ti; h2)g2: (24)

Properties of Î(g00) are investigated by Beran and Feng (1999). Under the assump-

tion of Proposition 1 in Beran and Feng (1999) we have

E[Î(g00)� I(g00)]
:
= h22

I(K2)

12

Z 1��

�
g00(t)g(4)(t)dt+ (nh2)

2��1h�42 V (25)

and

var [Î(g00)]
:
= o[(nh2)

(4��2)h�82 ] +O(n2��1): (26)

The mean squared error (MSE) of Î(g00) is dominated by the squared bias

MSEfÎ(g00)g :
=

(
h22
I(K2)

12

Z 1��

�
g00(t)g(4)(t)dt + (nh2)

2��1h�42 V

)2

:

The optimal bandwidth for estimating I(g00) which minimizes the MSE is ho2 =

O(n(2��1)=(7�2�)).

Following the iterative plug-in idea of Gasser et al. (1991), in the jth iteration,

I(g00) is estimated with a bandwidth h2;j, which is obtained from the bandwidth for

estimating g in the j-1th iteration, hj�1 say, with a so-called in
ation method. This

idea can be adapted to data with di�erent dependence structures (see Herrmann

et al., 1992, Ray and Tsay, 1997 and Beran and Ocker, 1999a). An iterative plug-

in bandwidth selector is determined by a starting bandwidth h0 and the in
ation

method with an in
ation factor �. In general, the process should begin with a very

small h0. Gasser et al. (1991) proposed the use of h0 = n�1. For data with long-

memory, h0 should ful�ll the condition h0 ! 0, nh0 ! 1 as n ! 1, since we

have already to estimate � and V from the residuals at the �rst iteration. Hence

Ray and Tsay (1997) used an h0, which is selected following Herrmann et al. (1992)
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by assuming short-memory. In this paper we propose the use of h0 = n�� with

1
3
� � < 1. Such an h0 satis�es the above condition and it is at the same time small

enough. In fact we have h0 = o(hA) for all � 2 (�0:5; 0:5). Here we used h0 = n�5=7,

which is of oder o(h2A) for all � 2 (�0:5; 0:5).

There are di�erent ways to obtain h2;j from hj�1. In Gasser et al. (1991),

Herrmann et al. (1992) and Ray and Tsay (1997) the formula h2;j = c � hj�1n�

is used. This is called multiplicative in
ation method (MIM). Beran (1999) and

Beran and Ocker (1999a) propose to use the formula h2;j = c � (hj�1)�. We call

this exponential in
ation method (EIM). For each in
ation method one has also to

choose the in
ation factor �. The iterative plug-in algorithm is motivated by �xed

point search (see Lemma 1 in the appendix). So � should be chosen in a way that

c � hAn� = ho2 by the MIM, or c � (hA)� = ho2 by the EIM, respectively. The optimal

choice for the MIM is � = (2 � 4�)=[(5 � 2�)(7 � 2�)] (see Herrmann and Gasser,

1994 for the case with � = 0). For the EIM �o = (5� 2�)=(7� 2�) should be used.

The choice of c does not a�ect the rate of convergence of ĥ. We will simply put

c = 1.

There are two other reasonable choices of �, namely the naive one �n that opti-

mizes ĝ00 itself and the variance optimal one �v for which the square of second term

in (25) is of the order O(n2��1). The required bandwidths to estimate ĝ00 in these

two cases are hn2 = O(n(2��1)=(9�2�)) and hv2 = O(n(2��1)=(2(5�2�))), respectively. For

the MIM we have �n = (4�8�)=[(5�2�)(9�2�)] and �v = (1�2�)=(10�4�). They

are �n = (5 � 2�)=(9� 2�) and �v =
1
2
for the EIM. The rate of convergence of ĥ

with �n lies between the two with �o and �v. Ray and Tsay (1997) used the MIM

with �v, while the EIM with �n was used by Beran (1999) and Beran and Ocker

(1999a) (see Algorithm A in the next section).

Denote by j0 the number of iterations required for obtaining a satisfactory band-

width selector. j0 can be calculated following the idea in Gasser et al. (1991) and

Herrmann and Gasser (1994), if h0, the in
ation method and � are given. See Be-

ran and Feng (1999) for detailed discussion. We propose the following bandwidth

selector for the kernel estimator ĝ with independent data, long-memory data or

antipersistent data. Here it is assumed that m = 0.
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i) Start with the bandwidth h0 = n�� with 1
3
� � < 1 and set j = 1.

ii) Estimate g using hj�1 and let X̂i = Yi� ĝ(ti). Estimate � and V from X̂i with

the method proposed in section 2.2.

iii) Set h2;j = (hj�1)
� with 1

2
� � < 1 and improve hj�1 by

hj =

 
1� 2�̂

�2
(1� 2�)V̂

Î(g00(t; h2;j))

!1=(5�2�̂)
� n(2�̂�1)=(5�2�̂): (27)

vi) Increase j by 1 and repeat steps ii) and iii) until convergence is reached or

until a given number of iterations has been done.

The rate of convergence of ĥ depends on the in
ation method (and �). It also

depends on the di�erence between hA and hM. Results on the latter may be found

e.g. in Gasser et al. (1991), Herrmann and Gasser (1994) and Ray and Tsay

(1997). In this paper we will simply assume that hA � hM = op(Î(g
00) � I(g00)),

i.e. the di�erence between hA and hM is negligible. (For iid data, it can be shown

that this relationship holds for kernel estimator, if g is at least fourth continuously

di�erentiable.) Under this condition and conditions as given in Proposition 1 in

Beran and Feng (1999), we have

i) For � = �v =
1
2

ĥ = hM
n
1 +O(n(2��1)=(5�2�)) +Op(n

(2��1)=2) +Op(n
�1=2)

o
: (28)

ii) For � = �n = (5� 2�)=(9� 2�)

ĥ = hM
n
1 +Op(n

2(2��1)=(9�2�))
o
: (29)

iii) For � = �o = (5� 2�)=(7� 2�)

ĥ = hM
n
1 +Op(n

2(2��1)=(7�2�))
o
: (30)

Proof of these results will be omitted to save place. If � = �o is used, then the rate

of convergence of ĥ is n2(2��1)=(7�2�) . It is n�2=7 for iid data and is the same as for

the proposal in Ruppert et al. (1995).
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4 Data-driven algorithms

This section deals with data-driven algorithms for estimating the SEMIFAR models.

The symbols for the true unknown parameters as introduced in section 2.2 will be

used. The original data-driven algorithm (Beran, 1999 and Beran and Ocker, 1999a)

is an adaptation of Beran (1995) by replacing �̂ by the kernel estimator ĝ. This

algorithm makes use of the fact that d is the only additional parameter, besides

the autoregressive parameters, so that a systematic search with respect to d can be

made. Let �0 be a small positive number. The original algorithm (with some minor

changes) is de�ned as follows (see Beran and Ocker, 1999a):

Algorithm A:

Step 1: De�ne L = maximal order of �(B) that will be tried, and a su�ciently �ne

grid G 2 (�0:5; 1:5) n f0:5g. Then, for each p 2 f0; 1; :::; Lg, carry out steps 2

through 4.

Step 2: For each d 2 G, set m = [d + 0:5], � = d � m, and Ui(m) = (1 � B)mYi,

and carry out step 3.

Step 3: Carry out the following iteration:

Step 3a: Let h0 = �0min(n(2��1)=(5�2�); 0:5) and set j = 1.

Step 3b: Calculate ĝ(ti;m) using the bandwidth hj�1. Set X̂i = Ui(m) �
ĝ(ti;m).

Step 3c: Set ~ei(d) =
Pi�1

j=0 �j(�)X̂i�j, where the coe�cients �j are de�ned by

(3).

Step 3d: Estimate the autoregressive parameters �1; :::; �p from ~ei(d) and ob-

tain the estimates �̂2� = �̂2� (d; j) and ĉf = ĉf(j). Estimation of the param-

eters can be done, for instance, by using the S-PLUS function ar.burg or

arima.mle. If p = 0, set �̂2� equal to n
�1P ~e2i (d) and ĉf equal to �̂

2
� =(2�).

Step 3e: Set h2;j = (hj�1)
� with � = (5� 2�)=(9� 2�), improve hj�1 by

hj =

 
1� 2�

�2
(1� 2�)V̂

Î(g00(t; h2;j))

!1=(5�2�)

� n(2��1)=(5�2�) : (31)
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Step 3f: Increase j by one and repeat steps 3b to 3e four times. This yields

for each d 2 G separately, the ultimate value of �̂2� (d), as a function of d.

Step 4: De�ne d̂ to be the value of d for which �̂2� (d) is minimal. This together

with the corresponding estimates of the AR parameters, yields an informa-

tion criterion, e.g. BIC(p) = n log �̂2� (p) + p logn, as a function of p and the

corresponding values of �̂ and ĝ for the given order p.

Step 5: Select the order p that minimizes BIC(p). This yields the �nal estimates of

�0 and g.

Here �0 is used so that the starting bandwidth is not too large. We propose the use

of �0 = 2� = 0:2. This means that, at the �rst iteration, at most 20% observations

are used for estimating g at each point and ti 2 [�; 1��] are all interior points. Note
that by this algorithm we have trial values of � and m beforehand. The proposed

number of iterations at step 3 is due to the following fact. If � = �0, then h0 is of

the optimal order so that h1 is already consistent. In the second iteration the a�ect

of h0 will be clearly reduced. The other two iterations are proposed to improve the

�nite sample property of ĥ. If � 6= �0, the selected bandwidth in any iteration would

in general not be optimal. In this case more iterations are not necessary. Lemma 1

in the appendix shows insight into AlgA.

The estimated parameters, the selected bandwidth ĥ as well as the estimated

trend ĝ(t), t 2 [0; 1], by Algorithm A (AlgA) are all consistent.

Theorem 1. Let the assumptions of Theorem 3 in Beran (1999) and Proposition 1

in Beran and Feng (1999) hold. Then we have

a) the results for �̂ as given in theorem 2 in Beran (1999) hold,

b)

ĥ = hMf1 +Op(n
2(2�0�1)=(9�2�0))g; (32)

c) and

ĝ(t) = g(t)f1 + Op(n
2(2�0�1)=(5�2�0))g (33)

for t 2 [�; 1��].
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The rate of convergence of the selected bandwidth given in (32) follows from (29).

A sketched proof of Theorem 1 is given in the appendix. The computing time of

AlgA is very long, especially when the grid is �ne, since the iterative procedure has

to be carried out for each trial value d 2 G. In the following we will propose an

Algorithm B (AlgB), which is much faster than AlgA, where all parameters, except

for p and m, are estimated from the residuals by means of the S-PLUS function

arima.fracdi�.

The steps of AlgB are de�ned as follows:

Algorithm B:

Step 1: To obtain a bandwidth for selecting m:

Step 1a: Put m = 1. Calculate Ui(m). Estimate g from Ui(m) with the

starting bandwidth h0 = n�1=3. Calculate the residuals.

Step 1b: For each p = 0; 1; :::; L, where L is as de�ned in AlgA, estimate a

FARIMAmodel from the residuals using the S-PLUS function arima.fracdi�,

where the order of the MA component is put to be zero.

Step 1c: Select the best AR order p following the BIC. Now we obtain estimates

of all parameters except for m0.

Step 1d: Calculate the bandwidth h1 following the procedure in section 3 with

� = (5� 2�̂)=(7� 2�̂).

Step 1e: Put L = p̂0.

Step 2: Estimate m0:

Step 2a: Carry out steps 1a to 1c with h1 for m = 0 and m = 1 separately.

Step 2b: Select the best pair of m and p following the BIC. Now we obtain an

estimation of all parameters, especially m̂0.

Step 2c: Put m = m̂0.

Step 3: Further iterations: Carry out further iterations with L de�ned in step 1e,

m = m̂0 and a new starting bandwidth h2 := n�5=7 until convergence is reached

or a given number of iterations has been done.

13



Here m = 1 is used at the �rst iteration in order that the input of the S-PLUS

function arima.fracdi� is stationary. m0 is selected at the second iteration. Af-

terwards, m̂0 is used. The estimate m̂0 is consistent, since h1 ! 0, nh1 ! 1 as

n ! 1. For p̂0 selected at the �rst iteration we have p̂0
P! p0 in probability, if

m0 = 1. If m0 = 0, then p̂0 tends to the maximal order L in probability, since now

the error process in the �rst di�erence, ~Xi = Xi�Xi�1, follows an ARMA(p, 1), i.e.

an AR(1) model. By selecting m0 just one time and by putting L = p̂0 at the end

of step 1 much computing time will be saved. We have

Theorem 2. Under the assumptions of Theorem 1 the same results as given in

Theorem 1 hold for the estimates obtained by AlgB, except for that here

ĥ = hMf1 +Op(n
2(2�0�1)=(7�2�0))g; (34)

which follows from (30).

The proof of Theorem 2 is straightforward and is hence omitted.

The iteration at step 1 is carried out so that h1 adapts automatically to the

structure of g and the variation in the data. However, this starting bandwidth is

a little large, which will sometimes result in m̂0 = 0 in the case when m0 = 1 (see

Beran and Feng, 2000). This motivates us to propose the following algorithm by

using a smaller h0 at the beginning and carrying out more iterations at step 1:

Algorithm C.

Let h0 = n�1=3 at step 1 by AlgB be replaced by h0 = n�5=7. Carry out similarly

the iteration 6 times with the assumption m = 1. The bandwidth h6 is then

used at step 2 to select m0. Carry out step 3 as in AlgB with h7 selected at

step 2, if m̂0 = 1, or with h7 = n�5=7 otherwise.

The basic idea behind Algorithm C (AlgC) is as follows. If m0 = 1, then h6

obtained at the end of step 1 is already a good estimate of hM. The estimation of

m using h6 will have high accuracy. In the case m0 = 0, h6 will be a bandwidth

adapted to the structure of g and the variation in the data. So that it can be used

for selecting m0. The computing time of AlgC is slightly longer than for AlgB. It is

clear that the estimates obtained by these two algorithms have the same asymptotic

properties.
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5 Simulation

5.1 Description of the simulation study

To show the practical performance of the data-driven SEMIFAR models, a large

simulation has been done. The following three trend functions are used:

g1(t) = 2 tan(5(t� 0:5));

g2(t) = 4 sin2((t� 0:5)�) and

g3(t) = 2 sin(5(t� 0:5)�)

for t 2 [0; 1] (see Figures 1f through 3f). The range of these trends is kept the

same. These trends are chosen as \orthogonal" as possible so that the practical

performance of the proposed algorithms in di�erent cases may be found. The case

without trend (g0 :� 0) is also included as a comparison.

50 parameter combinations with m0 2 f0; 1g, �0 2 f�0:4;�0:2; 0; 0:2; 0:4g, �01 2
f�0:7;�0:3; 0; 0:3; 0:7g were selected for the simulation. Here we have p0 = 0 for

�01 = 0 and p0 = 1 otherwise. The error process is standardized so that var (Xi) = 1

in all cases. 200 replications were done for each parameter combination with two

sample sizes n = 500 and n = 1000. The simulations were carried out using AlgB

and AlgC, separately. The maximal iterative number was equal to 20. Simulation

using AlgA has not been done due to long computing time.

5.2 Summary of results

A detailed analysis of the simulation results is given in a preprint (Beran and Feng,

2000) as a supplement of the current paper, where more detailed description on

this simulation may also be found. In the following only a brief summary on the

simulation with n = 500 using AlgB will be given. Tables 1 and 2 give frequencies

in 200 replications, when m0 or p0 is correctly selected, for m0 = 0 and m0 = 1

separately. Here the results for g0 are also given, since m̂0 and p̂0 are still root n

consistent for the case without trend. Tables 3 and 4 give the mean and standard
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deviation of ĥ for m0 = 0 and m0 = 1, separately, together with hA calculated from

(20). Note that hA is the same for a pair of cases with the same parameters except

for m0. These results are only given for g1 through g3, since ĥ is not consistent for

g0.

The short-memory component of the SEMIFAR model depends on the selection

of m0 and p0. The selection of m0 plays a more important role that of p0, since it

determines, whether the �rst di�erence should be used in the further calculation.

From Tables 1 and 2 we see that m0 is much easy to select. In most cases, m̂0 is

always (or almost always) correct. Estimation of m0 appears di�cult for m0 = 0

with � = �0:2 and �01 = 0:7. And, m̂0 for g0 with m0 = 1 is not satisfactory. This

means that now it is di�cult to decide, if Yi is stationary or not. For this case AlgC

works clearly better than AlgB (see Beran and Feng, 200).

The order p0 is more di�cult to select than m0. There are mainly two reasons

for this. Firstly, di�erent autoregressive models may have quite similar �nite sample

performance. Secondly, in some cases, it is di�cult to separate autocorrelation from

a complex trend like g3, when n is not large enough. Hence, p̂0 works worst for g3.

The rate of correctly estimated p0 may be very low, even when m̂0 is whole correct.

Note that model (b) in Beran et al. (1998) is the same as the case without trend

used in this paper. Comparing the results here and those in Table 1 in Beran et al.

(1998), we can �nd that the rate of correctly estimated p0 is similar. In our case,

however, estimation of p0 is more di�cult, because knowledge of a constant trend is

not assumed.

Results in Tables 3 and 4 show that the proposed bandwidth selector works well

in all of the cases, althoughm0 and p0 have also to be estimated simultaneously. The

rate of convergence of ĥ depends only on � not on �01. However, the �nite sample

performance of ĥ depends strongly on both parameters. In general, the larger �01

and/or � is the larger the variation in ĥ. The performance of ĥ also depends on

the trend function. The selection of the bandwidth by g1 is more di�cult than that

for g2 or g3. Estimation of m0 and p0 also a�ects the accuracy of ĥ. For instance,

if m0 = 0 and m̂0 = 1, ĥ is clearly larger than the optimal one (see the case with

�0 = �0:2 and �01 = 0:7 in Table 3). In the case m0 = 1 with m̂0 = 0, ĥ is practically
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zero, when there is a trend in the data (see Beran and Feng, 2000). ĥ performs quite

quite the same way for m0 = 0 and m0 = 1. Figures 1 through 3 show the estimated

kernel densities of log(ĥ=hA) from the 200 replications for each case with m0 = 0,

where densities for the same �01 with di�erent �'s are put together. The same results

for cases with m0 = 1 are shown in Figures 4 to 6.

6 Final remarks

In this paper it is shown that the data-driven SEMIFAR models work well for

simultaneous modelling of trend, short-memory as well as long-memory. By checking

the detailed simulation results in Beran and Feng (2000) we can �nd: 1. In general,

AlgB works better for m0 = 0, while AlgC works better for m0 = 1. This becomes

more clear by checking the results for the cases g3 with m0 = 0 and g0 with m0 = 1.

2. The di�erence between AlgB and AlgC depends on the trend. For g1 and g2, their

performance is quite similar. The simulation results also show that, the estimates

of the short- and long-memory parameters depend on each other. When the long-

memory parameter is over estimated, the short-memory parameter will often be

under estimated, and vice versa (see Beran and Feng, 2000).
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Appendix: Proofs

The following Lemma will be needed for the proof of Theorem 1. It provides a

deeper understanding for the process of AlgA in the case with when m = m0.
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Lemma 1. Assume that the trial value of m (in AlgA) is equal to m0
. And assume

that the other conditions of Theorem 1 hold. Then for each trial value � there exists

an order (1� 2�)=(5� 2�) � �� <
5
9
such that

i) hj = O(hj�1), if hj�1 = O(n���),

ii) hj = o(hj�1), if hj�1 = O(n���+d�) with 0 < d� < ��,

iii) hj�1 = o(hj), if hj�1 = O(n����d�) with 0 < d� < 1� ��.

Proof of Lemma 1:

i) In the following we will call a bandwidth hf(�) = O(n���) a stable bandwidth

for the iterative plug-in procedure with the trial value �. For given �0, de�ne �f =

maxf(4�0 � 1)=2;�0:5g. It is clear that �f < �0. Let ~� = (1 � 2�)=(9 � 2�). For

�f < � < 0:5, we have h2;1 = h
(5�2�)=(9�2�)
0 = O(n�~�) with 0 < ~� < (1�2�0)=(5�2�0).

In this case Î is consistent. Now, we have h1 = O(h0) and hj = hj�1(1 + o(1)) for

j = 2; ::: . In this case �� = (1� 2�)=(5� 2�).

The case � � �f can only occur if �f > �0:5 (i.e. �0 > 0). Thus suppose that

�f > �0:5. Then we can also obtain that �� = (1 � 2�)=(5 � 2�) for � = �f . But

now, Î is a constant rather than a consistent estimate. It can be shown that the

required �� is �� = 2(�0� �)(9� 2�)=f(5� 2�)(4+2(�0� �))g for �0:5 < � < �f . In

this case �� > (1� 2�)=(5� 2�), i.e. the stable bandwidth is now of a smaller order

than n(2��1)=(5�2�) . Now, �� is monotone increasing in �0 and monotone decreasing

in � with the upper bound 5
9
.

ii) and iii) can be shown by straightforward calculations using the results in

Proposition 1 in Beran and Feng (1999). 2

Remark. Note in particular that, for � = �0, ��0 = (1 � 2�0)=(5 � 2�0). In this

case, i) of Lemma 1 may be written as hj = hM(1 + o(1)), for j large enough. Now,

if hM = o(hj�1), hj�1 will be de
ated. If hj�1 = o(hM), hj�1 will be in
ated. This

procedure will be iterative carried out until ĥ = hM(1 + o(1)) is reached. This is

the key point behind the iterative plug-in bandwidth selection rule. It is true for

any iterative plug-in bandwidth selector with known �0 or a consistent estimate
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of it (see Herrmann and Gasser, 1994 for a detailed analysis in the case of iid

data). This shows that ĥ selected by any iterative plug-in method has the property

ĥ = hM(1 + o(1)), which does not depend on h0 and the in
ation method, although

the rate of convergence of ĥ does.

A sketched proof of Theorem 1:

a). Note that, for each �, the bandwidth selected at the end of step 3 of AlgA is

ĥ(�) = h4. Following the proof of Theorem 2 in Beran (1999) it is enough to show

that

i) for m = m0, h4 ! 0, nh4 !1, and

ii) for m 6= m0, nh4 !1

as n!1. For m 6= m0, the condition h4 ! 0 as n !1 is unnecessary, although

it can be shown that it holds.

Condition i) follows immediately from Lemma 1.

ii). In the case m0 = 1 with m = 0 we have Î = O(n2) and hence, for each j,

hj � O(n�2=(5�2�)n(2��1)=(5�2�)) = O(n(2��3)=(5�2�)). We have nh4 !1. In the case

m0 = 0 with m = 1, it may be shown that Î will be asymptotically dominated by

the bias part of order h22;j. Hence, asymptotically, hj�1 will always be enlarged, i.e.

hj�1 = o(hj). The required condition holds. Further proof of part a) follows from

the proof of Theorem 2 in Beran (1999).

The proof of part b) is similar to that of Theorem 1 in Beran and Feng (1999).

Part c) can be obtained following straightforward calculation by inserting the opti-

mal bandwidth in (9) and (10). The proof of Theorem 1 is �nished. 2
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Table 1: Frequencies in 200 replications when m0 or p0 is correctly selected (for

simulation using AlgB with n = 500 and m0 = 0).

g1 g2 g3 g0

d
0

�
0
1 m

0
p0 m

0
p0 m

0
p0 m

0
p0

-0.4 -0.7 200 194 200 184 200 173 200 192

-0.4 -0.3 200 194 200 188 200 187 200 190

-0.4 0 200 197 200 199 200 195 200 193

-0.4 0.3 200 170 200 141 200 117 200 183

-0.4 0.7 200 101 200 101 200 33 200 119

-0.2 -0.7 200 190 200 196 200 195 200 149

-0.2 -0.3 200 160 200 181 200 181 200 113

-0.2 0 200 179 200 187 200 198 200 182

-0.2 0.3 200 185 200 175 200 175 200 183

-0.2 0.7 102 19 110 14 112 21 110 23

0 -0.7 200 159 200 180 200 162 200 132

0 -0.3 200 111 200 120 200 81 200 115

0 0 200 169 200 186 200 179 200 176

0 0.3 200 155 200 138 200 86 200 157

0 0.7 192 191 182 180 158 153 185 180

0.2 -0.7 200 166 200 172 200 94 200 175

0.2 -0.3 200 131 200 129 200 75 200 139

0.2 0 200 172 200 180 200 167 200 179

0.2 0.3 158 19 159 22 153 9 161 19

0.2 0.7 197 195 199 198 187 186 199 198

0.4 -0.7 196 195 196 196 200 183 196 190

0.4 -0.3 185 148 193 127 200 52 191 137

0.4 0 196 199 197 198 199 198 195 198

0.4 0.3 150 150 152 151 56 49 152 150

0.4 0.7 187 199 184 195 186 188 185 196
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Table 2: Frequencies in 200 replications when m0 or p0 is correctly selected (for

simulation using AlgB with n = 500 and m0 = 1).

g1 g2 g3 g0

d
0

�
0
1 m

0
p0 m

0
p0 m

0
p0 m

0
p0

0.6 -0.7 200 193 200 187 200 200 165 190

0.6 -0.3 200 195 200 196 200 192 91 135

0.6 0 200 199 200 198 200 192 191 194

0.6 0.3 200 59 200 6 220 110 15 187

0.6 0.7 200 188 200 179 200 9 183 191

0.8 -0.7 200 199 200 194 200 200 187 187

0.8 -0.3 199 163 200 186 200 186 50 11

0.8 0 200 197 200 200 200 196 187 187

0.8 0.3 197 160 200 34 200 33 38 191

0.8 0.7 199 189 200 194 200 81 158 158

1 -0.7 200 196 200 192 200 200 175 170

1 -0.3 200 129 200 135 200 96 45 25

1 0 200 193 200 199 200 169 178 176

1 0.3 199 167 200 149 200 7 172 185

1 0.7 200 171 200 197 199 141 132 131

1.2 -0.7 200 180 200 196 200 200 171 157

1.2 -0.3 200 123 200 107 200 39 80 55

1.2 0 200 185 200 198 200 200 182 176

1.2 0.3 200 184 200 182 200 42 190 188

1.2 0.7 200 156 200 167 200 191 102 96

1.4 -0.7 200 158 200 190 200 200 176 133

1.4 -0.3 200 108 200 109 200 33 146 106

1.4 0 200 178 200 187 200 200 180 155

1.4 0.3 200 190 200 195 200 9 179 172

1.4 0.7 200 140 200 138 200 185 136 87
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Table 3: Mean and standard deviation of ĥ (using AlgB with n = 500, m0 = 0).

g1 g2 g3

d
0

�
0
1 hA Mean SD hA Mean SD hA Mean SD

-0.4 -0.7 0.053 0.050 0.0039 0.039 0.040 0.0015 0.021 0.021 0.0009

-0.4 -0.3 0.065 0.061 0.0048 0.048 0.051 0.0013 0.026 0.027 0.0008

-0.4 0 0.075 0.068 0.0059 0.055 0.058 0.0017 0.029 0.031 0.0007

-0.4 0.3 0.086 0.081 0.0094 0.063 0.066 0.0036 0.034 0.035 0.0014

-0.4 0.7 0.114 0.139 0.0563 0.084 0.106 0.0214 0.045 0.055 0.0063

-0.2 -0.7 0.059 0.054 0.0046 0.043 0.044 0.0018 0.022 0.022 0.0009

-0.2 -0.3 0.074 0.066 0.0074 0.053 0.055 0.0023 0.027 0.028 0.0011

-0.2 0 0.084 0.072 0.0080 0.061 0.062 0.0038 0.031 0.032 0.0010

-0.2 0.3 0.097 0.089 0.0145 0.070 0.073 0.0064 0.035 0.039 0.0023

-0.2 0.7 0.125 0.176 0.1076 0.090 0.131 0.0365 0.046 0.082 0.0210

0 -0.7 0.075 0.066 0.0083 0.053 0.054 0.0037 0.025 0.025 0.0013

0 -0.3 0.094 0.079 0.0126 0.066 0.065 0.0076 0.032 0.032 0.0016

0 0 0.106 0.091 0.0144 0.075 0.076 0.0089 0.036 0.038 0.0029

0 0.3 0.120 0.120 0.0493 0.084 0.095 0.0208 0.041 0.050 0.0080

0 0.7 0.150 0.128 0.0267 0.106 0.105 0.0147 0.051 0.061 0.0113

0.2 -0.7 0.102 0.086 0.0164 0.069 0.068 0.0089 0.031 0.036 0.0339

0.2 -0.3 0.126 0.104 0.0226 0.086 0.083 0.0139 0.039 0.042 0.0258

0.2 0 0.140 0.125 0.0385 0.095 0.096 0.0137 0.043 0.047 0.0056

0.2 0.3 0.154 0.208 0.1157 0.105 0.134 0.0311 0.047 0.074 0.0184

0.2 0.7 0.180 0.179 0.0757 0.123 0.125 0.0193 0.055 0.065 0.0101

0.4 -0.7 0.141 0.118 0.0423 0.093 0.090 0.0141 0.039 0.066 0.0942

0.4 -0.3 0.164 0.139 0.0666 0.107 0.100 0.0222 0.045 0.066 0.1029

0.4 0 0.173 0.185 0.0913 0.114 0.122 0.0200 0.048 0.057 0.0453

0.4 0.3 0.181 0.105 0.0293 0.119 0.092 0.0157 0.050 0.069 0.0341

0.4 0.7 0.193 0.197 0.0923 0.126 0.133 0.0250 0.053 0.064 0.0140
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Table 4: Mean and standard deviation of ĥ (using AlgB with n = 500, m0 = 1).

g1 g2 g3

d
0

�
0
1 hA Mean SD hA Mean SD hA Mean SD

0.6 -0.7 0.053 0.050 0.0036 0.039 0.041 0.0013 0.021 0.021 0.0008

0.6 -0.3 0.065 0.062 0.0060 0.048 0.051 0.0013 0.026 0.027 0.0007

0.6 0 0.075 0.068 0.0057 0.055 0.058 0.0019 0.029 0.031 0.0005

0.6 0.3 0.086 0.079 0.0106 0.063 0.065 0.0045 0.034 0.035 0.0013

0.6 0.7 0.114 0.108 0.0221 0.084 0.092 0.0159 0.045 0.055 0.0054

0.8 -0.7 0.059 0.053 0.0042 0.043 0.044 0.0019 0.022 0.023 0.0009

0.8 -0.3 0.074 0.065 0.0066 0.053 0.055 0.0023 0.027 0.029 0.0009

0.8 0 0.084 0.070 0.0073 0.061 0.061 0.0033 0.031 0.032 0.0008

0.8 0.3 0.097 0.091 0.0139 0.070 0.077 0.0078 0.035 0.040 0.0025

0.8 0.7 0.125 0.109 0.0215 0.090 0.095 0.0142 0.046 0.064 0.0140

1 -0.7 0.075 0.061 0.0064 0.053 0.052 0.0029 0.025 0.025 0.0010

1 -0.3 0.094 0.073 0.0112 0.066 0.062 0.0060 0.032 0.031 0.0012

1 0 0.106 0.084 0.0124 0.075 0.073 0.0069 0.036 0.037 0.0021

1 0.3 0.120 0.110 0.0268 0.084 0.092 0.0186 0.041 0.051 0.0047

1 0.7 0.150 0.136 0.0355 0.106 0.107 0.0162 0.051 0.063 0.0102

1.2 -0.7 0.102 0.082 0.0167 0.069 0.066 0.0075 0.031 0.029 0.0020

1.2 -0.3 0.126 0.100 0.0470 0.086 0.076 0.0121 0.039 0.035 0.0031

1.2 0 0.140 0.123 0.0323 0.095 0.094 0.0121 0.043 0.045 0.0036

1.2 0.3 0.154 0.124 0.0547 0.105 0.099 0.0238 0.047 0.063 0.0107

1.2 0.7 0.180 0.193 0.0883 0.123 0.140 0.0633 0.055 0.063 0.0067

1.4 -0.7 0.141 0.133 0.0707 0.093 0.088 0.0140 0.039 0.038 0.0041

1.4 -0.3 0.164 0.150 0.0820 0.107 0.108 0.0636 0.045 0.039 0.0058

1.4 0 0.173 0.196 0.1036 0.114 0.124 0.0508 0.048 0.051 0.0063

1.4 0.3 0.181 0.120 0.0562 0.119 0.096 0.0439 0.050 0.062 0.0054

1.4 0.7 0.193 0.230 0.1311 0.126 0.155 0.0949 0.053 0.059 0.0095

25



-1.0 -0.5 0.0 0.5 1.0

0
1

2
3

4
5

Figure 1a: phi1=-0.7, all delta’s
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Figure 1b: phi1=-0.3, all delta’s
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Figure 1c: phi1= 0.0, all delta’s
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Figure 1d: phi1= 0.3, all delta’s
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Figure 1e: phi1= 0.7, all delta’s
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Figure 1f: The trend function g1

t

Figure 1: Kernel densities of log(ĥ=hA) selected by AlgB for g1 withm
0 = 0, n = 500.

Lines in Figures 1a trough 1e are for �01 = �0:7 to �01 = 0:7 with all �0's | solid

line: �0 = �0:4, points: �0 = �0:2, short dashes: �0 = 0, middle dashes: �0 = 0:2

and long dashes: �0 = 0:4. The trend function g1 is shown in Figure 1f.
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Figure 2a: phi1=-0.7, all delta’s
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Figure 2b: phi1=-0.3, all delta’s
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Figure 2c: phi1= 0.0, all delta’s
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Figure 2d: phi1= 0.3, all delta’s
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Figure 2e: phi1= 0.7, all delta’s
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Figure 2f: The trend function g2

t

Figure 2: The same results as given in Figure 1 but for the trend function g2.
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Figure 3a: phi1=-0.7, all delta’s
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Figure 3b: phi1=-0.3, all delta’s
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Figure 3c: phi1= 0.0, all delta’s
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Figure 3d: phi1= 0.3, all delta’s
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Figure 3e: phi1= 0.7, all delta’s
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Figure 3f: The trend function g3

t

Figure 3: The same results as given in Figure 1 but for the trend function g3.
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Figure 4a: phi1=-0.7, all delta’s
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Figure 4b: phi1=-0.3, all delta’s
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Figure 4c: phi1= 0.0, all delta’s
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Figure 4d: phi1= 0.3, all delta’s
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Figure 4e: phi1= 0.7, all delta’s
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Figure 4: The same results as given in Figures 1a through 1e but for m0 = 1.
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Figure 5a: phi1=-0.7, all delta’s
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Figure 5b: phi1=-0.3, all delta’s
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Figure 5c: phi1= 0.0, all delta’s
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Figure 5d: phi1= 0.3, all delta’s
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Figure 5e: phi1= 0.7, all delta’s
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Figure 5: The same results as given in Figures 2a through 2e but for m0 = 1.
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Figure 6a: phi1=-0.7, all delta’s
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Figure 6b: phi1=-0.3, all delta’s
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Figure 6c: phi1= 0.0, all delta’s
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Figure 6d: phi1= 0.3, all delta’s
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Figure 6e: phi1= 0.7, all delta’s
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Figure 6: The same results as given in Figures 3a through 3e but for m0 = 1.
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