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ABSTRACT 

The eXtensible Markup Language (XML) is more than a unified data exchange and storage format. We suggest the 
exploitation of XML and look at it as a fine-granular node tree, which is grown up through a sequence of user 
modifications. The Representational State Transfer (REST) is the perfect candidate to expose XML resources as well as 
their full revision and modification history to the World Wide Web. Extending the idea of XML and REST along the 
natural modification-driven temporal dimension breeds something, which is scalable, robust, simple, and yet extensible 
enough to effectively enrich striving applications such as personal information management, collaborative document 
authoring, distributed content management, or geographic visual analytics. In this paper, we introduce Temporal REST, 
i.e., an interface and protocol to access web-based XML resources as well as their full revision and modification history. 
We describe the underlying data model and show how it solves problems inherently arising from temporal interactions in 
a pragmatic and straightforward way. In addition, we provide a case study to demonstrate the power of Temporal REST 
due to its elegance and true simplicity. Finally, we motivate future work including the implementation of back-end 
services as well as front-end applications – both of which will mutually benefit from Temporal REST. 
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1. INTRODUCTION 

1.1 The importance of REST and XML 

Twelve years after the introduction of HTTP, Roy Fielding coined the word REST [1]. REST is a set of 
network architecture principles, which outline how resources are defined and addressed. Practically speaking, 
REST defines a simple and scalable interface to exchange resources over HTTP. Each resource must be 
uniquely addressable through hypermedia links meeting a universal syntax. A well-defined and typically 
small set of HTTP operations specifies how to proceed with the obtained resource. The basic operations are 
POST to create a resource, GET to read a resource, PUT to update a resource, and DELETE to remove a 
resource. RESTful web services have appeared all over the Internet and compete with already-established 
protocols. The simplicity and elegance of REST makes alternatives such as the XML-based SOAP, binary 
CORBA [2], or DCOM [3] look like unhandy fellows. Web application frameworks such as Ruby on Rails 
[4] quickly adopted and favored REST. Virtually any programming language or framework nowadays has 
tools, e.g., Restlet for Java [5] or Astoria for .NET [6], to facilitate RESTful application development. 
However, Fielding did not provide a detailed description on how to use REST for a specific application. It is 
left to the developer of each application to specify how exactly the interface should look like and how the 
resources should be accessed. 

In the wake of the unprecedented growth of the Internet, the need for a unified resource-encoding format 
culminated in the standardisation of XML. Since then, XML has started to conquer the world as a universal 
data exchange and storage format. The human-readability of XML along with its rich toolset consisting of 
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XPath, XSLT, XQuery, among others, lead to a quick adoption of XML for protocols such as SOAP, which 
allows to access web-based objects, BPEL [7], which allows the modeling of high-level business logic, or 
Atom [8], which is a protocol to feed news. Even the shady side of XML, i.e., its sheer verbosity and 
excessive demand for processing power could not really impair its success. Rather, more and more traditional 
relational database systems such as Microsoft SQL Server [9], Oracle [10], or IBM DB2 [11] have started to 
natively store XML data types for improved performance and interoperability. Other database systems, e.g., 
X-Hive [12], no longer support the traditional relational model but focus on native XML storage. In contrast 
to traditional (object-) relational databases, XML has a convenient feature: It supports a data-before-schema 
approach, which does not require the specification of a schema before the storage of any data. Finally, the 
Efficient XML Interchange Working Group [13] has a strong intention to speed-up the XML processing to 
reduce its size through a binary encoding. 

1.2 Problem statement and contribution 

While there exists a variety of solutions to access XML resources over the Web, there is – to our 
knowledge – no generic and unified solution to conveniently access all of: 

 
1. The current revision of the XML resource or any subset thereof; 
2. The full revision history of the XML resource or any subset thereof; 
3. The full modification history of the XML resource or any subset thereof. 
 
Our approach exploits XML by tightly integrating it with REST. We want to put aside the antiquated 

view of XML as a simple data exchange and storage format and discover what it really is: a fine-grained tree 
of nodes, which evolves over time through user modifications. If we let ourselves to view XML as a growing 
tree of nodes, we realise that we can access single nodes or whole sub-trees, i.e., XML fragments, within a 
temporal dimension in a unified, scalable and robust way. 

We want to query the XML the way it was stored at any past point in time. Note that a point-in-time 
references a revision, i.e., a state of some resource. In addition and in stark contrast to all widely used 
interfaces and protocols, we want to randomly query for user modifications between any two past points in 
time. Only if we consider the whole life cycle of an XML resource including the past revisions and the 
(transaction-based) modification history, we will get a complete idea of its true power. We suggest Temporal 
REST as an interface with its related protocol message exchanges to generically implement our idea to 
exploit web-based XML resources. According to the Pareto principle [14], our proposal is simple enough for 
the average web application developer and at the same time it is extensible enough to be used with complex 
setups. 

1.3 Related work 

We identified three categories of related work. First, the systems without any temporal support. Second, 
the systems with support for access to past revisions. Third, the systems with support for access to past 
revisions and some kind of modification observation.  

Almost all current file and database systems belong to the first category. Note that modern file and 
database systems actually do perform some kind of journaling or transaction logging to support crash 
recovery or transactional behavior but they only use it for internal purposes and do not provide a public 
interface. 

The second category contains an increasing number of systems. However, all of these systems mainly 
suffer from the fact that the modification history has to be extracted on the application layer by comparing 
two different revisions. This extraction is based on expensive (binary) delta calculations such as Xdelta [15]. 
In addition, the deltas do not immediately reflect modifications on fine-granular tree-based data structures 
such as XML. Concurrent versions systems such as CVS [16], Mercurial [17], and WebDAV-based [18] 
Delta-V [19] serve as good examples for the second category. All three systems provide access to the current 
and all past revisions of XML (and other) resources but they do not work at the fine granularity of XML and 
they do not provide an interface to query the modification history of the XML at its natural granularity, i.e., 
the node or sub-tree level. In the file system world, Hammer [20] and ZFS [21] are recent additions. While 



Hammer supports access to all past revisions, ZFS only keeps a subset of the past revisions, i.e., user-
demanded snapshots. 

The third category is the youngest and smallest one. Systems in the third category allow to stream 
modification events to other systems for backup or other purposes. They do not aim at providing random 
access to any past modification as we do with Temporal REST. Apple has only recently started to make the 
local file- and directory-level modifications visible to the applications through FSEvents [22]. Apple’s Time 
Machine [23] is an excellent example application to consume these events to perform an incremental backup.  
Note that FSEvents does only remember that a given file or directory changed. It does not remember the fine-
granular changes of, say, the XML node tree stored within a file. The Content Repository API for Java 
Technology Specification [24] comes closest to our idea as it optionally supports the concepts of versioning, 
activities, and observation. Versioning works similar to concurrent versions systems. Activities group 
modifications and make them accessible for later re-use. Observation encapsulates modifications into events 
to propagate them to all interested parties. However, all three concepts are kept separately and optional – a 
fact which complicates the every-day use. 

 
The rest of this paper is organised as follows. Section 2 describes the data model beneath Temporal 

REST. Section 3 provides a case study to clarify the intended use. Finally, Section 4 concludes our work and 
motivates future work. 

2. DATA MODEL 

2.1 Session- and transaction-based access 

Our data model encapsulates each web-based XML resource within a single session, i.e., each session is 
responsible to coordinate the access to a single XML document together with its related revision and 
modification history. A session allows multiple concurrent read and one single write transaction at any time. 
Read transactions can access all past modifications and revisions of the XML document up to the last 
successfully committed revision. A write transaction creates a new revision of the XML document upon 
commit or drops all changes upon abort. Starting with one, each revision is assigned a positive number in 
increasing order. In addition, each revision is at least tagged with a time stamp, an author, and a commit 
comment. Supplementary meta-data can be added as required. While a read transaction only allows select 
operations, the write transaction additionally allows insert, update, and delete operations. A read transaction 
can sequentially execute multiple select operations. The write transaction can sequentially execute any 
operation until the write transaction is either committed or aborted. The isolation is clearly given with this 
model, i.e., only the single write transaction will see dirty data. The response of an operation always consists 
of a sequence of items as described with the data model of XPath 2.0 and XQuery 1.0. The relationship of the 
involved entities is shown in Figure 1. 

Figure 1. XML resource access. The relationships are depicted according to Barker’s notation [25]. 

 
 

For our initial version of Temporal REST, we have chosen to only support a single write transaction for 
each session at any time. While this might look too restrictive or cause bottlenecks due to the serialisation of 
concurrently issued write operations, we favor simplicity from both the usability and implementation 
perspective. Other widely deployed systems such as the full-text framework Lucene [26] and the file system 



ZFS also support only a single write transaction and they are still perfectly useful for real-world use-cases. If 
the serialisation of multiple concurrently issued write transactions still causes a bottleneck, a XML resource 
can be split up into smaller ones, i.e., to allow more independent write transactions. Finally, an application 
can implement a sophisticated access and locking model, which includes two or three phase commits 
spanning multiple sessions. As undo and redo operations are inherently supported by Temporal REST (the 
past revisions are always available), an already committed revision can quickly be reverted to a past one. 

Security with respect to confidentiality and integrity is cared for – if required – with the transport layer 
security protocol on top of which HTTP works. Authentication and authorisation are handled with the readily 
available mechanisms of HTTP. A clear separation of concerns tremendously facilitates the specification and 
implementation of Temporal REST. 

 

2.2 Identification of XML fragments 

There are two fundamental ways to access nodes and sub-trees, i.e., XML fragments, within an XML 
resource. First, the traditional axis-navigation or query-based access. Second, the ID-based random access. 
Temporal REST supports both and complements them with a temporal expression as described later. 

XML IDs enable the user to tag the XML document and to quickly access the XML fragment by 
providing this XML ID. However, most XML nodes are not tagged with such a XML ID and remain 
inaccessible from the XML ID perspective. We suggest the tagging of at least all element nodes with a 
system-generated REST ID. Text nodes or attributes are accessible through their parent node.  Other XML 
nodes such as comments or processing instructions may be tagged by the system on demand. One advantage 
of having the system to do the REST ID assignment is that the REST ID remains stable throughout revisions 
and modifications, i.e., a node or its modifications can be accessed irrespective of the revision or position in 
the tree. Another advantage is the guarantee of the existence of an ID. The system can make the REST IDs 
visible by tagging the serialised XML with REST ID attributes bound to the namespace of Temporal REST. 
Consequently, the user may choose to use this information to quickly access the nodes later on in an ID-
based random-access fashion. 

Each insertion operation assigns unique immutable REST IDs to all new element nodes. This assignment 
is made by the back-end that stores the XML and does not affect any existing user-assigned XML ID. REST 
IDs are numerical and they are incrementally assigned starting at one. The document root has the REST ID 
zero. REST IDs do not necessarily need to be assigned in document order and they must not change once 
assigned to a node. In addition, we suggest not reusing REST IDs. This reduces the confusion due to 
reassignments in future revisions. Since deletions are less frequent than insertions with most real-world 
workloads [27], the loss of number space is considered to be negligible. Figure 2 shows the assignment of 
REST IDs. 

Figure 2. Assignment of REST IDs. Any XML fragment or document can be depicted as an unranked ordered tree. The 
REST ID makes sure that every element node gets its own unique immutable identifier. ‘<’ and ‘>’ denote element nodes 

and ‘#’ denotes text nodes in the node tree. A simple XML resource storing a document serves as an example. 

 



2.3 XML fragment modification events 

Each insertion, update, or deletion of a XML node results in a modification event. Each write transaction 
commit groups the modification events into one revision and assigns a timestamp, an author, and a comment 
to the whole revision. Temporal REST communicates modifications by encapsulating the modified node 
within an item element. The item element contains the REST ID of the modified node as well as revision, 
time stamp, author, and comment information. As such, both the insertion and the deletion can be considered 
as a setting a node to a new value. Deletion sets the node to the empty node. 

We opted for this approach for two reasons. First, we can streamline the transport of XML fragments and 
modifications within the original XPath 2.0 and XQuery 1.0 data model, i.e., within a sequence of items. 
Second, the back-end can combine the storage of the modification event and the result of the modification. 
Section 3 will show, how this is achieved in practice. 

Read transactions can select XML fragments in any revision. In addition, read transactions can select the 
XML fragment modifications, which took place between any two revisions. Since the revision number may 
not be convenient enough, the system must support the resolution of a time stamp into the closest revision 
number. 

2.4 Operations on XML resources 

2.4.1 Select 
The select operation allows the retrieval of a sequence of items as defined with the XPath 2.0 and XQuery 

1.0 data model. Each item is an atomic value, a XML node, or now also a modification event. The selection 
can be query-based, i.e., an XPath 2.0 or XQuery 1.0 expression, or REST ID-based. Temporal REST will 
restrict the execution domain of both the query and the REST ID according to the temporal expression either 
selecting a point in time or a time period (see Figure 3). While a query may return a sequence of multiple 
items, an access solely based on a REST ID will return a sequence with at most one item. If the query and 
REST ID approach are combined together, the query treats the node with the given REST ID as the root node 
of the query. The query-based approach allows to add new query languages in the future and to express 
complex queries including operations such as full-text search or joins. The REST ID-based approach allows 
to directly select an item with optimal performance since the system does not have to compile and optimise 
the query. 

The temporal expression must be enclosed with round brackets ‘(‘ and ‘)’ and contain a single point in 
time or a time period consisting of two points in time separated by a dash ‘-‘. A point in time can be a 
revision number, an ISO date in short notation, i.e., without dashes or colons, or nothing, i.e., the last 
successfully committed revision. A single point in time will retrieve the XML fragments as they looked like 
at the given revision. The time period will retrieve the modifications between (and including) the two 
provided points in time in the according order. Leaving away the temporal expression automatically causes a 
fallback to the last successfully committed revision for backwards compatibility. 

 Figure 3. Selection. The left side shows the selection of an XML fragment, as it was stored at a given point in time. The 
right side shows the selection of the modifications on a XML fragment during a given time period. 

 



2.4.2 Insert 
A single node or a whole sub-tree can be inserted either as the first child of an existing node or as its right 

sibling. As such, the insert operation requires a query selecting a number of nodes or a REST ID besides the 
actual XML fragment to insert. During the insertion process, the back-end system will assign the REST IDs 
as described above. Note that the insertion of an attribute must be made with the PUT operation changing the 
whole node. 

2.4.3 Update 
A single node can be replaced with or without the replacement of its sub-tree. Again the updating 

operation requires a query selecting a number of nodes to update or a REST ID besides the actual XML 
fragment to represent the updated node or sub-tree. Restricting the effect of the update to the node (not 
effecting its sub-tree), allows the insertion of an attribute into an existing node without changing its whole 
sub-tree. 

2.4.4 Delete 
Whenever a node is deleted, the node and its sub-tree are purged from the system (but not from the past 

revisions). The deletion operation requires a query or a REST ID to select the nodes to delete. 

2.5 Serialisation of XML fragments 

The default behavior of the original XML data model is to serialise the whole sub-tree of a XML node 
returned as an item. From both the practical and safety perspective, it may be reasonable not always to return 
the whole sub-tree but to limit its global depth and the per-node fan-out. Whenever a serialisation truncates a 
XML fragment due to depth or fan-out limitations, it will tag the last serialised node with the depth or fan-out 
limitation to inform the user and allow to retrieve the missing nodes with a consecutive request. In addition, 
every element node is tagged with its REST ID. If the sequence itself contains too many items, the sequence 
can be paged. 

3. CASE STUDY 

3.1 Five main use cases 

Collaborative document authoring serves as a perfect case study. Let us assume a workflow that specifies 
the role of the person, the activity, and the exact time this activity has to be performed during the publication 
process. Having different stages, the workflow involves multiple people who take on different roles such as 
author or reviewer who perform tasks sequentially or concurrently. If the underlying document is stored as 
XML, e.g., in OpenDocument [28] or DocBook [29] format, then the application layer can conveniently 
provide temporal functionality. At any time, the author or reviewer can effortlessly observe who has done 
what since the author or reviewer last looked at the document. The Temporal REST interface allows to 
quickly visualise the modification history or to swiftly create individual Atom news feeds for the involved 
people, i.e., to transform the response with XSLT into valid Atom XML. While the application still has to 
model and implement the workflow – a task, which is an art of its own – it is greatly simplified because it 
does not have to consider the design, interface, message exchange, and implementation of a specific temporal 
functionality: it can solely rely on Temporal REST. 

The document we are working on will see a sequence of modifications as described with Table 1. Table 2 
lists the HTTP request and response pairs to perform the modifications listed in Table 1 (Rows 1 to 3) 
alongside with a query selecting a point in time (Row 4) and a query selecting a time period (Row 5). 

Row 1 of Table 2 shows the initial import of an XML document into the repository of XML resources. As 
a reaction to this HTTP POST request, the server-side session initiates a write transaction, inserts the XML 
fragment given in the request body, tags all inserted element nodes with REST IDs, commits if no error was 



encountered, and responds with a sequence bound to the committed revision, i.e., 1, and containing a single 
item, i.e., the inserted XML fragment. 

Table 1. Sequence of modifications on example document  (see Figure 2 and 3). 

 User 
intention 

Required modifications Resulting revision 

1 Add title ‘Joe’ 
and paragraph 
‘Joe is happy.’ 
to document 

REST ID 1: 
Insert <document> as first child of REST ID 0 
REST ID 2: 
Insert <title>Joe</title> as first child of REST ID 1 
REST ID 3: 
Insert <para>Joe is happy.</para> as right sibling 
of REST ID 2 

<?xml version='1'?> 
<document> 
 <title>Joe</title> 
 <para> 
  Joe is happy. 
 </para> 
</document> 

2 Rewrite 
paragraph to 
‘Mike is 
happy.’ 

Update REST ID 3 to 
<para>Mike is happy.</para> 

<?xml version='1'?> 
<document> 
 <title>Joe</title> 
 <para> 
  Mike is happy. 
 </para> 
</document> 

3 Remove title Delete REST ID 2 <?xml version='1'?> 
<document> 
 <para> 
  Mike is happy. 
 </para> 
</document> 

Table 2. HTTP request and response pair examples for five main use cases. 

 HTTP Request HTTP Response 
1 POST http://../document 

 
<?xml version='1'?> 
<document> 
 <title>Joe</title> 
 <para> 
  Joe is happy. 
 </para> 
</document> 

<?xml version='1'?> 
<rest:response xmlns:rest='REST'> 
 <rest:sequence rest:revision='1'> 
  <rest:item> 
   <document rest:id='1'> 
    <title rest:id='2'>Joe</title> 
    <para rest:id='3'> 
     Joe is happy. 
    </para> 
   </document> 
  </rest:item> 
 </rest:sequence> 
</rest:response> 

2 PUT http://../document/3 
 
<para> 
 Mike is happy. 
</para> 

<?xml version='1'?> 
<rest:response xmlns:rest='REST'> 
 <rest:sequence rest:revision='2'> 
  <rest:item> 
   <para rest:id='3'> 
    Mike is happy. 
   </para> 
  </rest:item> 
 </rest:sequence> 
</rest:response> 

3 DELETE http://../document/2 <?xml version='1'?> 
<rest:response xmlns:rest='REST'> 
 <rest:sequence rest:revision='3'> 
  <rest:item rest:id='2'/> 
 </rest:sequence> 
</rest:response> 

4 GET 
http://../document/(1)?//para/text() 

<?xml version='1'?> 
<rest:response xmlns:rest='REST'> 



 <rest:sequence rest:revision='1'> 
  <rest:item> 
   Joe is happy. 
  </rest:item> 
 </rest:sequence> 
</rest:response> 

5 GET http://../document/(2-3) <?xml version='1'?> 
<rest:response xmlns:rest='REST'> 
 <rest:sequence> 
  <rest:item rest:revision='2'> 
   <para rest:id='3'> 
    Mike is happy. 
   </para> 
  </rest:item> 
  <rest:item 
   rest:revision='3' 
   rest:item='2'/> 
 </rest:sequence> 
</rest:response> 

 
Row 2 of Table 2 replaces the XML fragment rooted at node with REST ID 3. Again, the server-side 

session initiates a write transaction, overwrites the existing XML fragment with the XML fragment of the 
request body, tags all new element nodes with REST IDs, commits if no error was encountered, and responds 
with a sequence bound to the committed revision, i.e., 2, and containing a single item, i.e., the updated XML 
fragment. 

Row 3 of Table 2 removes the XML fragment rooted at node 2. The server-side session initiates a write 
transaction, removes the requested XML fragment, commits if no error was encountered, and responds with a 
sequence bound to the committed revision, i.e., 3, and containing a single empty item to mark the deletion. 
Note how the REST ID propagates to the item node because the item does not contain any node anymore. 

Row 4 of Table 2 shows a query for a given point in time, i.e., revision 1. Here, we show an XPath 2.0 
expression restricting the result to a sequence of items, each containing the text of a paragraph node. The 
server-side session initiates a read transaction bound to the given revision, compiles and executes the XPath 
2.0 expression, and returns the result. 

Row 5 of Table 2 shows a query for a time period, i.e., all modifications which took place between 
revision 2 and 3 (inclusive). The server-side session initiates a read transaction bound to the newer revision 
and retrieves all modifications between the newer revision and the older revision. As there is no further 
restriction, the modifications on any node of the XML resource are retrieved. Note that the two returned 
items are almost equivalent to the items retrieved with Rows 2 and 3. The only difference is the revision 
number included with the item instead of the sequence because each item may be bound to another revision. 

3.2 Preliminary observations 

While we have good experiences with the five main use cases, there are many others open for discussion. 
First of all, there are many variations on how to express a modification. E.g., an insertion of a XML fragment 
as the first child of some node can be expressed as a change of this (parent) node. Second, the complexity 
increases if not only element but also text nodes, attributes, or other nodes are tagged with a REST ID. This 
is not due to the load on the system, which does not change, but mainly due to the fact that text and attribute 
nodes must be surrounded with auxiliary metadata element nodes if modified directly and if they are not 
contained within a surrounding element node. 

We experimented with grouping several HTTP requests into one, i.e., group several operations such as 
select or insert into one HTTP request. As a consequence, the request URL loses its expressiveness because it 
cannot transmit any information any more as this might have to be shared with all contained operations. The 
whole request metadata must be packed into the HTTP body. This makes it necessary to express the session 
context and the read transaction or write transaction boundaries within the request body. If just a single 
request is issued, this can be implicitly encoded in with the HTTP command and URL. A clear advantage of 
request grouping is the fact that several modification operations can be executed within a single transaction. 



In addition, more metadata can be encoded into the request body than into the request URL. E.g., it is not 
convenient to encode a complex XQuery expression into the URL. 

Besides theoretical reasoning, we implemented a preliminary prototype to back our estimates about 
performance and space requirements. We found that our simple prototype of a temporal native XML database 
showed performance in the same order of magnitude (approx. 30% difference) to SAX when retrieving the 
whole XML resource in any given revision. The same holds for XPath 2.0 expression evaluation. As soon as 
it comes to REST ID-based random access, our prototype clearly out-performed SAX. Note that these 
performance results are common when one compares any other existing native XML database with SAX. The 
differences start to show up when the modifications are queried. While this is only possible with our 
prototype, all others fail due to missing functionality. We can stream the modifications at one half of the 
performance of streaming a revision. In addition, our prototype is able to shrink the first revision to about one 
half of the size of the original XML file. Each write transaction commit then roughly adds a few kB of data, 
depending on the number of modified nodes. For single node modifications it can be as low as a few hundred 
bytes. For many nodes, it is roughly one half of the original XML fragment size. 

For implementations based on (object-) relational databases, it is important to agree on a generic mapping 
between XML files and relational tables. This is necessary to guarantee the consistency of the interface 
irrespective of the underlying back-end implementation, i.e., a native XML or a relational database. As long 
as the data schema can be mapped to relational tables conforming to the relational normal forms, this is not a 
problem and actually the case for the vast majority of XML files or relational database schemas. 

4. CONCLUSION 

Temporal REST is a new paradigm on how to exploit web-based XML resources. Instead of solely 
thinking about XML as a unified resource exchange and a storage format, we promote the idea of looking at 
XML as a growing tree of nodes. We want to provide a generic and unified solution to conveniently access 
all of: 

 
1. The current revision of the XML resource or any subset thereof; 
2. The full revision history of the XML resource or any subset thereof; 
3. The full modification history of the XML resource or any subset thereof. 
 
We see potential applications, e.g., in the area of personal information management, collaborative 

document authoring, content management, or geographic visual analytics. The interdisciplinary character 
emerging from the fact that different sciences and businesses will develop applications on top of Temporal 
REST makes it especially attractive. All above-mentioned applications currently use XML and some kind of 
web-based interaction. The major advantage of Temporal REST lies in its expressive and convenient 
interface vastly reducing the design and implementation complexity formerly faced with each new 
application. While Temporal REST facilitates the look into the past by technical means, it will remain for 
every application, their users, national or international law, and, as such, our society to decide when to 
eventually erase past revisions. The trade-off between archiving, usability, and privacy is likely to cause 
enthralling discussions. 

Our next three steps will comprise the implementation and further elaboration. First, we will implement 
two back-ends for Temporal REST; one based on an existing relational database, one based on a native XML 
database. Second, we will implement a Web 2.0 application for collaborative document authoring. Third, 
from our practical findings and input from the web application development and services community, we will 
release a second draft of Temporal REST detailing all use cases. In the course of the third step, we will also 
investigate, how Temporal REST can be integrated with existing protocols such as SOAP. 

We invite the web application development and services community as well as (object-) relational and 
native XML database implementers to scrutinise Temporal REST, implement prototypes, and contribute new 
use cases and practical findings. We strongly believe in the worthiness of our idea will promote our idea 
towards a Request For Comment. If Web 2.0 is the web for social and collaborative interaction, Web 3.0 may 
become the temporal web, i.e., a global time machine. 
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