Living Aqueous Microemulsion Polymerization of Ethylene with Robust Ni(II) Phosphinophenolato Catalysts

Fei Lin, Tobias O. Morgen, and Stefan Mecking*

ABSTRACT: Due to chain transfer events being competitive with chain growth, ethylene polymerization by P,O-chelated Ni(II) complexes usually affords low molecular weight polymers or oligomers. We now show that appropriately bulky substituted phosphinophenolato Ni(II) can polymerize in a living fashion, virtually devoid of chain transfer. Aquous polymerizations with microemulsions of \([x^2-P,O-2-(2'(2,6'-(MeO))_2C_6H_4)C_6H_4(Ph)P-6-(3',5'-CF_3)_2C_6H_4C_6H_4O-NiMe(pyridine)](3)\) at 30 °C yield polyethylenes with narrow molecular weight distributions \((M_w/M_n = 1.02 to 1.34)\) and ultrahigh molecular weights (up to \(2 \times 10^5\)) in the form of aqueous nanoparticle dispersions. Catalyst stability and activity are maintained up to 70 °C in water.

We now report on aqueous polymerizations with robust Ni(II)phosphinophenolato catalysts virtually devoid of chain transfer to the extent that chain growth is living, and ultrahigh molecular weights are obtained.

Distinctive features of the P,O-chelated Ni catalysts that afford high molecular weight HDPE are a substitution in the \(\phi\)-position to the phenolato donor and a 2,6-dimethoxyphenyl (or 2-arylphenyl) substitution of the P-donor. These served as a guideline for our approach to aqueous polymerizations. Beyond complex 1 with tert-butyl substitution in the \(\phi\)-position, complexes 2, 3, and 4 bearing different electron-withdrawing aryl groups were studied (Figure 1). X-ray diffraction analysis of the novel complex 3 shows that in the solid state one axial side of the Ni center is shielded by the 2-arylphenyl group, as also reflected by the C29–Ni distance of 3.28 Å. Possibly, this contributes in suppressing chain transfer (vide infra).

Microemulsions were employed to achieve a high degree of dispersion of the initial catalyst precursor. Note that compared to a dispersion polymerization approach, this concept does not require water-soluble catalyst precursors but can employ more prevalent lipophilic catalyst precursors. While microemulsions offer the benefit of forming spontaneously without the need for, for example, high shear and are highly disperse with length scales of the dispersed phase on the order of only 10 nm, reaching the microemulsion regime requires alcohol cosolvents ("cosurfactants"). Advantageously, complexes 1 to 4 are stable to such cosolvents, as evidenced by unaltered \(^1\)H NMR resonances upon several hours of exposure to excess \(n\)-hexanol (Figure S3 to S6 in the Supporting Information).
Information, SI). As anticipated, solutions of the catalyst precursors in a small amount of toluene formed microemulsions with an appropriate excess amount of aqueous surfactant solution and cosolvent upon gentle stirring, as indicated by the formation of a single transparent phase (cf. SI for details). Exposure of these catalyst solutions to ethylene in a pressure reactor resulted in polymerization with high activity, to yield colloidally stable and transparent to slightly opaque PE dispersions (Table 1). Notably, these contain substantial amounts (up to >20 wt %) of linear polyethylene with molecular weights in the ultrahigh molecular weight (UHMW-PE) regime ($M_n > 10^6$ g mol$^{-1}$).

![Figure 1](image1.png)

Figure 1. Catalyst precursors employed (top) and the crystal structure of precursor 3 (bottom).

Catalyst precursor 3 stands out in polymerizing in a living fashion as evidenced by (1) a linear relationship between yield and molecular weight (Figure 2a); (2) very narrow molecular weight distributions with an M_n/M_w as low as 1.02 (Figure 2b); and (3) chains per Ni ratios close to unity (Table 1, entries 5–9). Precursor 3 is highly active in water especially at elevated temperatures (5.8 \times 104 TO at 30 °C, 6.3 \times 104 TO at 50 °C, and 7.5 \times 104 TO at 70 °C. TO = mol$_{\text{ethylene}}$ mol$_{\text{Ni}}^{-1}$ h$^{-1}$) and features a half-life of ca. 2 h at an elevated temperature of 50 °C (Figures SI8–S20). By comparison, state-of-the-art water-soluble salicylaldiminato Ni(II) catalysts can promote living aqueous polymerizations to yield UHMWPE, ideal conditions being 15 °C (with $M_n/M_w = 1.5$ at 30 °C, 40 atm$^{-1}$). The high melting points observed by differential scanning calorimetry (DSC) evidence a highly crystalline nature of the resulting PE nanocrystals.

![Figure 2](image2.png)

Figure 2. (a) Number average molecular weight and polydispersity vs yield in microemulsion polymerization with 3 (30 °C, 40 bar of ethylene). (b) GPC traces of PE obtained in a microemulsion at different polymerization times. (c) DLS traces of PE dispersions for details. (d) TEM image of PE nanocrystals (entry 9, Table 1).

Table 1. Ethylene Polymerization Results in Microemulsion

entrya	precat.	t [min]	yield [g]	M_n[b] [103]	M_n/M_w	chain/[Ni]	T_m [°C]	cryst. [%]	particle size [nm] (DLS)c	PDI (DLS)d	particle size [nm] (TEM)e	chains/ particle	
1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2	1 2
3	3 4	3 4	3 4	3 4	3 4	3 4	3 4	3 4	3 4	3 4	3 4	3 4	3 4
5	5 6	5 6	5 6	5 6	5 6	5 6	5 6	5 6	5 6	5 6	5 6	5 6	5 6
7	7 8	7 8	7 8	7 8	7 8	7 8	7 8	7 8	7 8	7 8	7 8	7 8	7 8
9	9 10	9 10	9 10	9 10	9 10	9 10	9 10	9 10	9 10	9 10	9 10	9 10	9 10
12	13 14	13 14	13 14	13 14	13 14	13 14	13 14	13 14	13 14	13 14	13 14	13 14	13 14

aPolymerization conditions: 5 μmol of precatalyst, 40 bar of ethylene pressure, 10.0 g of sodium dodecyl sulfate, 4.0 mL of hexanol, 1.0 mL of toluene, 100 mL of 30 °C. bDetermined via GPC at 160 °C in 1,2-dichlorobenzene. cDetermined by DSC on nascent polymer powder, isolated by precipitation from the nanocrystal dispersion, measured with a 10 K min$^{-1}$ heating rate, first and second heating cycle reported. dVolume mean given. eLateral particle size determined from TEM statistics (equivalent diameter and standard error reported). fAt 50 °C. gAt 70 °C.
linear polymer microstructure, which was also confirmed by exemplary 13C NMR analysis (Figure S7). The observation of significantly decreased melting points upon slow heating (1 K min$^{-1}$) hints at a disentangled nature of the nascent polymer (Figures S8–S12).25,26 Considering the origin of the outstanding catalytic properties of 3, the numbers of chains per Ni and the molecular weight distributions suggest that 3 is very efficiently activated in this aqueous system (entry S). This can be due to a facilitated pyridine dissociation in 3, but also to physical differences in the initial catalyst microemulsions promoted by the nature of the dissolved catalyst precursor molecules (like droplet size or solvent nature of the droplet phase, which influences, for example, partitioning coefficients).

In view of the living nature of polymerizations with 3, the process of particle growth was investigated. According to dynamic light scattering (DLS) analysis, all dispersions feature narrow particle size distributions without any aggregates. With increasing polymerization time from 5 min to 120 min, the average particle size of the obtained dispersion grows from 15 nm to 38 nm (Figure 2c, note the analysis of DLS data assumes a spherical particle shape). The narrow size distributions are confirmed by transmission electron microscopy (TEM), which further reveals a disk-like particle shape in all cases (Figure 2d and Figure S21). With reaction time, the average diameter of the particles increases from 7.4 nm to 27.1 nm. The thickness is independent of the duration of the polymerization and only 8.0 nm, which corresponds to the expected value for a single lamella particle (Tables S2 and S3).27 A comparison of the average mass of particles (derived from the size) with the molecular weight of the formed PE suggests that a particle consists of a single chain. That is, in polymerizations with microemulsions of 3, a controlled particle growth is also realized, which also is reflected by a linear increase of particle volume with yield (that is, the number of particles remains constant over time) and the aforementioned narrow particle size distributions (Table S3).

We show that the established robust nature of P,O-coordinated Ni catalysts in aqueous systems can go along with achieving useful polymer molecular weights in the range of typical HDPEs and even ultrahigh molecular weight polyethylenes. Further, Shimizu et al. and Li et al. have only recently broken the long-standing paradigm that frequent BHE polyethylenes. Further, Shimizu et al. and Li et al. have only recently broken the long-standing paradigm that frequent BHE polymerizations with microemulsions of 3, a controlled particle growth is also realized, which also is reflected by a linear increase of particle volume with yield (that is, the number of particles remains constant over time) and the aforementioned narrow particle size distributions (Table S3).

(13) Held, A.; Bauers, F. M.; Mecking, S. Coordination polymerization of ethylene in water by Pd(II) and Ni(II) catalysts. Chem. Commun. 2000, 301−302.

(24) Under otherwise identical conditions to entry 2, Table 2 in ref 14.

