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Abstract. We determine the non-local stress autocorrelation tensor in an homogeneous and isotropic system
of interacting Brownian particles starting from the Smoluchowski equation of the configurational probabil-
ity density. In order to relate stresses to particle displacements as appropriate in viscoelastic states, we go
beyond the usual hydrodynamic description obtained in the Zwanzig-Mori projection-operator formalism
by introducing the proper irreducible dynamics following Cichocki and Hess, and Kawasaki. Differently
from these authors, we include transverse contributions as well. This recovers the expression for the stress
autocorrelation including the elastic terms in solid states as found for Newtonian and Langevin systems, in
case that those are evaluated in the overdamped limit. Finally, we argue that the found memory function
reduces to the shear and bulk viscosity in the hydrodynamic limit of smooth and slow fluctuations and
derive the corresponding hydrodynamic equations.

1 Introduction

Stress fluctuations play an important role in viscoelas-
tic fluids, and understanding their spatio-temporal pat-
terns remains an open question when starting from first
principles [1]. A system of interacting Brownian particles
can be used to model the dynamics of concentrated col-
loidal dispersions [2]. While instantaneous solvent medi-
ated interactions are neglected, the collective effects aris-
ing from steric particle interactions can be analyzed [3].
In the present work, the linear response of the local stress
tensor σ(r, t) to an external velocity field vext(r′, t′) at a
distant space-time point is investigated in such a model
of an overdamped colloidal system. The main question is,
whether precursors of the elastic properties of a colloidal
glass already arise in the underlying fluid-like dynamics.
The elastic response decays as 1/|r − r′|3 [1, 4], while the
fluid one is short-ranged.

This question was already considered in [5]. There, a
set of Langevin’s equations of motion for the individual
colloidal particles was investigated, which leads to a time
evolution of the probability distribution function that is
governed by the Klein-Kramers equation. It describes the
dynamics in the phase space of the positions and velocities
of the colloidal particles. When applying a Zwanzig-Mori
projection formalism, it was argued that the coupling of
the shear stress to the transverse current flow has to be
taken into account, to obtain the correct long-lived and
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long-ranged correlations in the supercooled state expected
from the Newtonian case [6,7]. Only based on this projec-
tion, the overdamped case and consequently the formation
of colloidal solids could be considered. The long-ranged
elastic stress pattern then develops via the strain correla-
tions [8,9], which enter as the current gradient is the time
derivative of the strain.

In the present work, we take the alternative approach
and start from an overdamped colloidal system governed
by the Smoluchowski equation, which can be obtained
from the overdamped limit of the Klein-Kramers equa-
tion [10]. Here, the dynamics of the particles is described
only in terms of their positions, as particle velocities have
already relaxed into equilibrium. Thus, the question on
defining the stress and consecutively viscosity via a mo-
mentum current arises [11]. Again, we first consider the
hydrodynamic conserved variables within the Zwanzig-
Mori formalism [12, 13]. Then, in order to relate the
stress correlation to the particle displacement as previ-
ously found important, we generalize the work by Cichocki
and Hess [14] on the memory function for the dynamic
structure factor by including transverse components as
well. Kawasaki [15] had already pointed out the curtail-
ment to longitudinal terms. Our ansatz naturally leads
to the complete coupling of the tensorial stress fluctua-
tions to the vectorial particle displacements. In the end,
we regain the formally identical expression for the stress
autocorrelation and therefore for the linear response of
the stress tensor as in systems where velocities are kept
as dynamical variables [5,7]. In the final section, we argue
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that the irreducible memory kernel indeed is the correct
one since it can be related to the Green-Kubo transport
coefficients, viz. the shear and bulk viscosities. Since the
generalized viscosity should be defined as the response of
the local stress to the local current gradients [16], we have
to reintroduce the flux as a dynamical variable. This is
done via a linear response and a hydrodynamic approach.
Both lead to consistent results.

In summary, the coarse-grained dynamics of dense col-
loidal dispersions can be obtained by properly identifying
the irreducible Brownian dynamics; it yields the Brown-
ian viscosity [17] as transport coefficient. Starting on the
Brownian level appears more efficient than overdamping
a calculation containing particle momenta.

2 Brownian N-particle system

We consider a system containing N interacting identical
spherical particles performing random motion in a con-
tinuum background solvent. Usually, such a system is de-
scribed with the locations {rj}

N and the momenta {pj}
N

of the particles. In [5], we used such a description to fol-
low the system through the glass transition, and only after
obtaining a general expression, the overdamped limit was
considered. Here, we start with the overdamped simpli-
fication and consider N interacting particles performing
Brownian motion. Thus, the state of the system can be
specified by the positions alone and is given by the N -
particle phase-space distribution ρ(Γ, t) = ρ({rj}

N , t) at
time t for a fixed temperature T and volume V . Thus, the
Klein-Kramer’s operator Ω governing the time-evolution
∂tρ = Ωρ reduces [10] to the Smoluchowski operator

Ω = D0

N∑

j=1

∂

∂rj
·

(
∂

∂rj
− βFj

)
. (1)

Here D0 = kBT
γ0

denotes the Stokes-Einstein-Sutherland

diffusion coefficient, β = 1/(kBT ) represents the inverse
temperature and Fj is the total force acting on the j-th
particle. On the other hand, the time evolution of a dy-
namical variable A is governed by the adjoined Smolu-
chowski operator Ω† with ∂tA(t) = Ω†A(t) and [18]

Ω† = D0

N∑

j=1

(
∂

∂rj
+ βFj

)
·

∂

∂rj
. (2)

The canonical average of a variable A

〈A(t)〉 =

∫
dΓA(t, Γ )ρeq(Γ ) (3)

defines a metric on the space of dynamic variables and
can be generalised to an inner product, which can also be
referred to as correlation function

CAB(r − r′, t − t′) := 〈A(r, t)B∗(r′, t′)〉

=

∫
dΓδA(r)eΩ(t−t′)δB∗(r′) ρeq,

(4)

which is traditionally used to capture the dynamics of
the system. Here ∗ represents the complex conjugate
and ρeq ∝ exp[−βU({rj}

N )] is the canonical Gibbs-
Boltzmann distribution. Only fluctuations away from
equilibrium enter δA := A − 〈A〉, yet we will denote this
in the following only in cases where the average is non-
vanishing. For simplicity, it is assumed that the potential
U({rj}

N ) can be decomposed into the sum of pair poten-
tials which only depend on the distance between two par-
ticles. This gives rise to central forces. With this potential,
one finds that the Hamiltonian H({rj}

N ) = U({rj}
N ) is

invariant under rotation, translation and inversion. Thus,
a fluid state of the system is homogeneous, isotropic, and
achiral. As a consequence of that, the symmetry-related
decompositions of correlation functions found in [7,19,20]
also hold for this system. Since we consider equilibrium
states, detailed balance holds as well. This gives the oper-
ator identity [18] Ω(ρeq . . .) = ρeqΩ

†(. . .).

3 Conservation law and dynamic variables

In order to study the slow dynamics of the system result-
ing from the conserved hydrodynamic fields, a Zwanzig-
Mori decomposition [12, 13] of the dynamical variable of
interest, the stress tensor σ, will be considered. Moti-
vated by earlier works [5,7] and having the density as the
only conserved dynamical variable, we choose the latter
as the only distinguished variable. The Fourier-modes are
given by

̺(q) =
N∑

j=1

e−iq·rj . (5)

Due to the homogeneity of the system, the average of the
density vanishes for q �= 0. So, one finds 〈̺(q)〉 = Nδ(q).
The conservation law for the density gives the Laplacian
of the stress tensor

Ω†̺(q) = −D0βqαqβ

N∑

j=1

(
kBTδαβ + i

qα

q2
F j

β

)
e−iq·rj

=: −iD0βqβfβ(q)

=: −D0βqαqβσαβ(q). (6)

With the force field fβ(q) = −iqασαβ(q). Here and in
the following, Greek letters refer to spatial directions and
the Latin indices j, k to the j-th or k-th particle. Also
Einstein’s sum-convention was used and will be used from
now on for Greek indices. The former equation defines the
stress tensor σ up to addable ∇ · σ = 0 terms, which are
neglected in the following. Equation (6) is fulfilled by

σ(q) =
N∑

j=1

kBTe−iq·rj 11

+
∑

k,j �=k

rjkFjk

sin(
q·rjk

2 )

q · rjk
e−i q

2
·(rj+rk). (7)

Here 11 represents the unity matrix and rjk = rj−rk. The
central force acting from the k-th onto the j-th particle is
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denoted by Fjk = Fjk
rjk

rjk
. Equation (7) is essentially the

Irving-Kirkwood stress tensor where the canonical average
over the momenta has been performed [21]. With the same
argument as above, the average 〈σ(q)〉 vanishes for q �= 0.
On the other hand, one finds for q = 0

〈σαβ(q = 0)〉 = NkBTδαβ +

〈
∑

k

rk
αF k

β (Γ )

〉
. (8)

Taking the trace of the right side relates the stress tensor
to the virial expression for the pressure p [21]

p :=
1

3V
Tr[〈σ(0)〉] = nkBT +

1

3V

〈
∑

k

rk · Fk

〉
, (9)

with the number density n := N
V .

4 The Stress autocorrelation

The main object of interest is the fourth-rank tensor of
the stress autocorrelation

Cαβγδ(q, t) :=
β

V
〈σαβ(q)eΩtσ∗

γδ(q)〉 . (10)

Note, that the time independence of the Smoluchowski
operator and the resulting invariance of the equilibrium
distribution under time translation allows setting t′ = 0
in eq. (4). The assumed homogeneity causes the double
Fourier-transformation C(q, q′, t) = F [CA(r)B(r′)](q, q′)
to be zero, unless q = q′ holds. We use the convention
F [f(r)](q) =

∫
V

drf(r)e−iq·r. Since we consider finite

but large systems, we take (2π)3

V → 0 in the end, giving
rise to continuous Fourier modes.

As can be seen in eq. (7), the stress tensor is symmet-
ric, meaning σαβ = σβα. (While this holds straightfor-
wardly for central forces, which we consider, it was shown
in ref. [22] that a symmetric stress tensor can be intro-
duced also in the case of non-central forces.) This gives
rise to symmetry properties of the stress autocorrelation

Cαβγδ(q, t) = Cβαγδ(q, t) = Cγδαβ(−q, t) = Cγδαβ(q, t).
(11)

Here, the first identity holds because of the symmetry of
σ, the second because of detailed balance, and the last
identity holds due to the achirality of the system. Based
on the isotropy of the system, the stress autocorrelation
can be decomposed into five functions depending on the
wavenumber q only, as it is also possible in molecular sys-
tems [7,23]. These functions generalize the two viscosities
(equivalently Lamé coefficients) to finite frequencies and
wavevectors.

For simplicity, the following analysis of the stress-
tensor will be done in the Laplace domain with the con-
vention f(z) =

∫ ∞

0
dtf(t)e−zt, which gives for the stress

autocorrelation function

Cαβγδ(q, z) =
β

V
〈σαβ(q)R(z)σ∗

γδ(q)〉 , (12)

with the resolvent R(z) = [z − Ω]−1. In the next section,
the expression for Cαβγδ(q, z) within the Zwanzig-Mori
formalism will be derived using Götze’s decomposition [19]
for the resolvent:

R(z) = R′(z) + [1 + R′(z)Ω]PR(z)P [1 + ΩR′(z)]. (13)

Here, P projects on the subspace of distinguished vari-
ables and R′(z) = Q[z − QΩQ]−1Q denotes the reduced
dynamics. Q = 1−P projects on the subspace of remain-
ing variables.

4.1 Generalized memory function

Hydrodynamic conservation laws define the slow vari-
ables which need to be specified in a local equilibrium
state [10, 21]. Since the density is the only conserved dy-
namic variable in a Brownian system, the subspace of slow
variables is one dimensional. The associated projection op-
erator reads

P = 1 − Q =
1

NSq
|̺∗(q)〉 〈̺(q)| . (14)

Here Sq := 1
N 〈̺(q)̺∗(q)〉 is the static structure factor.

Using this projection and eq. (13), we will describe the
considered system as two coupled subsystems. The first
one deals with the slow or conserved density, while the
latter is concerned with the remaining fast variables hav-
ing the density as a constant parameter. Generally in such
Zwanzig-Mori decomposition, the subsystems are coupled
via memory functions Mmk ∝ 〈AmΩR′(z)ΩAk〉, where
Am/k are distinguished variables.

4.1.1 Dynamic structure factor

The dynamics of the one dimensional subspace of slow
variables is governed by the density autocorrelation
S(q, z) := 1

N 〈̺(q)R(z)̺∗(q)〉 later referred to as dynamic
structure factor. Using the Zwanzig-Mori equation of mo-
tion [21], one finds a first expression for the dynamic struc-
ture factor [24]

S(q, z) =
Sq

z + D0q2

Sq
(1 − D0β

nq2 qαqβM̃αβγδ(q, z) qγqδ)
,

(15)
with an explicit expression for a first memory kernel

M̃αβγδ(q, z) =
β

V
〈σαβ(q)R′(z)σ∗

γδ(q)〉 . (16)

Equation (15) suggests to introduce the longitudinal and
(for later reference) transverse component of the memory

function M̃‖ and M̃⊥

M̃‖(q, z) :=
β

V
〈σ‖(q)R′(z)σ‖∗(q)〉 ,

(17)

M̃⊥(q, z) :=
β

V
〈σ⊥(q)R′(z)σ⊥∗(q)〉 .
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With the longitudinal σ‖ := 1
q2 q ·(σ ·q) and the transverse

component σ⊥ := 1
q3 a·(q2(σ ·q)−q((σ ·q)·q)) of the stress

tensor. Here, a is an arbitrary normalised vector, perpen-
dicular to q, meaning |a| = 1 and a · q = 0. The longitu-
dinal memory function appears in the dynamic structure
factor. Note that correlation functions of two scalar quan-
tities depend only on the absolute value of the wavevector
q = |q|, due to rotational invariance. The cross product of
the parallel and perpendicular components vanishes due
to the achirality of the system [19].

4.1.2 Irreducible memory function

In [14], Cichocki and Hess argued that M̃‖ is not the cor-
rect memory function, since it can not be identified with
the longitudinal viscosity η‖ [10] and since it is not irre-
ducible as intended for a memory-function. Even though,
the structure of R′ is such, that the governed dynamics is
orthogonal to ̺(q), the second-order spatial derivatives
describing diffusive processes in (1) cause a non-trivial
influence of the density evolution on the fast variables.
Cichocki and Hess were able to show that a further pro-
jection is possible and an additional one-particle reduc-
tion can be done by inserting the projector Qj = 1 − Pj ,
with Pj = |eiq·rj 〉 〈e−iq·rj |, in Ω. This was supported by
Kawasaki [15] within a more general approach. He showed
that generally in dissipative systems with detailed balance
a further projection can be performed. Considering Brow-
nian motion as an example, Kawasaki found the same re-
sults as in [14].

Following these authors, we define the irreducible
Smoluchowski operator

Ωirr := QD0

N∑

j=1

∂rj
Qj ·

(
∂rj

− βFj

)
Q. (18)

By exploiting that the particles are statistically equiva-
lent, one can relate the irreducible operator to the reduced
Smoluchowski operator

QΩQ = Ωirr −
D0β

2

N
qαqη |Qσ∗

αβ(q)〉 〈σηβ(q)Q|

= Ωirr −
D0β

2

N
|Qf∗

α(q)〉 〈fα(q)Q| . (19)

This can be done, since an expression as the one above
will later only appear in averages over all particles. The
irreducible operator in (19) decouples the time evolu-
tion from the slow dynamics of the longitudinal and
transverse forces, but, as Kawasaki noted [14, 15], Ci-
chocki and Hess only accounted for the longitudinal forces
in the continuation of their work. They neglected the
transverse components in (19) and assumed that Ω ≈

Ωirr− D0β2

N q2 |σ‖∗(q)〉 〈σ‖(q)| or equivalently, Ω ≈ Ωirr−
D0β2

N |f‖∗(q)〉 · 〈f‖(q)| holds; here f‖(q) = q (q ·f(q))/q2.
Looking at (19), this choice seems rather unnatural since
the transverse components, viz. σ⊥(q) or equivalently

f⊥(q) = q × (f(q) × q)/q2, are simply disregarded. We
proceed differently than [14,15], by arguing that all of the
stress components including the transverse ones have to
be considered in eq. (19). Our claim rests on the observa-
tion that the restriction to the longitudinal contributions
was artificial and the full tensorial structure of the stress
arises naturally, also e.g. in confined fluids [25]. Gratify-
ingly, our generalization leads to the same expression for
the stress autocorrelation as in overdamped Newtonian
and Langevin systems [5–7]. Furthermore, we will show in
sect. 5.1 that the memory function can be identified with
the viscosity.

Equation (19) leads to a relation between the reduced
and the irreducible resolvent which differs from the one in
refs. [14, 15].

R′(z) = Rirr(z)

(
1 −

D0β
2

N
qαqη |σ

∗
αβ〉 〈σηβ |R

′(z)

)
,

(20)
with Rirr(z) := Q[z − Ωirr]−1Q the irreducible resolvent.

So M̃‖ and M̃⊥ can be expressed in terms of a second set
of memory functions M‖ and M⊥ defined in analogy to
eq. (17). One gets

M̃‖(q, z) =
M‖(q, z)

1 + D0βq2

n M‖(q, z)
,

(21)

M̃⊥(q, z) =
M⊥(q, z)

1 + D0βq2

n M⊥(q, z)
,

with the irreducible memory kernel that reads explicitly

Mαβγδ(q, z) :=
β

V
〈σαβ(q)Rirr(z)σ∗

γδ(q)〉 . (22)

Note, that the symmetry relations (11) hold for the mem-
ory function as well. With the upper line of eq. (21), the
formally identical expression for the dynamic structure
factor from ref. [10] can be obtained

S(q, z) =
1

N
〈̺(q)R(z)̺∗(q)〉

=
Sq

z + D0q2

Sq
(1 + q2 D0β

n M‖(q, z))−1
. (23)

In the hydrodynamic limit, q → 0 and z → 0 such that
z/q2 = const., it describes the collective particle diffusion
with the osmotic diffusion coefficient D = D0/S0. In vis-
coelastic fluids, the memory kernel encoding a frequency
and wavenumber-dependent friction cannot be neglected
and approximations are required to find M‖(q, z) [19].

4.2 Projection operator decomposition of the stress
autocorrelation

In this section, an expression for the stress autocorrela-
tion shall be derived, including certain terms which can
then be interpreted as a coupling to the longitudinal and
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transverse displacement of the particles. Using the resol-
vent identity (13), one finds a first expression for the stress
autocorrelation:

Cαβγδ(q, z) = M̃αβγδ(q, z) +
S(q, z)

S2
q

n

β
δαβδγδ

−
S(q, z)

S2
q

D0qηqξ

[
δαβM̃ηξγδ(q, z) + M̃αβηξ(q, z)δγδ

]

+
S(q, z)

S2
q

D2
0β

n
qηqξqλqτM̃αβηξ(q, z)M̃λτγδ(q, z). (24)

In order to get the stress autocorrelation appropriate for
a Maxwellian viscoelastic fluid [6], one has to express the

reducible memory function M̃ in terms of the irreducible
one. Expressing the reduced dynamics with (20) twice
gives

M̃αβδγ =

Mαβδγ −
D0β

n
MαβηϑqηqλMζλγδ

(
δζϑ−

D0β

n
M̃ϑμξζqξqμ

)
,

(25)

where a commutation relation of M̃qqM was used fol-
lowing from the operator identity

[A + B]−1 = A−1
(
1 − B[A + B]−1

)

=
(
1 − [A + B]−1B

)
A−1. (26)

Note that the arguments will be suppressed from this
point on, if they reduce the clarity. The remaining re-
ducible memory function in the bracket of eq. (25) can be
decomposed into the longitudinal and transverse memory
function using eqs. (17) and (21). This gives

M̃αβδγ = Mαβδγ −
D0β

n
MαβηϑqηqλMζλγδ

×

(
qζqϑ

q2

1

1+ D0β
n q2M‖

+

(
δζϑ−

qζqϑ

q2

)
1

1+ D0β
n q2M⊥

)
.

(27)

By multiplying with S(q,z)
Sq

qT qT from the left, exploiting

that longitudinal and transverse components do not cou-
ple due to the spatial symmetries, and by inserting (23),
one obtains

S(q, z)

Sq
qαqβM̃αβγδ =

1

z + kBT
Sqγ0

+ q2z
nγ0

M‖
qαqβMαβγδ,

(28)

and an analogous expression for qγqδM̃αβγδ. To make the
obtained relations more handy, one can define two scalars:

K‖(q, z) :=
kBT

γ0 + kBT
zSq

q2 + q2

n M‖(q, z)
,

(29)

K⊥(q, z) :=
kBT

γ0 + q2

n M⊥(q, z)
.

Those quantities can be arranged in a matrix

Kαβ =
qαqβ

q2
K‖ +

(
δαβ −

qαqβ

q2

)
K⊥. (30)

In this way, one notices that K‖ and K⊥ can be ob-
tained from the expressions for the parallel and trans-
verse current autocorrelations, respectively, in a Langevin
system [5, 10] by neglecting the inertia term. Thus, the
matrix Kαβ agrees with the current autocorrelations of a
Langevin (or Newtonian) system in the overdamped ap-
proximation of the full dynamics. In order to interpret
Kαβ physically, it can be connected to either displacement
correlations [8] or to a force correlation matrix based on
eq. (6). Explicitly, using eqs. (24) and (27), one finds

Kαβ = −
1

Nγ2
0

〈fαR(z)fβ〉 + D0δαβ . (31)

Yet, keeping the current correlations in the following equa-
tions is remindful that stresses lead to particle motions
which affect the stresses in turn. Moreover, it leads to the
most concise equations.

Inserting (27), (28) in (24) gives the expression for the
stress autocorrelation:

Cαβγδ(q, z)=Mαβγδ +
S(q, z)

S2
q

n

β
δαβδγδ

−
1

Sqz

[
δαβMηξγδqξqηK‖+MαβηξqξqηK‖δγδ

]

−
β

n
MαβηϑqηKϑζ qλMζλγδ. (32)

This decomposition of the stress autocorrelation naturally
includes an exact contribution arising from the coupling
of the stress to the conserved variables, viz. the conserved
density in the present case which enters via the dynamic
structure factor S(q, z). Hydrodynamic stress fluctuations
result from particle density fluctuations. The strength of
the coupling is given by the inverse of the compressibility,
and their time dependence results from the collective par-
ticle diffusion described in eq. (23). The remainder first
consists of the memory kernel M which encodes random
forces and thus can be simplified in a Markovian approx-
imation in states with weak interactions. The decomposi-
tion up to now is the expected one within the Zwanzig-
Mori formalism. Yet, because of the coupling to stress fluc-
tuations in the reducible part of the Smoluchowski opera-
tor in eq. (19), a second contribution of order O(q2) arises
in the remainder. It is given by the two last terms on the
rhs of eq. (32), and the splitting of this contribution from
M , while not based on an exact principle, is aimed to de-
scribe slow stresses in high viscosity states. Equation (32),
which is an exact result within the projection operator
formalism, thus combines fundamentally and physically
motivated terms. In fluid states, the last two terms on
the rhs in eq. (32) appear negligible in the hydrodynamic
limit q → 0 compared to the other contributions. Yet,
in viscoelastic states, where the memory kernel becomes
large [26, 27], eq. (29) shows Kαβ ∝ 1/q2, and all terms
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contribute comparably including in the long-wavelength
limit. It is noteworthy that the stress correlations in the
generalized hydrodynamic limit, where all memory kernels
are evaluated at q = 0, including

Mαβγδ(0, z) = M‖(0, z)δαβδγδ

+M⊥(0, z)
(
δαγδβδ + δαγδγβ − 2δαβδγδ

)
, (33)

contain only two frequency-dependent quantities, the
global longitudinal and shear modulus introduced in
eq. (21) and being familiar from rheology [2].

The expression in eq. (32) is our central result and
equals the decomposition of the stress autocorrelation
found in Newtonian and Langevin systems with neglected
hydrodynamic interactions [5–7]. There, the appearance
of Kαβ arose from the coupling of the stress to the time
derivative of the particle displacement, viz. the velocity.
It is a conserved field in Newtonian fluids, and was in-
cluded in the set of slow variables in the Langevin-case
as well. The reason for this was, that the correlations of
displacements should be long-ranged and long-lived in the
solid phase and close to the point of solidification. This
holds for systems immersed in a solvent as well. While
the current is no independent quantity in the overdamped
Smoluchowski-dynamics, this coupling here is recovered
from the proper irreducible dynamics where stress fluctua-
tions are projected out. Again, the reasoning is that these
fluctuations become slow in a viscoelastic state close to
solidification. In refs. [5–7], this was modeled by a single-
relaxation time approximation for the memory kernel M ,
which introduced a description of spatial structures into
Maxwell’s model of a viscoelastic fluid [28]. As most im-
portant result, it recovered the long-ranged stress corre-
lations in solid states described within linearized elastic-
ity theory by Eshelby [4]. As refs. [5–7, 29] contain the
pertinent results including the overdamped limit which is
considered here, this discussion shall not be repeated.

Note, that including hydrodynamic interactions would
give rise to additional terms decaying with time as it was
worked out in [5]. Also, hydrodynamic long time tails and
other relaxational processes will show up in the memory
kernels and will differ depending on the damping of the
microscopic motion. Since we are interested in the arising
static properties, this discussion shall not be given here.

5 Particle flux and viscosity

It has been argued, that the particle displacement has to
be reintroduced in the overdamped dynamics, even though
the description in the Smolochowski dynamics is indepen-
dent of any momenta. This raises the question on how
to define the particle flux in such systems. First, we con-
sider the current as a linear response quantity. Via this
approach, we are able relate the found memory function
to the viscosity, following [10]. Secondly, we coarse grain
the Brownian motion directly and define the current from
the Wiener respectively Brownian equations of motion.
Both approaches yield the same result.

5.1 Linear response formalism

Applying a small external velocity field vext(r, t) gives an
additional term in the Smoluchowski equation (1) [2, 10]

δΩ = −
N∑

j=1

∂

∂rj
· vext(rj , t)

= −
1

(2π)3

N∑

j=1

∂

∂rj
·

∫
dq′eiq′·rj vext(q′, t), (34)

where the derivatives act on the distribution function.
vext(q′, t) is the Fourier mode of the perturbation, which
is essentially the Stokes’ friction force with opposite sign.
The linear response theory [18] gives for the expectation
value of an arbitrary scalar dynamic variable

〈A(q, t)〉lr =−
β

V

∫ t

−∞

dt′〈A(q)eΩ(t−t′)σ∗
αβ(q)〉 iqαvext

β (q, t),

(35)

where 〈. . .〉
lr

denotes the average over a time-dependent
distribution function in a linear approximation, and aver-
ages on the rhs are performed in the equilibrium, unper-
turbed system. This result is a manifestation of the fluc-
tuation dissipation theorem. Translational invariance dic-
tates that q′ = q holds. The Green’s function φαβ(t−t′) =
β
V 〈A(q)eΩ(t−t′)σ∗

αβ(q)〉Θ(t−t′) is an after-effect function,
giving the response of A at time t to the gradient of the
velocity field at time t′. Note that (35) can easily be gen-
eralized to non-scalar quantities. Equation (35) gives the
Kubo relation [12,30]

〈σαβ(q, t)〉lr = −

∫ t

−∞

dt′Cαβηγ(q, t − t′)iqηvext
γ (q, t′).

(36)
Martin [16] or respectively Kadanoff and Martin [31] sug-
gested that the system can still be described exclusively
by system intrinsic or local variables for small perturba-
tion. This suggests to express the response function, being
a functional derivative of the responding quantity with
respect to the gradient of the external velocity field, in
terms of functional derivatives with respect to internal
fields. The goal here is to identify the memory kernel as
the response of Qσ(q) to a system inherent variable f . We
will accomplish that and argue that f can be interpreted
as the gradient of the local current, meaning fαβ = ∇αjβ .
Then, following Martin and Kadanoff, the Markovian limit
of the memory kernel can be identified with the transport
coefficients of the hydrodynamic description.

Equation (35) motivates the definition of the response
function of a dynamic variable A to the gradient of vext

via the functional derivative

δ 〈A(q, t)〉
lr

δ iqvext(q, t′)
= −

β

V
〈A(q)eΩ(t−t′)σ∗(q)〉Θ(t− t′). (37)

The external perturbation can always be considered as a
superposition of monochromatic plane waves, which fac-
torizes in the linear response [21]. It is therefore sufficient
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to consider a single plane wave. This motivates a Fourier
transformation F [g(t)](ω) =

∫ ∞

−∞
dte−iωtg(t), leading to

∂ 〈A(q, ω)〉
lr

i∂qvext(q, ω)
=

β

V
〈A(q)R(z = −iω)σ∗(q)〉 , (38)

where Cauchy’s integral theorem was used. Note the par-
tial instead of the functional derivative in the frequency
domain.

Motivated by [10, 14], we want to identify the mem-
ory kernel with the frequency and wavevector-dependent
η(q, z = −iω) viscosity, which is defined as the response
of the out-of-equilibrium stress to the local current. But,
the local current j has to be defined as a linear response
quantity, due to the overdamped description. We take

jϑ(q, t) = vext
ϑ (q, t) − iqτD0

β

n
〈στϑ(q, t)〉

lr
(39)

as a candidate. This ansatz translates into assuming that
the local current is given by the external velocity field
screened by the stress which is built up by the same per-
turbation. The agenda now is to show

ηαβγδ(q,−iω) =
∂ 〈Qσαβ(q,−iω)〉

i∂qγjδ(q,−iω)
= Mαβγδ(q,−iω),

(40)
meaning that the memory function can be regarded as
a generalized Green-Kubo transport coefficient which, in
accordance with [10, 14], equals the viscosity tensor. This
would support our claim, that M is indeed the correct
Memory function.

The interpretation of jϑ representing the local current
is based on the fact, that the divergence of (39) fulfils the
continuity equation in the linear response

iq · j(q, t) =
1

n
∂t 〈̺(q, t)〉

lr
. (41)

To set up the continuity equation, one has to calculate
the time derivative of the expectation value of the local
density ̺(q, t) in the linear response

∂t 〈̺(q, t)〉
lr

= 〈̺(q, t)Ω〉
lr

+ 〈̺(q)δΩ(t)〉
eq

. (42)

Here δΩ represents again the perturbed Smoluchowski op-
erator. The superscript eq (written only in this section)
shall indicate that the average is calculated using the equi-
librium distribution as denoted in eq. (3). This follows
from the decomposition ∂tρ(Γ, t) = Ωρ(Γ, t) + δΩρeq(Γ )
which is valid in the linear approximation. One gets for
the second term

〈̺(q)δΩ〉
eq

= −inq · vext(q, t). (43)

For the first term, one finds

〈̺(q, t)Ω〉
lr

= −qαqβD0β 〈σαβ(q, t)〉
lr

, (44)

showing that (39) can indeed be interpreted as the local
current. In order to relate the memory function and the

response of Qσ(q) to the local current, we first analyse its
response to the gradient of the external field. Using the
operator identities (26) and (19), one finds

∂ 〈Qσαβ〉
lr

i∂qγvext
δ

=
β

V
〈σαβQR(z = −iω)σ∗

γδ〉

= Mαβφϑ

(
δφγδϑδ −

D0β

n
qφqτ

β

V
Cϑτγδ

)
. (45)

Looking at (39), one sees that the term in the bracket

equals
i∂qφjϑ

i∂qγvext
δ

. Exploiting the chain rule, (45) becomes

(
Mαβφϑ−

∂ 〈Qσαβ〉
lr

i∂qφjϑ

)
i∂qφjϑ

i∂qγvext
δ

=
∂ 〈Qσαβ〉

lr

i∂qγvext
δ

∣∣∣∣∣
iq·j=const

.

(46)
Up to this point, our argumentation was basically, that we
need to reintroduce the local current in our set of distin-
guished quantities, even though it is not a dynamical vari-
able in the present framework. Relying on Martin’s and
Kardanoff’s suggestion once more, and keeping in mind
that the density is the only other distinguished variable in
our model, we postulate that the right-hand side of (46)
vanishes. An external velocity field causes an internal par-
ticle current, which then builds up stresses. The vanishing
of the right-hand side of (46) then requires the bracket on
the left-hand side to vanish as well.

So the memory kernel can indeed be interpreted as
the response function of the projected stress tensor to the
local current. Meaning that the memory function can be
identified with a generalized Green-Kubo transport coeffi-
cient, which is the viscosity tensor in the present case (40).
In the limit of long wavelengths and small frequencies, it
approaches the viscosity as the irreducible dynamics sim-
plifies, viz. Rirr(z) → QR(z)Q for q → 0; this follows from
eq. (32). The expected Green-Kubo relation holds [21].

5.2 Hydrodynamic equations

The hydrodynamic description of the slow dynamics of
a Brownian system shall be obtained by coarse-graining
the equations of motion, being the set of overdamped
Langevin, respectively Brownian or Wiener equations [2]

γ0

(
ṙj(t) − vext(rj , t)

)
= Fj(Γ ) + fj(t), (47)

where the random noise fj(t) is Gaussian and white, and
obeys 〈fj(t),fk(t′)〉 = kBTγ0δ(t − t′)δjk. Here, Fj(Γ )
is the total force acting on the j-th particle caused by
the interaction with the remaining colloids. Equation (47)
describes particles performing random walks relative to
a flowing background. The difference ṙj(t) − vext(rj , t)
gives the non-affine motion. Using the Kramers-Moyal ex-
pansion [18] one verifies that the evolution of the system
is equivalent to the one described by the Smoluchowski-
equation (1). Using a coarse-graining approach [32] we de-
fine the density field as

̺(r, t) =

N∑

j=1

φ(r − rj(t)) (48)
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and the particle flux as

j(r, t) =

N∑

j=1

ṙj(t)φ(r − rj(t)). (49)

The coarse-graining function φ(r) can be pictured as being
Gaussian with the width w and normalization

∫
drφ(r) =

1. A smooth φ(r) is considered in order to prepare the ap-
plication of the approach to simulations, while a Dirac
delta leads back to the field definitions in the earlier sec-
tions such as eq. (5). Note that the density in eq. (48)
obeys the continuity equation, ∂t̺ + ∇ · j = 0. Inserting
the Brownian equation of motion (47) into the definition
of the flux (49) and using Newton’s third law gives the
coarse-grained stress tensor

−∇ · σ(r, t) := γ0

(
j(r, t) − nvext(r, t)

)
−F(r, t) =

1

2

∑

j �=k

Fjk [φ(r − rj(t)) − φ(r − rk(t))] . (50)

The fluctuation force F =
∑

fj(t)φ(r − rj(t)) will be ne-
glected in the following. Note, that the equivalence in (50)
is not exact. We rather used a saddlepoint approximation
for the external velocity field. Correction terms will arise if
the external velocity varies rapidly on the scale of the par-
ticle interactions. Equation (50) defines the coarse-grained
stress tensor up to an addable, divergence free term

σ(r, t) =
1

2

∑

k �=j

rjk(t)Fjk(Γ )

∫ 1

0

dsφ
(
r − rj(t) + srjk(t)

)
.

(51)
The diagonal elements of the stress tensor are used to de-
fine the local pressure p. This motivates the decomposition

σ(r, t) = p(r, t)11 − δσ̃(r, t), (52)

where the deviatoric stress tensor δσ̃(r, t) is caused by
viscous forces. The pressure varies with the local den-
sity [10,21] according to p(r, t) = peq + kBT

S0

δ̺(r, t), where

nkBT/S0 is the inverse isothermal compressibility. Assum-
ing local thermodynamic equilibrium, the off-diagonal el-
ements of the stress tensor are related to a perturbing
external velocity field in the hydrodynamic limit of small
wavevectors. This motivates the following identification to
connect the hydrodynamic description to the one based on
correlation functions (sect. 4):

δσ̃(r, t) = 〈Qσ (q → 0, t)〉
lr
(r,t) . (53)

The notation . . . (q → 0, t)〉lr(r,t) implies that the coarse-

graining size w is so large that in the evaluation of linear
response functions all particle correlations have been inte-
grated and that a spatial variation only remains because
of the slow variation of the external fields. Note that the
signs in (52) and (53) are motivated by the linear response
consideration (35).

Following [10], we define the viscosity as a generalized
transport coefficient for the stress fluctuations

δσ̃αβ(r, t) =

∫ t

−∞

dt′ηαβγδ(t − t′)∇γjδ(r, t). (54)

As suggested by Martin and Kadanoff [16, 31], this con-
stitutive equation defines the viscosity via the response of
the stress to the gradient of the internal current field. It
is more convenient to express the response function again
in the frequency domain

n
δ (δσ̃αβ(r, z))

δ∇γjδ(r′, z)
= ηαβγδ(z)δ(r − r′). (55)

Note, that the viscosity is defined in the limit q → 0. With
this and eq. (50) we regain the constitutive equation for
the viscosity (40) from the projection formalism approach
via the present hydrodynamic framework (the fluctuation
force is neglected). Equation (45) now reads

δ(δσ̃αβ(r, z))

δ∇γvex
δ (r′, z)

=
δ(δσ̃αβ(r, z))

δ∇ξjτ (r′′, z)

δ∇ξjτ (r′′, z)

δ∇γvex
δ (r′, z)

=

ηαβξτ (z)δ(r − r′′)

[
δξγδτδδ(r − r′)

−
D0

Sqn
∇ξ

δ∇τp(r′′, z)

δ∇γvex
δ (r′, z)

−∇ξ
δ∇ζδσ̃ζτ (r′′, z)

δ∇γvex
δ (r′, z)

]
. (56)

Equations (50) and (56) (in the Markovian limit) lead to
the final hydrodynamic equation for the particle current

j(r, t) −
1

nγ0
∇ (η : ∇ j(r, t)) = nvext(r, t) −

1

γ0
∇p(r, t).

(57)
This is equivalent to eq. (39). So, the hydrodynamic ap-
proach gives the same result as the Zwanzig-Mori projec-
tion formalism. This supports the claim that the memory
function (22) is indeed the correct one, since it can be
interpreted as the viscosity in both approaches.

The hydrodynamic equation (57) generalizes the one
for an incompressible fluid given in [5], which was recently
tested in simulations of the Stokes-friction [33]. Together
with the conservation law of the density, it captures the
linearized generalized hydrodynamic regime of a fluid of
interacting Brownian particles. In the true hydrodynamic
limit, density diffusion results from the leading gradient,
j(r, t) − nvext(r, t) → −(kBT/γ0S0)∇̺(r, t). In [6,7] fol-
lowing the strategy going back to Maxwell, the approxi-
mation of generalized hydrodynamics capturing viscoelas-
tic Newtonian fluids was discussed. This generalized hy-
drodynamics can easily be transferred to eq. (57) assum-
ing a frequency dependence of the shear and longitudi-
nal viscosities in η. (This is equivalent to keeping the
convolution in eq. (54).) In the solid limit, where the
velocity field is the time derivative of a displacement
field, j(r, t) = nu̇(r, t), this leads to the linearized static
equations of elasticity theory ∇(δσ̃(r, t) − p(r, t)11) =
−γ0nvext, with the Hookean stress of an isotropic solid,

δσ̃αβ = (M
‖
∞−2M⊥

∞)(∇·u)δαβ +M⊥
∞(∇αuβ +∇βuα) and

the rhs as an external source of forcing [34]. Here, M
‖
∞ and

M⊥
∞ are the elastic contributions in the longitudinal and

shear modulus. It is the potential to bridge between both
limits, the hydrodynamic fluid and the Hookean solid one,
which we consider the strength of the presented general-
ized hydrodynamics.
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6 Conclusions

Employing the projection operator formalism, we decom-
posed the stress autocorrelation in Brownian systems into
a structure that formally agrees with the one previously
obtained in Newtonian [6, 7] or Langevin systems [5]. In
those systems the dynamical coupling between stresses
and momentum currents was considered, while parti-
cle momenta are not among the dynamical variables in
the Brownian case. This interpretation is based on the
fact that in the final expression for the correlation func-
tion (32) a matrix Kαβ appears which is identical to the
autocorelation of the current in the overdamped Langevin
system. So, as one would expect, it makes no difference
whether the calculation is done in a general Langevin sys-
tem with the Fokker-Planck operator and the overdamped
approximation is made at the end, or whether one directly
starts in the overdamped Smoluchowski system. In both
cases, the same coupling of the stress to the current, or re-
spectively to the time derivative of the displacement field,
occurs. It has to be included in a generalized hydrody-
namics which aims to capture viscoelastic states and the
solid limit [6]. Starting on the level of the Smoluchowski
equation elaborates the role of stress correlations, which
manifestly enter the definition of the irreducible dynam-
ics.

Furthermore, we generalized the consideration by Ci-
choki and Hess [14] and Kawasaki [15] for the memory
function of the dynamic structure factor by including
transverse contributions as well. With this, we were able
to generalize their linear response argument. The obtained
memory function gives the response of the stress to the in-
ternal particle current and thus, following Kadanoff and
Martin [16, 31], can be interpreted as the generalized vis-
cosity tensor. Additionally, this result was obtained via
a hydrodynamic approach. The final hydrodynamic equa-
tion for the particle current is consistent with the one
obtained in the linear response formalism.

As additional result, we obtained the hydrodynamic
equation for the particle current in a Brownian fluid. The
equation can be considered the analogue of the Navier-
Stokes equation for a Newtonian fluid. Determining the
particle current j(r, t) is also the aim of dynamic den-
sity functional theory for Brownian systems (DDFT) [35].
Its expression reads γ0j(r, t) = −̺(r, t)∇ δF

δ̺(r,t) where F

is the free energy functional. Differently from the coarse-
grained equation (57), the density field in DDFT is an
ensemble averaged quantity that varies on microscopic
length scales. Power functional theory [36] is a gener-
alization of DDFT which appears closer in structure to
eq. (57) especially in the velocity gradient formalism [37],
and should be compared in the long wavelength limit.
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