

## Discrete-time k-positive linear systems

Rola Alseidi Michael Margaliot Jürgen Garloff

Konstanzer Schriften in Mathematik

Nr. 389, März 2020

ISSN 1430-3558

Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-unelg2ub4v2n0

© Fachbereich Mathematik und Statistik Universität Konstanz Fach D 197, 78457 Konstanz, Germany

# Discrete-time k-positive linear systems

Rola Alseidi, Michael Margaliot, and Jürgen Garloff

Abstract—Positive systems play an important role in systems and control theory and have found many applications in multiagent systems, neural networks, systems biology, and more. Positive systems map the nonnegative orthant to itself (and also the nonpositive orthant to itself). In other words, they map the set of vectors with zero sign variations to itself. In this note, discretetime linear systems that map the set of vectors with up to k-1sign variations to itself are introduced. For the special case k = 1these reduce to discrete-time positive linear systems. Properties of these systems are analyzed using tools from the theory of signregular matrices. In particular, it is shown that almost every solution of such systems converges to the set of vectors with up to k-1 sign variations. It is also shown that these systems induce a positive dynamics of k-dimensional parallelotopes.

Index Terms—Sign-regular matrices, cones of rank k, exterior products, compound matrices, stability analysis.

#### 1. INTRODUCTION

The discrete-time (DT) linear time-varying (LTV) system

$$x(i+1) = A(i)x(i), \quad x(0) = x_0 \in \mathbb{R}^n,$$
 (1)

is called *positive* if and only if (iff) it maps the nonnegative orthant

$$\mathbb{R}^{n}_{+} := \{x \in \mathbb{R}^{n} : x_{i} \geq 0 \text{ for all } i \in \{1, \dots, n\}\}$$

to itself. This holds iff  $A(i) \ge 0$  (i.e., all the entries of A(i) are nonnegative) for all  $i \ge 0$ . Note that a positive system also maps the nonpositive orthant  $\mathbb{R}^n_- := -\mathbb{R}^n_+$  to itself. In other words, it maps the set of vectors with zero sign variations to itself. The system (1) is called *strongly positive* if it maps  $\mathbb{R}^n_+ \setminus \{0\}$  to  $\operatorname{int}(\mathbb{R}^n_+)$  (the interior of  $\mathbb{R}^n_+$ ).

Positive systems appear naturally when the state-variables represent quantities that can only take nonnegative values, e.g., probabilities, concentrations of molecules, densities of particles, etc. Positive LTVs play an important role in linear systems and control theory, see, e.g., [9], [29], and via *differential analysis* [13], [23], also in the analysis of nonlinear systems. To explain this, consider the *nonlinear* time-varying system

$$x(i+1) = f(i, x(i)),$$
(2)

and suppose that its trajectories evolve on a convex statespace  $\Omega \subseteq \mathbb{R}^n$ , and that f is  $C^1$  with respect to x. For  $y \in \Omega$ ,

The research of MM is supported in part by research grants from the Israel Science Foundation and the US-Israel Binational Science Foundation.

Rola Alseidi and Jürgen Garloff are with the Department of Mathematics and Statistics, University of Konstanz, Germany. Jürgen Garloff is also with the Institute for Applied Research at the University of Applied Sciences / HTWG Konstanz.

Michael Margaliot (Corresponding Author) is with the School of Electrical Engineering, Tel-Aviv University, Tel-Aviv 69978, Israel. E-mail: michaelm@eng.tau.ac.il

let x(i, y) denote the solution of (2) at time *i* for x(0) = y. Pick  $a, b \in \Omega$  and let

$$z(i) := x(i,a) - x(i,b),$$

that is, the difference at time i between the trajectories emanating from a and from b at time zero. Then

$$z(i+1) = f(i, x(i, a)) - f(i, x(i, b)) = J^{ab}(i)z(i)$$
(3)  
with  $J^{ab}(i) := \int_0^1 \frac{\partial}{\partial x} f(i, rx(i, a) + (1-r)x(i, b)) dr.$ 

If  $J^{ab}(i) \ge 0$  for all  $a, b \in \Omega$  and all  $i \ge 0$ , then the *variational system* (3) is a positive LTV, and this has important consequences for the behavior of (2). Roughly speaking, almost every bounded trajectory of a smooth strongly positive system converges to a periodic trajectory (a cycle) [28]. This is quite different from the behavior in the continuous-time case, where almost every bounded trajectory of the nonlinear system converges to the set of equilibria [34].

The dynamics of a DT positive LTV maps the set of vectors with zero sign variations to itself. A natural question is: what systems map the set of vectors with up to k-1 sign variations to itself? We call such a system a DT k-positive system. Then a 1-positive system is just a positive system, but for k > 1 the system may be k-positive yet not positive.

Continuous-time (CT) k-positive systems have been recently defined and analyzed in [35]. In the CT and time-invariant case, i.e.,  $\dot{x}(t) = Ax(t)$ , the matrix exponential of A should satisfy for all time a property called strict sign-regularity of order k, for the definition see the next paragraph, and this can be tested easily by checking sign conditions on the entries of A itself [35]. In the DT case studied here, the matrix A itself must have this property, and verifying this is nontrivial.

A matrix  $A \in \mathbb{R}^{n \times m}$  is called *sign-regular of order* k (denoted by  $SR_k$ ) if all its minors of order k, i.e., determinants of its  $k \times k$  submatrices, are nonnegative or all are nonpositive. For example, if all the entries of A are nonnegative then it is  $SR_1$ . A matrix is called *strictly sign-regular of order* k (denoted by  $SSR_k$ ) if it is  $SR_k$ , and all the minors of order k are non-zero. In other words, all minors of order k are non-zero and have the same sign.<sup>1</sup> To refer to the common sign of the minors of order k, we introduce the *signature*  $\epsilon_k \in \{-1, 1\}$ .

For example, the matrix

$$A := \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 0.1 \\ 1 & 0 & 0 & 2 \end{bmatrix}$$

is  $SR_1$  (but not  $SSR_1$  as some entries are zero). It has

<sup>1</sup>We note that the terminology in this field is not uniform and some authors refer to such matrices as *sign-consistent of order* k.

both positive and negative 2-minors (e.g.,  $det(\begin{bmatrix} 1 & 2\\ 0 & 1 \end{bmatrix}) = 1$ ,  $det(\begin{bmatrix} 1 & 2\\ 1 & 0 \end{bmatrix}) = -2$ ), so it is not  $SR_2$ . All its 3-minors are positive, so it is  $SSR_3$  with signature  $\epsilon_3 = 1$ , and det(A) > 0, so it is  $SSR_4$  with  $\epsilon_4 = 1$ .

After the first consideration of  $SR_k$  matrices in [20], these matrices have been the subject of only a few studies. In Ref. [1], the authors analyze the spectral properties of nonsingular matrices that are  $SSR_k$  for a specific value of k. These results are extended to matrices that are  $SSR_k$  for several values of k, for example for all odd k.

A matrix  $A \in \mathbb{R}^{n \times m}$  is called [strictly] sign-regular ([S]SR) if it is [S]SR<sub>k</sub> for all  $k = 1, ..., \min\{n, m\}$  [26], [27, p. 86]. The most important examples of SR [SSR] matrices are the totally nonnegative (TN) [totally positive (TP)] matrices, that is, matrices with all minors nonnegative [positive]. Such matrices have applications in numerous fields including approximation theory, combinatorics, probability theory, computer aided geometric design, differential and integral equations, and more [8], [16], [20], [27].

A very important property of SSR matrices is that multiplying a vector x by such a matrix cannot increase the number of sign variations in x [16]. To explain this variation diminishing property (VDP), we introduce some notation. For  $y \in \mathbb{R}^n \setminus \{0\}$ , let  $s^-(y)$  denote the number of sign variations in y after deleting all its zero entries with  $s^-(0)$ defined as zero. For  $y \in \mathbb{R}^n$ , let  $s^+(y)$  denote the maximal possible number of sign variations in y after each zero entry is replaced by either +1 or -1. For example, for n = 4and  $y = \begin{bmatrix} 1 & -1 & 0 & -\pi \end{bmatrix}^T$  (where the superscript T denotes transposition), we have  $s^-(y) = 1$  and  $s^+(y) = 3$ . Obviously,

$$0 \le s^{-}(y) \le s^{+}(y) \le n-1 \text{ for all } y \in \mathbb{R}^{n}.$$
(4)

The first important results on the VDP of matrices were obtained by Fekete and Pólya [10] and Schoenberg [32]. Later on, Gantmacher and Krein [16, Chapter V] elaborated rather completely the various forms of VDPs and worked out the spectral properties of SR matrices. Two important examples of such VDPs are: if  $A \in \mathbb{R}^{n \times m}$   $(m \leq n)$  is SR and of rank m then

$$s^{-}(Ax) \leq s^{-}(x)$$
 for all  $x \in \mathbb{R}^{m}$ ,

whereas if A is SSR then

$$s^+(Ax) \leq s^-(x)$$
 for all  $x \in \mathbb{R}^m \setminus \{0\}$ 

Thus, if A is SSR then both  $s^{-}(x(i))$  and  $s^{+}(x(i))$  are integer-valued functions that do not increase along solutions of x(i+1) = Ax(i).

For 
$$k \in \{1, ..., n\}$$
, let

$$P^{k}_{-} := \{ z \in \mathbb{R}^{n} : s^{-}(z) \le k - 1 \}, P^{k}_{+} := \{ z \in \mathbb{R}^{n} : s^{+}(z) \le k - 1 \}.$$
(5)

Then positive systems map the set  $P_{-}^1$  to  $P_{-}^1$ , whereas strongly positive systems map  $P_{-}^1 \setminus \{0\}$  to  $P_{+}^1$ . This naturally leads to the question: which linear systems map  $P_{-}^k$  to  $P_{-}^k$  and which map  $P_{-}^k \setminus \{0\}$  to  $P_{+}^k$ ? In this note, we define and analyze

such systems, called DT k-positive linear systems. We show that such systems have interesting dynamical properties that generalize the properties of positive systems.

The remainder of this note is organized as follows. In the next section, we review notations, definitions, and basic properties that will be used later on. Section 3 defines DT k-positive linear systems and analyzes their properties. The final section concludes. In passing we note that our results are part of a growing body of research on the applications of sign-regularity (and, in particular, total positivity) to dynamical systems [1], [4], [21], [24], [33], [35], [?].

#### 2. PRELIMINARIES

This section is divided into three subsections. Subsections 2-A and 2-B introduce definitions and notations needed later on. Subsection 2-C reviews the structure of the invariant sets  $P_{+}^{k}$ ,  $P_{-}^{k}$ .

#### A. Basic notation and definitions

For an integer  $n \ge 1$  and  $k \in \{1, \ldots, n\}$ , let  $Q_{k,n}$  denote the set of all strictly increasing sequences of k integers chosen from  $\{1, \ldots, n\}$ . For example,  $Q_{2,3} = \{12, 13, 23\}$ .

For  $A \in \mathbb{R}^{n \times m}$ ,  $\alpha \in Q_{k,n}$ , and  $\beta \in Q_{j,m}$ , we denote the submatrix of A lying in the rows indexed by  $\alpha$  and columns indexed by  $\beta$  by  $A[\alpha, \beta]$ . Thus,  $A[\alpha, \beta] \in \mathbb{R}^{k \times j}$ . If k = j then we set

$$A(\alpha|\beta) := \det(A[\alpha,\beta]),$$

that is, the minor corresponding to the rows indexed by  $\alpha$  and columns indexed by  $\beta$ . We often suppress the brackets associated with an index sequence if we enumerate its entries explicitly.

#### B. Multiplicative compound

Let  $A \in \mathbb{R}^{n \times m}$ . For any  $k \in \{1, \dots, \min\{n, m\}\}$ , the *kth* multiplicative compound of A is the  $\binom{n}{k} \times \binom{m}{k}$  matrix that includes all the minors of order k of A organized in lexicographic order. For example, if  $A \in \mathbb{R}^{3 \times 3}$  then

$$A^{(2)} = \begin{bmatrix} A(12|12) & A(12|13) & A(12|23) \\ A(13|12) & A(13|13) & A(13|23) \\ A(23|12) & A(23|13) & A(23|23) \end{bmatrix}$$

Note that  $A^{(1)} = A$  and that if m = n then  $A^{(n)} = \det(A)$ . Note also that A is  $SSR_k$  [ $SR_k$ ] if either  $A^{(k)} > 0$  or  $A^{(k)} < 0$  [either  $A^{(k)} \ge 0$  or  $A^{(k)} \le 0$ ].

The Cauchy-Binet Formula [8, Theorem 1.1.1] provides an expression for the minors of the product of two matrices. Pick  $A \in \mathbb{R}^{n \times p}$  and  $B \in \mathbb{R}^{p \times m}$ . Let C := AB. Pick  $k \in \{1, \ldots, \min\{n, p, m\}\}$ ,  $\alpha \in Q_{k,n}$ , and  $\beta \in Q_{k,m}$ . Then

$$C(\alpha|\beta) = \sum_{\gamma \in Q_{k,p}} A(\alpha|\gamma) B(\gamma|\beta).$$
(6)

For n = p = m and k = n this reduces to the familiar formula det(AB) = det(A) det(B). Note that (6) implies that

$$(AB)^{(k)} = A^{(k)}B^{(k)} \tag{7}$$

for all  $k \in \{1, ..., \min\{n, p, m\}\}$ . This justifies the term multiplicative compound.

### C. Sets of vectors with sign variations

Consider the sets defined in (5). It is well-known (see, e.g., [27, Chapter 3]) that if  $v^i \in \mathbb{R}^n$ , i = 1, 2, ... is a set of vectors such that  $v := \lim_{i \to \infty} v^i$  exists then

$$s^{-}(v) \le \liminf_{i \to \infty} s^{-}(v^{i}) \le \limsup_{i \to \infty} s^{+}(v^{i}) \le s^{+}(v).$$
(8)

Intuitively speaking, this is because we only need to consider what happens when the limit vector v includes zero entries, and such entries can only decrease  $s^-$  and can only increase  $s^+$ .

The next useful result is well-known, but for the sake of completeness we include its proof in the Appendix.

**Fact 1.** The set  $P_{-}^{k}$  is closed and

$$P_{+}^{k} = \operatorname{int}(P_{-}^{k}). \tag{9}$$

It is clear that

$$P_{-}^{1} = \mathbb{R}_{+}^{n} \cup \mathbb{R}_{-}^{n}, \quad P_{+}^{1} = \operatorname{int}(\mathbb{R}_{+}^{n}) \cup \operatorname{int}(\mathbb{R}_{-}^{n}).$$
 (10)

Also, the sets are nested, as

$$P_{-}^{1} \subset P_{-}^{2} \subset \dots \subset P_{-}^{n} = \mathbb{R}^{n},$$
  

$$P_{+}^{1} \subset P_{+}^{2} \subset \dots \subset P_{+}^{n} = \mathbb{R}^{n}.$$
(11)

If  $x \in P_{+}^{k}$  then  $rx \in P_{-}^{k}$  for all  $r \in \mathbb{R}$ , and if  $x \in P_{+}^{k}$  then  $sx \in P_{+}^{k}$  for all  $s \in \mathbb{R} \setminus \{0\}$ , so both  $P_{-}^{k}$  and  $P_{+}^{k} \cup \{0\}$  are cones. Yet, in general  $P_{-}^{k}$  and  $P_{+}^{k}$  are *not* convex sets. For example, for n = 2 and the vectors  $x := \begin{bmatrix} 2 & 0 \end{bmatrix}_{T}^{T}$ ,  $y := \begin{bmatrix} 0 & -2 \end{bmatrix}^{T}$ , we have  $x, y \in P_{-}^{1}$  yet  $\frac{x}{2} + \frac{y}{2} = \begin{bmatrix} 1 & -1 \end{bmatrix}_{T}^{T} \notin P_{-}^{1}$ . Recall that a set  $C \subseteq \mathbb{R}^{n}$  is called *a cone of rank k* [22] if

Recall that a set  $C \subseteq \mathbb{R}^{n}$  is called a cone of rank k [22] (i) C is closed;

(ii)  $x \in C$  implies that  $rx \in C$  for all  $r \in \mathbb{R}$ ;

(iii) C contains a linear subspace of dimension k and no linear subspace of higher dimension.

For example,  $\mathbb{R}^2_+ \cup \mathbb{R}^2_-$  (and more generally,  $\mathbb{R}^n_+ \cup \mathbb{R}^n_-$  [15]) is a cone of rank 1. A cone *C* of rank *k* is called *solid* if its interior is non empty, and *k*-solid if there is a linear subspace *W* of dimension *k* such that  $W \setminus \{0\} \subseteq int(C)$ ; *k*-solid cones are useful in the analysis of dynamical systems [11], [12], [14], [31]. Roughly speaking, if a trajectory of the system is confined to an invariant set *C* that is a *k*-solid cone then the trajectory can be projected onto a *k*-dimensional subspace contained in *C*. If this projection is one-to-one then the trajectory is topologically conjugate to a trajectory of a *k*-dimensional dynamical system.

It was shown in [35] (see also [22]) that for any  $k \in \{1, \ldots, n-1\}$ , the set  $P_{-}^{k}$  is a k-solid cone, and that its complement

$$(P_{-}^{k})^{c} := \operatorname{clos}(\mathbb{R}^{n} \setminus P_{-}^{k})$$

is an (n-k)-solid cone. This implies, in particular, that there exists a k-dimensional subspace  $W^k$  such that  $W^k \subseteq P_-^k$ , and that there is no (k+1)-dimensional subspace contained in  $P_-^k$ . For example, let  $e^i \in \mathbb{R}^n$  denote the vector with all entries zero, except for entry *i* that is one. Then the k-dimensional subspace span $\{e^1, \ldots, e^k\}$  is contained in  $P_-^k$ .

We can now introduce and analyze a new class of DT linear systems.

## 3. Discrete-time k-positive linear systems

In this section, we define a k-positive DT linear system. We then prove two properties of such systems. In Subsection 3-A, we use the spectral properties of nonsingular  $SSR_k$  matrices to prove the k-exponential separation property. In Subsection 3-B, we analyze the dynamics of exterior products of solutions.

**Definition 1.** Consider the DT LTV (1) with every matrix A(i) nonsingular. The system is called k-positive if it maps  $P_{-}^{k}$  to  $P_{-}^{k}$ . It is called strongly k-positive if it maps  $P_{-}^{k} \setminus \{0\}$  to  $P_{+}^{k}$ .

Note that (10) implies that a [strongly] positive system is a [strongly] 1-positive system. Note also that since  $P_+^k = int(P_-^k)$ , both  $P_-^k$  and  $P_+^k$  are invariant sets of a strongly k-positive system.

**Theorem 1.** The system (1) is a [strongly] k-positive system iff A(i) is  $[S]SR_k$  for all  $i \ge 0$ .

*Proof:* Thm. 1 in [4] shows that a nonsingular matrix  $A \in \mathbb{R}^{n \times n}$  is  $SSR_k$  iff for any  $x \in \mathbb{R}^n \setminus \{0\}$  with  $s^-(x) \le k-1$ , we have  $s^+(Ax) \le k-1$ . A standard continuity argument [35] shows that A is  $SR_k$  iff for any  $x \in \mathbb{R}^n \setminus \{0\}$  with  $s^-(x) \le k-1$ , we have  $s^-(Ax) \le k-1$ .

For the case k = 1 this is a generalization of [strongly] positive linear systems. For example, a system is typically defined as strongly positive if all the entries of A(k) are positive, yet it is strongly 1-positive if all its entries are either all positive or all negative.

**Example 1.** Consider the system (1) with n = 4 and

$$A(i) = \begin{bmatrix} 9 & 2 & -2 & 1 \\ 3 & 10 & 1 & -1 \\ -4 & 1.5 & 12 & 4 \\ 1 & -1 & 2 & 15 \end{bmatrix},$$
 (12)

for all  $i \ge 0$ . Note that A is not  $SSR_1$  (as it has both positive and negative entries), nor  $SSR_2$  (as it has both positive and negative minors of order two, e.g., A(1,2|1,2) = 84, A(3,4|1,3) = -20). All the 16 minors of order three are positive, and det $(A) \ne 0$ , so A is  $SSR_3$  and nonsingular. Figure 1 shows  $s^+(x(j))$  as a function of j for  $x(0) = [1 \ 1 \ -1 \ 1]^T$ . Note that  $s^-(x(0)) = 2$ . It may be seen that, as expected,  $s^+(x(j)) \le 2$  for all  $j \ge 0$ .

From here on we focus on the time-invariant linear system

$$x(j+1) = Ax(j), \quad x(0) = x_0 \in \mathbb{R}^n,$$
 (13)

where A is nonsingular and  $SSR_k$  for some  $k \in \{1, ..., n-1\}$ , leaving the time-varying case and nonlinear systems to a sequel paper. To the best of our knowledge, even for this LTI case our results are new.

#### A. k-exponential separation and its implications

Let  $C \subseteq \mathbb{R}^n$  be a closed cone that is convex (i.e.,  $x, y \in C$ implies that  $rx + sy \in C$  for all  $r, s \ge 0$ ), and pointed (i.e.,  $C \cap (-C) = \{0\}$ ). Then C induces a (partial) order defined by  $a \le_C b$  if  $b - a \in C$ . For example, for  $C = \mathbb{R}^n_+$  we



Fig. 1.  $s^+(x(j))$  as a function of j for the trajectory in Example 1.

have  $a \leq_C b$  if and only if  $b_i \geq a_i$  for all  $i \in \{1, ..., n\}$ . Dynamical systems whose flow preserves such an order are called *monotone*, see, e.g., the excellent monograph [34].

Since  $P_{-}^{k}$  and  $P_{+}^{k}$  are not convex sets, k-positive systems are not monotone systems in the usual sense. However, the fact that  $P_{-}^{k}$  is a k-solid cone has strong implications for the dynamics of such systems.

The first demonstration of this is a k-exponential separation property of (13). This is closely related to the generalization of Perron's Theorem in [15], see also [22], but we give a direct proof based on the spectral properties of a nonsingular  $SSR_k$ matrix, see Theorem 2 below. We now review these properties following the presentation in [1].

Fix a nonsingular matrix  $A \in \mathbb{R}^{n \times n}$  that is  $SSR_k$  for some  $k \in \{1, \ldots, n-1\}$ . Denote the eigenvalues of A by  $\lambda_i$ ,  $i = 1, \ldots, n$ , ordered such that

$$|\lambda_1| \ge |\lambda_2| \ge \dots \ge |\lambda_n| > 0, \tag{14}$$

and let

$$v^1, v^2, \dots, v^n \tag{15}$$

denote the corresponding eigenvectors, with complex conjugate eigenvalues appearing in consecutive pairs (we say, with a mild abuse of notation, that  $z \in \mathbb{C}^n$  is *complex* if it is not real). We use  $\overline{z}$  to denote the complex conjugate of z. We may assume that every  $v^i$  is not purely imaginary. Indeed, otherwise we can replace  $v^i$  by  $\text{Im}(v^i)$  that is a real eigenvector. Also, the fact that A is real means that if  $v^i$  is complex then its real and imaginary parts can be chosen as linearly independent.

Define a set of real vectors  $u^1, u^2, \ldots, u^n \in \mathbb{R}^n$  by going through the  $v^i$ 's as follows. If  $v^1$  is real then  $u^1 := v^1$  and proceed to examine  $v^2$ . If  $v^1$  is complex (and whence  $v^2 = \overline{v}^1$ ) then  $u^1 := \operatorname{Re}(v^1), u^2 := \operatorname{Im}(v^1)$  and proceed to examine  $v^3$ , and so on.

Suppose that for some i, j the eigenvector  $v^i$  is real and  $v^j$  is complex. Then is not difficult to show that since A is real and nonsingular, the real vectors  $v^i$ ,  $\operatorname{Re}(v^j)$ ,  $\operatorname{Im}(v^j)$  are linearly independent.

Note that if  $v^i, v^{i+1} \in \mathbb{C}^n$  is a complex conjugate pair and  $c \in \mathbb{C} \setminus \{0\}$  is complex then

$$cv^i + \bar{c}v^{i+1} = 2(\operatorname{Re}(c)\operatorname{Re}(v^i) - \operatorname{Im}(c)\operatorname{Im}(v^i)) \in \mathbb{R}^n \setminus \{0\},\$$

so by choosing an appropriate  $c \in \mathbb{C} \setminus \{0\}$  we can get any nonzero real linear combination of the real vectors  $\operatorname{Re}(v^i)$ and  $\operatorname{Im}(v^i)$ .

For  $p \leq q$ , we say that a set  $c_p, \ldots, c_q \in \mathbb{C}$  matches the set  $v^p, \ldots, v^q$  of consecutive eigenvectors (15) if the  $c_i$ 's are not all zero and for every *i* if the vector  $v^i$  is real then  $c_i$  is real, and if  $v^i, v^{i+1}$  is a complex conjugate pair then  $c_{i+1} = \overline{c}_i$ . In particular, this implies that  $\sum_{i=p}^q c_i v^i \in \mathbb{R}^n$ .

It was shown in [1] that if  $A \in \mathbb{R}^{n \times n}$  is nonsingular and  $SSR_k$  with signature  $\epsilon_k$ , then the product  $\epsilon_k \lambda_1 \lambda_2 \dots \lambda_k$ is real and positive,

$$|\lambda_k| > |\lambda_{k+1}|,\tag{16}$$

and if  $c_1, \ldots, c_k \in \mathbb{C}$   $[c_{k+1}, \ldots, c_n \in \mathbb{C}]$  match the eigenvectors  $v^1, \ldots, v^k$   $[v^{k+1}, \ldots, v^n]$  of A, then

$$s^{+}(\sum_{i=1}^{k} c_{i}v^{i}) \le k-1,$$
 (17)

$$s^{-}(\sum_{i=k+1}^{n} c_i v^i) \ge k.$$
 (18)

Furthermore, let  $\{u^1, \ldots, u^n\}$  be the set of real vectors constructed from  $\{v^1, \ldots, v^n\}$  as described above. Then  $u^1, \ldots, u^k$  are linearly independent. In particular, if  $v^1, \ldots, v^k$  are real then they are linearly independent.

## Example 2. Let

$$A := \begin{bmatrix} 2 & 6 & 0 & 0 \\ 0 & 2 & 2 & 0 \\ 0 & 0 & 4 & 2 \\ 2 & 0 & 0 & 4 \end{bmatrix}.$$
 (19)

It is straightforward to verify that this matrix is nonsingular, and  $SSR_3$  with  $\epsilon_3 = 1$ . Its eigenvalues  $are^2$ 

$$\lambda_1 = 3 + s_1, \ \lambda_2 = 3 + \mathfrak{i} s_2, \ \lambda_3 = 3 - \mathfrak{i} s_2, \ \lambda_4 = 3 - s_1,$$

where  $i^2 = -1$ ,  $s_1 := \sqrt{1 + 4\sqrt{3}} \approx 2.8157$ , and  $s_2 := \sqrt{-1 + 4\sqrt{3}} \approx 2.4348$ . Note that  $\lambda_1 \lambda_2 \lambda_3$  is real and positive, and that  $|\lambda_3| > |\lambda_4|$ . The matrix of corresponding eigenvectors is

$$\begin{split} V &:= \begin{bmatrix} v^1 & v^2 & v^3 & v^4 \end{bmatrix} \\ &= \begin{bmatrix} \frac{s_1-1}{2} & \frac{\mathrm{i}s_2-1}{2} & \frac{-(\mathrm{i}s_2+1)}{2} & \frac{-(s_1+1)}{2} \\ \frac{s_1^2-1}{12} & \frac{-(1+s_2^2)}{12} & \frac{-(1+s_2^2)}{12} & \frac{s_1^2-1}{12} \\ \frac{2}{s_1-1} & \frac{-2(1+\mathrm{i}s_2)}{1+s_2^2} & \frac{2(-1+\mathrm{i}s_2)}{1+s_2^2} & \frac{-2}{s_1+1} \\ 1 & 1 & 1 & 1 \end{bmatrix}, \end{split}$$

<sup>2</sup>All numerical values in this paper are subject to 4-digits accuracy.

and thus

$$\begin{split} U &:= \begin{bmatrix} u^1 & u^2 & u^3 & u^4 \end{bmatrix} \\ &= \begin{bmatrix} v^1 & \operatorname{Re}(v^2) & \operatorname{Im}(v^2) & v^4 \end{bmatrix} \\ &= \begin{bmatrix} \frac{s_1 - 1}{2} & \frac{-1}{2} & \frac{s_2}{2} & \frac{-(s_1 + 1)}{2} \\ \frac{s_1^2 - 1}{12} & \frac{-(1 + s_2^2)}{12} & 0 & \frac{s_1^2 - 1}{12} \\ \frac{2}{s_1 - 1} & \frac{-2}{1 + s_2^2} & \frac{-2s_2}{1 + s_2^2} & \frac{-2}{s_1 + 1} \\ 1 & 1 & 0 & 1 \end{bmatrix} . \end{split}$$
 Note that  $s^-(u^i) = s^+(u^i) = i - 1, i = 1, 2, 4$ , and  $1 = s^-(u^3) < s^+(u^3) = 2.$ 

We now state the main result in this subsection. Let  $|| \cdot || : \mathbb{R}^n \to \mathbb{R}_+$  denote some vector norm.

**Theorem 2.** Suppose that  $A \in \mathbb{R}^{n \times n}$  is nonsingular and  $SSR_k$  for some  $k \in \{1, \ldots, n-1\}$ . Let  $u^1, \ldots, u^n$ be the real vectors constructed from the eigenvectors of Aas described above. Then there exists subspaces E := $\operatorname{span}\{u^1, \ldots, u^k\}$  and  $E^c$  such that the following properties hold:

(i)  $\dim(E) = k$  and  $\dim(E^c) = n - k$ ;

- (ii) both E and  $E^c$  are invariant under A;
- (iii)  $E \subseteq int(P_{-}^{k}) \cup \{0\}$ , and  $E^{c} \cap P_{-}^{k} = \{0\}$ ;
- (iv) There exist a > 0 and  $b \in (0,1)$  such that for any  $x(0) \in E$ ,  $\tilde{x}(0) \in E^c$ , with  $||x(0)|| = ||\tilde{x}(0)|| = 1$ , the corresponding solutions of (13) satisfy

$$||\tilde{x}(j)|| \le ab^{j} ||x(j)||;$$
 (20)

(v) For any x(0) satisfying

$$x(0) = f + g$$
, where  $f \in E \setminus \{0\}$  and  $g \in E^c$ , (21)

there exists a  $q = q(x(0)) \ge 0$  such that the corresponding solution of (13) satisfies

$$s^+(x(j)) \le k-1$$
 for all  $j \ge q$ 

**Remark 1.** Condition (v) does not necessarily mean that x(0) is an element of E, as it may also include some non-zero combination of the vectors  $u^{k+1}, \ldots, u^n$  that are not in E. Assertion (v) states that for almost any initial condition, the corresponding solution of the dynamical system converges to  $P^k_+$  in finite time. Thus,  $P^k_+$  is an almost globally attractive invariant set of the dynamics. Invariant sets play an important role in systems and control theory (see, e.g., [6]).

*Proof of Theorem 2.* We consider without loss of generality the generic case, where  $u^1, \ldots, u^n$  are linearly independent. Then  $E^c = \operatorname{span}\{u^{k+1}, \ldots, u^n\}$ . The proofs of the properties of  $E^c$  are then very similar to the proofs for E, and thus we present here only the proofs for E.

We begin by noting that the eigenvalues of A are ordered as

$$|\lambda_1| \ge \dots \ge |\lambda_k| > |\lambda_{k+1}| \ge \dots \ge |\lambda_n| > 0.$$
(22)

Assertion (i) follows immediately from the fact that  $u^1, \ldots, u^n$  are linearly independent.

Pick  $z \in E \setminus \{0\}$ . Since  $\prod_{\ell=1}^{k} \lambda_{\ell}$  is real, either  $\lambda_{k-1}, \lambda_k$ are both real, or they are a complex conjugate pair. Combining this with the definition of E implies that  $z = \sum_{i=1}^{k} c_i v^i$ , for some  $c_1, \ldots, c_k$  that match  $v^1, \ldots, v^k$ . Hence,  $Az = \sum_{i=1}^{k} c_i \lambda_i v^i$ . Clearly,  $\{c_1 \lambda_1, \ldots, c_k \lambda_k\}$  also match  $\{v^1, \ldots, v^k\}$ , so E is invariant under A.

It follows from (17) and the construction of the  $u^i$ 's that  $s^+(z) \leq k-1$  for any  $z \in E \setminus \{0\}$ , that is,  $E \setminus \{0\} \subseteq P_+^k$ . Since  $P_+^k = \operatorname{int}(P_-^k)$ , we conclude that  $E \subseteq \operatorname{int}(P_-^k) \cup \{0\}$ .

To prove (iv), pick  $x(0) \in E \setminus \{0\}$  and  $\tilde{x}(0) \in E^c \setminus \{0\}$ . Then  $x(0) = \sum_{i=1}^k c_i v^i$  and  $\tilde{x}(0) = \sum_{i=k+1}^n \tilde{c}_i v^i$ , where  $c_1, \ldots, c_k \in \mathbb{C}$  [ $\tilde{c}_{k+1}, \ldots, \tilde{c}_n \in \mathbb{C}$ ] match  $v^1, \ldots, v^k$  [ $v^{k+1}, \ldots, v^n$ ]. Using (22), a straightforward argument shows that there exists m > 0 such that

$$x(j)|| = ||A^{j}x(0)||$$
  
 $\geq m|\lambda_{k}|^{j}||x(0)||.$ 

Similarly, there exists M > 0 such that  $||\tilde{x}(j)|| \le M |\lambda_{k+1}|^j ||\tilde{x}(0)||$ . Thus,

$$\frac{||\tilde{x}(j)||}{||x(j)||} \le \frac{M}{m} \left| \frac{\lambda_{k+1}}{\lambda_k} \right|^j \frac{||\tilde{x}(0)||}{||x(0)||},$$

and combining this with (16) proves (20).

To prove (v), pick x(0) such that (21) is satisfied. Then  $x(0) = \sum_{i=1}^{n} c_i v^i$ , where  $c_1, \ldots, c_n \in \mathbb{C}$  match  $v^1, \ldots, v^n$ , and  $\sum_{i=1}^{k} c_i v^i \neq 0$ . Thus,

$$\frac{x(j)}{||\sum_{i=1}^{k} c_i \lambda_i^j v^i||} = \frac{\sum_{i=1}^{k} c_i \lambda_i^j v^i}{||\sum_{i=1}^{k} c_i \lambda_i^j v^i||} + \frac{\sum_{i=k+1}^{n} c_i \lambda_i^j v^i}{||\sum_{i=1}^{k} c_i \lambda_i^j v^i||}.$$

The first term on the right-hand side of this equation is a unit vector in E, and the second term goes to zero as  $j \to \infty$ . Thus, there exists  $r \ge 0$  such that  $x(r) \in P_{-}^{k}$ . Then  $x(r+1) \in P_{+}^{k}$ , and the invariance of  $P_{+}^{k}$  implies that  $x(j) \in P_{+}^{k}$  for all  $j \ge r+1$ .

The next example demonstrates a simple application of Theorem 2.

**Example 3.** Consider the matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & 0\\ 0 & a_{22} & a_{23}\\ a_{31} & 0 & a_{33} \end{bmatrix}.$$

We assume that  $det(A) = a_{12}a_{23}a_{31} + a_{11}a_{22}a_{33} \neq 0$ , so A is nonsingular. It is straightforward to verify that A is SSR<sub>2</sub> iff either  $a_{31}$  is negative and all the other  $a_{ij}$ 's are positive or if  $a_{31}$  is positive and all the other  $a_{ij}$ 's are negative. For concreteness, we assume the first case. Note that since  $a_{31}a_{11} < 0$ the matrix is not SR<sub>1</sub>. The dynamics x(k + 1) = Ax(k)represents a cyclic linear system, where the dynamics of each state-variable  $x_i$ , i = 1, 2, depends on the state of  $x_i, x_{i+1}$ in a cooperative manner, and there is a negative feedback from  $x_1(k)$  to  $x_3(k+1)$ . Continuous-time cyclic systems have found many applications in various fields (see, e.g. [17]). Theorem 2 implies that for almost every initial condition x(0) the solution x(k) converges to  $P^2_+$ , that is,

$$s^+(x(k)) \le 1$$
 for all k sufficiently large. (23)

Note that if we multiply A by any  $c \in \mathbb{R} \setminus \{0\}$  then the required sign pattern of A still holds, and thus the same conclusion holds. This implies that (23) is independent of stability. In other words, (23) cannot be used to determine if solutions go to the origin, to a limit cycle, or to infinity, yet it implies that the solutions must go there "through"  $P_{+}^2$ .

#### B. Dynamics of exterior products

The *exterior product* (also called wedge product) of vectors is an algebraic construction that can be used to study geometric properties: areas, volumes, and their higher-dimensional analogues [18]. Pick  $Z \in \mathbb{R}^{n \times k}$ , with  $k \leq n$ . Denote the columns of Z by  $z^1, \ldots, z^k \in \mathbb{R}^n$ . Then its kth multiplicative compound  $Z^{(k)} \in \mathbb{R}^{\binom{n}{k} \times \binom{n}{k}}$  is the exterior product  $z^1 \wedge \cdots \wedge z^k$ , represented as a column vector [25]. For example, for  $z^1 = \begin{bmatrix} r_1 & r_2 & r_3 \end{bmatrix}^T$  and  $z^2 = \begin{bmatrix} w_1 & w_2 & w_3 \end{bmatrix}^T$ , we have

$$Z^{(2)} = \begin{bmatrix} r_1 & w_1 \\ r_2 & w_2 \\ r_3 & w_3 \end{bmatrix}^{(2)}$$
$$= \begin{bmatrix} r_1 w_2 - r_2 w_1 & r_1 w_3 - r_3 w_1 & r_2 w_3 - r_3 w_2 \end{bmatrix}^T.$$

Consider the dynamics (13), where  $A \in \mathbb{R}^{n \times n}$  is  $SSR_k$ , and pick k initial conditions  $w^1, \ldots, w^k \in \mathbb{R}^n$ . Let

$$X(j) := \begin{bmatrix} x(j, w^1) & \dots & x(j, w^k) \end{bmatrix} \in \mathbb{R}^{n \times k}.$$
 (24)

Then X(j + 1) = AX(j). Taking the *k*th multiplicative compound on both sides of this equation and using (7) yields

$$\eta(j+1) = A^{(k)}\eta(j),$$
(25)

where

$$\eta(j) := x(j, w^1) \wedge \dots \wedge x(j, w^k).$$
(26)

The magnitude of this wedge product is the volume of the k-dimensional parallelotope whose edges are the given vectors.

**Example 4.** Suppose that n = 3,  $A := \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix}$ , k = 2,  $w^1 = e^p$  and  $w^2 = e^q$  for some  $p, q \in \{1, 2, 3\}$ . Then

$$\eta(j) = x(j, e^p) \wedge x(j, e^q)$$
$$= (\lambda_p^j e^p) \wedge (\lambda_q^j e^q)$$
$$= \lambda_p^j \lambda_q^j (e^p \wedge e^q)$$
$$= (\lambda_n \lambda_q)^j \eta(0).$$

This implies that under the dynamics (13) the unsigned area of the parallelogram having  $e^p$  and  $e^q$  as two of its sides scales as  $(\lambda_p \lambda_q)^j$ . On the other-hand,  $A^{(2)} = \begin{bmatrix} \lambda_1 \lambda_2 & 0 & 0 \\ 0 & \lambda_1 \lambda_3 & 0 \\ 0 & 0 & \lambda_2 \lambda_3 \end{bmatrix}$ . If A is  $SSR_k$  then either every entry of  $B := A^{(k)}$  is positive or every entry is negative. We assume that B > 0. By the Perron Theorem, the spectral radius of B, denoted  $\rho(B)$ , is a positive eigenvalue and there exist positive vectors  $v^B, w^B$ , such that  $Bv^B = \rho(B)v^B$  and  $B^Tw^B = \rho(B)w^B$ . By normalization, we may assume that  $(v^B)^Tw^B = 1$ . Then furthermore

$$\lim_{j \to \infty} \left(\frac{B}{\rho(B)}\right)^j = v^B (w^B)^T \tag{27}$$

(see, e.g., [19, Chapter 8]). This yields the following result.

**Theorem 3.** Suppose that A is  $SSR_k$  and that  $B := A^{(k)} > 0$ . Pick k initial conditions  $w^1, \ldots, w^k \in \mathbb{R}^n$ , and define X(j) and  $\eta(j)$  as in (24) and (26). Then

$$\lim_{j \to \infty} \frac{\eta(j)}{(\rho(B))^j} = (w^B)^T \eta(0) v^B.$$
 (28)

*Proof.* By (25),  $\eta(j) = B^j \eta(0)$ , i.e.,  $\frac{\eta(j)}{(\rho(B))^j} = \left(\frac{B}{\rho(B)}\right)^j \eta(0)$ . Taking  $j \to \infty$  and using (27) completes the proof.

**Remark 2.** Suppose that the spectral radius  $\rho(A)$  of A satisfies  $\rho(A) < 1$ . Then  $\lim_{j\to\infty} A^j x = 0$  for all  $x \in \mathbb{R}^n$  and thus

$$\eta(j) = (A^j w^1) \wedge \dots \wedge (A^j w^k),$$

satisfies  $\lim_{j\to\infty} \eta(j) = 0$ . Since every eigenvalue of  $A^{(k)}$  is the product of k eigenvalues of A,  $\rho(B) < 1$  so (28) also shows that  $\eta(j)$  goes to zero as  $j \to \infty$ .

**Example 5.** Consider the case n = 3, k = 2,

$$A := \begin{bmatrix} 0.79 & 0.2 & 0.01 \\ 0.1 & 0.8 & 0.1 \\ 0.01 & 0.1 & 0.89 \end{bmatrix},$$

 $w^1 = e^1$ , and  $w^2 = e^2$ . In other words, we consider the evolution of the unsigned area of the parallelogram with  $e^1$  and  $e^2$  as two of its sides. A calculation yields

$$B := A^{(2)} = \begin{bmatrix} 0.612 & 0.078 & 0.012 \\ 0.077 & 0.703 & 0.177 \\ 0.002 & 0.088 & 0.702 \end{bmatrix}$$
 (so A is SSR<sub>2</sub>),  $\rho(B) = 0.8430$ ,

and

$$v^B = \begin{bmatrix} 0.2991 & 0.8075 & 0.5084 \end{bmatrix}^T$$
,

-T

 $w^B = \begin{bmatrix} 0.2203 & 0.6394 & 0.8217 \end{bmatrix}^T$ ,

(note that  $(w^B)^T v^B = 1$ ). We compute  $\eta(15)$  in two different ways. First,

$$\eta(15) = (A^{15}e^{1}) \wedge (A^{15}e^{2})$$
  
=  $\begin{bmatrix} 0.2397 & 0.2190 & 0.1858 \end{bmatrix}^{T}$   
 $\wedge \begin{bmatrix} 0.4228 & 0.4103 & 0.3859 \end{bmatrix}^{T}$   
=  $0.0057e^{1} + 0.0139e^{2} + 0.0083e^{3}.$  (29)

Second, it follows from (28) that

$$\begin{split} \eta(15) &\approx (\rho(B))^{15} (w^B)^T \eta(0) v^B \\ &= (\rho(B))^{15} w_1^B v^B \\ &= \begin{bmatrix} 0.0051 & 0.0137 & 0.0086 \end{bmatrix}^T \end{split}$$

and this is indeed an approximation of (29).

Recall that if  $A \in \mathbb{R}^{n \times n}$  is Schur and  $A \ge 0$  then (13) admits a *diagonal* Lyapunov function, that is, there exists a diagonal and positive-definite matrix  $P \in \mathbb{R}^{n \times n}$  such that  $A^T P A - P$  is negative-definite [5]. Diagonal Lyapunov functions play an important role in stability analysis of nonlinear systems and in passivity theory (see, e.g. [?], [?]). Now assume that A is  $SSR_k$ , with  $\epsilon_k = 1$ , and Schur. Then there exists a diagonal and positive-definite matrix  $D \in \mathbb{R}^{r \times r}$ , with  $r := {n \choose k}$ , such that  $(A^{(k)})^T DA^{(k)} - D$  is negativedefinite. In other words, the dynamical system (25) admits a diagonal Lyapunov function. This suggests that in this case many of the powerful ideas based on using diagonal Lyapunov functions can be extended to study the evolution of k-dimensional exterior products.

#### 4. DISCUSSION

Positive systems and their nonlinear counterpart of monotone systems form a class of dynamical systems of fundamental importance in systems biology, neuroscience, and biochemical networks, and has recently also found important applications in control engineering for large-scale systems [30].

We introduced a new class of DT linear systems that map the set of vectors with up to k - 1 sign variations to itself. For k = 1 this reduces to the important notion of DT positive linear systems.

An interesting research direction is to study DT nonlinear systems whose variational equation is a k-positive linear system. Since the variational equation (3) includes the integral of a matrix, this raises the following question: when is the integral of a matrix  $SSR_k$ ?

Theorem 3 describes the convergence to a ray for the exterior product. We believe that this can generalized to the DT time-varying linear system (1), with the matrices A(i) taken from a compact set, using the Birkhoff-Hopf theory [7].

Another interesting research direction may be the extension of k-positive systems to DT control systems as was done for CT monotone systems in [3]. Finally, our results highlight the importance of an efficient algorithm for determining if a given matrix is  $SSR_k$  for some k. This issue is currently under study [2].

*Acknowledgments:* We thank the AE and the reviewers for many helpful comments.

#### APPENDIX: PROOF OF FACT 1

Let  $v^i$ , i = 1, 2, ..., be a set of vectors such that  $v^i \in P^k_$ for all i and  $v := \lim_{i \to \infty} v^i$  exists, Applying (8) yields

$$s^{-}(v) \le \liminf_{i \to \infty} s^{-}(v^i) \le k-1$$

so  $v \in P_{-}^{k}$ . We conclude that  $P_{-}^{k}$  is closed.

To prove (9) pick  $z \in P_+^k$ . Then  $s^-(z) \le s^+(z) \le k-1$ , so  $z \in P_-^k$ . This shows that  $P_+^k \subseteq P_-^k$ . Thus, it is enough to show that the boundary of  $P_-^k$ , denoted  $\partial P_-^k$ , satisfies

$$\partial P^k_- = P^k_- \setminus P^k_+. \tag{30}$$

Pick  $x \in \partial P_{-}^{k}$ . Then  $s^{-}(x) \leq k-1$  and for any  $\varepsilon > 0$  there exists  $y \in \mathbb{R}^{n}$  such that  $||x-y|| \leq \varepsilon$  and  $s^{-}(y) > k-1$ . This implies that we can find a set of vectors  $x^{i}$ ,  $i = 1, 2, \ldots$ , such that  $\lim_{i\to\infty} x^{i} = x$  and  $s^{-}(x^{i}) > k-1$  for all *i*. Applying (8) yields

$$x - 1 < \liminf_{i \to \infty} s^-(x^i) \le s^+(x).$$

We conclude that  $x \in P^k_-$  and  $x \notin P^k_+$ , so

$$\partial P_{-}^{k} \subseteq P_{-}^{k} \setminus P_{+}^{k}.$$

Now pick  $x \in P_{-}^{k} \setminus P_{+}^{k}$ . Thus,  $s^{-}(x) \leq k-1$  and  $s^{+}(x) > k-1$ . This implies that there exists a nonempty set of indexes E such that for every  $i \in E$  we have  $x_{i} = 0$  and there exists  $r_{i} \in \{-1, 1\}$  such that the vector y defined by

$$y_k := \begin{cases} r_k, & k \in E, \\ x_k, & k \notin E, \end{cases}$$

satisfies  $s^{-}(y) > k - 1$ . Seeking a contradiction, assume that  $x \in int(P_{-}^{k})$ . Then for any sufficiently large c > 0 the vector z defined by

$$z_k := \begin{cases} r_k/c, & k \in E, \\ x_k, & k \notin E, \end{cases}$$

satisfies  $z \in P_{-}^{k}$ . But by  $s^{-}(z) = s^{-}(y) > k - 1$  we obtain a contradiction which shows that  $x \in \partial P_{-}^{k}$ . Since

$$P_{-}^{k} \setminus P_{+}^{k} \subseteq \partial P_{-}^{k},$$

the proof of Fact 1 is completed.

## 

#### References

- R. Alseidi, M. Margaliot, and J. Garloff, "On the spectral properties of nonsingular matrices that are strictly sign-regular for some order with applications to totally positive discrete-time systems," *J. Math. Anal. Appl.*, vol. 474, pp. 524–543, 2019.
- [2] —, "Recognition of matrices which are strictly sign regular of a given order and a generalization of oscillatory matrices," *submitted*.
- [3] D. Angeli and E. D. Sontag, "Monotone control systems," *IEEE Trans. Automat. Control*, vol. 48, pp. 1684–1698, 2003.
- [4] T. Ben-Avraham, G. Sharon, Y. Zarai, and M. Margaliot, "Dynamical systems with a cyclic sign variation diminishing property," *IEEE Trans. Automat. Control*, 2019, to appear. [Online]. Available: http://arxiv.org/abs/1807.02779
- [5] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical Sciences. SIAM, 1987.
- [6] F. Blanchini, "Set invariance in control," Automatica, vol. 35, no. 11, pp. 1747–1767, 1999.
- [7] S. P. Eveson and R. D. Nussbaum, "An elementary proof of the Birkhoff-Hopf theorem," *Math. Proc. Camb. Philos. Soc.*, vol. 117, no. 1, pp. 31–55, 1995.
- [8] S. M. Fallat and C. R. Johnson, *Totally Nonnegative Matrices*. Princeton, NJ: Princeton University Press, 2011.
- [9] L. Farina and S. Rinaldi, *Positive Linear Systems: Theory and Applications*. John Wiley, 2000.
- [10] M. Fekete and G. Pólya, "Über ein problem von Laguerre," *Rendiconti del Circolo Matematico di Palermo (1884-1940)*, vol. 34, no. 1, pp. 89–120, 1912.
- [11] L. Feng, Y. Wang, and J. Wu, "Semiflows "monotone with respect to high-rank cones" on a Banach space," *SIAM J. Math. Anal.*, vol. 49, no. 1, pp. 142–161, 2017.

- [12] —, "Generical behavior of flows strongly monotone with respect to high-rank cones." [Online]. Available: https://arxiv.org/abs/1905.06787
- [13] F. Forni and R. Sepulchre, "Differentially positive systems," *IEEE Trans. Automat. Control*, vol. 61, no. 2, pp. 346–359, 2016.
- [14] —, "A dissipativity theorem for p-dominant systems," in *Proc. 56th IEEE Conf. on Decision and Control*, Melbourne, Australia, 2017, pp. 3467–3472.
- [15] G. Fusco and W. M. Oliva, "A Perron theorem for the existence of invariant subspaces," Ann. Mat. Pur. Appl., vol. 160, pp. 63–76, 1991.
- [16] F. R. Gantmacher and M. G. Krein, Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems. Providence, RI: American Mathematical Society, 2002, translation based on the 1941 Russian original.
- [17] T. Gedeon, Cyclic Feedback Systems, ser. Memoirs of the American Mathematical Society. Boston, MA: American Mathematical Society, 1998, vol. 637.
- [18] W. Greub, *Multilinear Algebra*, 2nd ed. New York: Springer-Verlag, 2010.
- [19] R. A. Horn and C. R. Johnson, *Matrix Analysis*, 2nd ed. Cambridge University Press, 2013.
- [20] S. Karlin, *Total Positivity*. Stanford, CA: Stanford University Press, 1968, vol. 1.
- [21] R. Katz, M. Margaliot, and E. Fridman, "Entrainment to subharmonic solutions in oscillatory discrete-time systems," *Automatica*, 2019, to appear. [Online]. Available: https://arxiv.org/abs/1904.06547
- [22] M. A. Krasnoselskii, E. A. Lifshitz, and A. V. Sobolev, *Positive Linear Systems: The Method of Positive Operators*. Berlin: Heldermann Verlag, 1989.
- [23] W. Lohmiller and J.-J. E. Slotine, "On contraction analysis for non-linear systems," *Automatica*, vol. 34, pp. 683–696, 1998.
- [24] M. Margaliot and E. D. Sontag, "Revisiting totally positive differential systems: A tutorial and new results," *Automatica*, vol. 101, pp. 1–14, 2019.
- [25] J. S. Muldowney, "Compound matrices and ordinary differential equations," *The Rocky Mountain J. Math.*, vol. 20, no. 4, pp. 857–872, 1990.
- [26] J. M. Peña, "Sign regular matrices of order two," *Linear and Multilinear Algebra*, vol. 50, pp. 91–97, 2002.
- [27] A. Pinkus, *Totally Positive Matrices*. Cambridge, UK: Cambridge University Press, 2010.
- [28] P. Poláčik and I. Tereščák, "Convergence to cycles as a typical asymptotic behavior in smooth strongly monotone discrete-time dynamical systems," *Archive for Rational Mechanics and Analysis*, vol. 116, no. 4, pp. 339–360, 1992.
- [29] A. Rantzer and M. E. Valcher, "A tutorial on positive systems and large scale control," in *Proc. 57th IEEE Conf. on Decision and Control*, Miami Beach, FL, USA, 2018, pp. 3686–3697.
- [30] A. Rantzer, "Scalable control of positive systems," Euro. J. Control, vol. 24, pp. 72–80, 2015.
- [31] L. A. Sanchez, "Cones of rank 2 and the Poincaré-Bendixson property for a new class of monotone systems," J. Diff. Eqns., vol. 246, no. 5, pp. 1978–1990, 2009.
- [32] I. Schoenberg, "Über variationsvermindernde lineare transformationen," Mathematische Zeitschrift, vol. 32, no. 1, pp. 321–328, 1930.
- [33] B. Schwarz, "Totally positive differential systems," Pacific J. Math., vol. 32, no. 1, pp. 203–229, 1970.
- [34] H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, ser. Mathematical Surveys and Monographs. Providence, RI: Amer. Math. Soc., 1995, vol. 41.
- [35] E. Weiss and M. Margaliot, "A generalization of linear positive systems with applications to nonlinear systems: Invariant sets and the Poincaré-Bendixson property," 2019, submitted. [Online]. Available: arXiv:1902.01630