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Discrete-time k-positive linear systems
Rola Alseidi, Michael Margaliot, and Jürgen Garloff

Abstract—Positive systems play an important role in systems
and control theory and have found many applications in multi-
agent systems, neural networks, systems biology, and more.
Positive systems map the nonnegative orthant to itself (and also
the nonpositive orthant to itself). In other words, they map the set
of vectors with zero sign variations to itself. In this note, discrete-
time linear systems that map the set of vectors with up to k− 1
sign variations to itself are introduced. For the special case k = 1
these reduce to discrete-time positive linear systems. Properties of
these systems are analyzed using tools from the theory of sign-
regular matrices. In particular, it is shown that almost every
solution of such systems converges to the set of vectors with up
to k−1 sign variations. It is also shown that these systems induce
a positive dynamics of k-dimensional parallelotopes.

Index Terms—Sign-regular matrices, cones of rank k, exterior
products, compound matrices, stability analysis.

1. INTRODUCTION

The discrete-time (DT) linear time-varying (LTV) system

x(i+ 1) = A(i)x(i), x(0) = x0 ∈ Rn, (1)

is called positive if and only if (iff) it maps the nonnegative
orthant

Rn+ := {x ∈ Rn : xi ≥ 0 for all i ∈ {1, . . . , n}}

to itself. This holds iff A(i) ≥ 0 (i.e., all the entries of A(i)
are nonnegative) for all i ≥ 0. Note that a positive system also
maps the nonpositive orthant Rn− := −Rn+ to itself. In other
words, it maps the set of vectors with zero sign variations to
itself. The system (1) is called strongly positive if it maps Rn+\
{0} to int(Rn+) (the interior of Rn+).

Positive systems appear naturally when the state-variables
represent quantities that can only take nonnegative values,
e.g., probabilities, concentrations of molecules, densities of
particles, etc. Positive LTVs play an important role in linear
systems and control theory, see, e.g., [9], [29], and via dif-
ferential analysis [13], [23], also in the analysis of nonlinear
systems. To explain this, consider the nonlinear time-varying
system

x(i+ 1) = f(i, x(i)), (2)

and suppose that its trajectories evolve on a convex state-
space Ω ⊆ Rn, and that f is C1 with respect to x. For y ∈ Ω,
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let x(i, y) denote the solution of (2) at time i for x(0) = y.
Pick a, b ∈ Ω and let

z(i) := x(i, a)− x(i, b),

that is, the difference at time i between the trajectories
emanating from a and from b at time zero. Then

z(i+ 1) = f(i, x(i, a))− f(i, x(i, b)) = Jab(i)z(i) (3)

with Jab(i) :=
∫ 1

0
∂
∂xf(i, rx(i, a) + (1− r)x(i, b)) dr.

If Jab(i) ≥ 0 for all a, b ∈ Ω and all i ≥ 0, then the
variational system (3) is a positive LTV, and this has important
consequences for the behavior of (2). Roughly speaking,
almost every bounded trajectory of a smooth strongly positive
system converges to a periodic trajectory (a cycle) [28]. This is
quite different from the behavior in the continuous-time case,
where almost every bounded trajectory of the nonlinear system
converges to the set of equilibria [34].

The dynamics of a DT positive LTV maps the set of vectors
with zero sign variations to itself. A natural question is: what
systems map the set of vectors with up to k−1 sign variations
to itself? We call such a system a DT k-positive system. Then
a 1-positive system is just a positive system, but for k > 1 the
system may be k-positive yet not positive.

Continuous-time (CT) k-positive systems have been recently
defined and analyzed in [35]. In the CT and time-invariant
case, i.e., ẋ(t) = Ax(t), the matrix exponential of A should
satisfy for all time a property called strict sign-regularity of
order k, for the definition see the next paragraph, and this can
be tested easily by checking sign conditions on the entries
of A itself [35]. In the DT case studied here, the matrix A
itself must have this property, and verifying this is nontrivial.

A matrix A ∈ Rn×m is called sign-regular of order k
(denoted by SRk) if all its minors of order k, i.e., determinants
of its k×k submatrices, are nonnegative or all are nonpositive.
For example, if all the entries of A are nonnegative then it
is SR1. A matrix is called strictly sign-regular of order k
(denoted by SSRk) if it is SRk, and all the minors of order k
are non-zero. In other words, all minors of order k are non-zero
and have the same sign.1 To refer to the common sign of the
minors of order k, we introduce the signature εk ∈ {−1, 1}.

For example, the matrix

A :=


1 2 0 0
0 1 1 0
0 0 2 0.1
1 0 0 2


is SR1 (but not SSR1 as some entries are zero). It has

1We note that the terminology in this field is not uniform and some
authors refer to such matrices as sign-consistent of order k.
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both positive and negative 2-minors (e.g., det(

[
1 2
0 1

]
) = 1,

det(

[
1 2
1 0

]
) = −2), so it is not SR2. All its 3-minors are

positive, so it is SSR3 with signature ε3 = 1, and det(A) > 0,
so it is SSR4 with ε4 = 1.

After the first consideration of SRk matrices in [20],
these matrices have been the subject of only a few studies.
In Ref. [1], the authors analyze the spectral properties of
nonsingular matrices that are SSRk for a specific value of k.
These results are extended to matrices that are SSRk for
several values of k, for example for all odd k.

A matrix A ∈ Rn×m is called [strictly] sign-regular
([S]SR) if it is [S]SRk for all k = 1, . . . ,min{n,m} [26],
[27, p. 86]. The most important examples of SR [SSR]
matrices are the totally nonnegative (TN) [totally positive (TP)]
matrices, that is, matrices with all minors nonnegative [pos-
itive]. Such matrices have applications in numerous fields
including approximation theory, combinatorics, probability
theory, computer aided geometric design, differential and
integral equations, and more [8], [16], [20], [27].

A very important property of SSR matrices is that mul-
tiplying a vector x by such a matrix cannot increase the
number of sign variations in x [16]. To explain this variation
diminishing property (VDP), we introduce some notation.
For y ∈ Rn \ {0}, let s−(y) denote the number of sign
variations in y after deleting all its zero entries with s−(0)
defined as zero. For y ∈ Rn, let s+(y) denote the maximal
possible number of sign variations in y after each zero entry
is replaced by either +1 or −1. For example, for n = 4

and y =
[
1 −1 0 −π

]T
(where the superscript T denotes

transposition), we have s−(y) = 1 and s+(y) = 3. Obviously,

0 ≤ s−(y) ≤ s+(y) ≤ n− 1 for all y ∈ Rn. (4)

The first important results on the VDP of matrices were
obtained by Fekete and Pólya [10] and Schoenberg [32]. Later
on, Gantmacher and Krein [16, Chapter V] elaborated rather
completely the various forms of VDPs and worked out the
spectral properties of SR matrices. Two important examples
of such VDPs are: if A ∈ Rn×m (m ≤ n) is SR and of
rank m then

s−(Ax) ≤ s−(x) for all x ∈ Rm,

whereas if A is SSR then

s+(Ax) ≤ s−(x) for all x ∈ Rm \ {0}.

Thus, if A is SSR then both s−(x(i)) and s+(x(i)) are
integer-valued functions that do not increase along solutions
of x(i+ 1) = Ax(i).

For k ∈ {1, . . . , n}, let

P k− := {z ∈ Rn : s−(z) ≤ k − 1},
P k+ := {z ∈ Rn : s+(z) ≤ k − 1}. (5)

Then positive systems map the set P 1
− to P 1

−, whereas strongly
positive systems map P 1

− \ {0} to P 1
+. This naturally leads to

the question: which linear systems map P k− to P k− and which
map P k− \ {0} to P k+? In this note, we define and analyze

such systems, called DT k-positive linear systems. We show
that such systems have interesting dynamical properties that
generalize the properties of positive systems.

The remainder of this note is organized as follows. In
the next section, we review notations, definitions, and basic
properties that will be used later on. Section 3 defines DT
k-positive linear systems and analyzes their properties. The
final section concludes. In passing we note that our results
are part of a growing body of research on the applications of
sign-regularity (and, in particular, total positivity) to dynamical
systems [1], [4], [21], [24], [33], [35], [?].

2. PRELIMINARIES

This section is divided into three subsections. Subsec-
tions 2-A and 2-B introduce definitions and notations needed
later on. Subsection 2-C reviews the structure of the invariant
sets P k+, P k−.

A. Basic notation and definitions
For an integer n ≥ 1 and k ∈ {1, . . . , n}, let Qk,n denote

the set of all strictly increasing sequences of k integers chosen
from {1, . . . , n}. For example, Q2,3 = {12, 13, 23}.

For A ∈ Rn×m, α ∈ Qk,n, and β ∈ Qj,m, we denote the
submatrix of A lying in the rows indexed by α and columns
indexed by β by A[α, β]. Thus, A[α, β] ∈ Rk×j . If k = j then
we set

A(α|β) := det(A[α, β]),

that is, the minor corresponding to the rows indexed by α
and columns indexed by β. We often suppress the brackets
associated with an index sequence if we enumerate its entries
explicitly.

B. Multiplicative compound
Let A ∈ Rn×m. For any k ∈ {1, . . . ,min{n,m}}, the kth

multiplicative compound of A is the
(
n
k

)
×
(
m
k

)
matrix that

includes all the minors of order k of A organized in lexico-
graphic order. For example, if A ∈ R3×3 then

A(2) =

A(12|12) A(12|13) A(12|23)
A(13|12) A(13|13) A(13|23)
A(23|12) A(23|13) A(23|23)

 .
Note that A(1) = A and that if m = n then A(n) = det(A).
Note also that A is SSRk [SRk] if either A(k) > 0 or A(k) <
0 [either A(k) ≥ 0 or A(k) ≤ 0].

The Cauchy-Binet Formula [8, Theorem 1.1.1] provides an
expression for the minors of the product of two matrices.
Pick A ∈ Rn×p and B ∈ Rp×m. Let C := AB. Pick k ∈
{1, . . . ,min{n, p,m}}, α ∈ Qk,n, and β ∈ Qk,m. Then

C(α|β) =
∑

γ∈Qk,p

A(α|γ)B(γ|β). (6)

For n = p = m and k = n this reduces to the familiar
formula det(AB) = det(A) det(B). Note that (6) implies that

(AB)(k) = A(k)B(k) (7)

for all k ∈ {1, . . . ,min{n, p,m}}. This justifies the term
multiplicative compound.
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C. Sets of vectors with sign variations

Consider the sets defined in (5). It is well-known (see,
e.g., [27, Chapter 3]) that if vi ∈ Rn, i = 1, 2, . . . is a set of
vectors such that v := limi→∞ vi exists then

s−(v) ≤ lim inf
i→∞

s−(vi) ≤ lim sup
i→∞

s+(vi) ≤ s+(v). (8)

Intuitively speaking, this is because we only need to con-
sider what happens when the limit vector v includes zero
entries, and such entries can only decrease s− and can only
increase s+.

The next useful result is well-known, but for the sake of
completeness we include its proof in the Appendix.

Fact 1. The set P k− is closed and

P k+ = int(P k−). (9)

It is clear that

P 1
− = Rn+ ∪ Rn−, P 1

+ = int(Rn+) ∪ int(Rn−). (10)

Also, the sets are nested, as

P 1
− ⊂ P 2

− ⊂ · · · ⊂ Pn− = Rn,
P 1
+ ⊂ P 2

+ ⊂ · · · ⊂ Pn+ = Rn. (11)

If x ∈ P k− then rx ∈ P k− for all r ∈ R, and if x ∈ P k+
then sx ∈ P k+ for all s ∈ R \ {0}, so both P k− and P k+ ∪ {0}
are cones. Yet, in general P k− and P k+ are not convex sets.
For example, for n = 2 and the vectors x :=

[
2 0

]T
, y :=[

0 −2
]T

, we have x, y ∈ P 1
− yet x2 + y

2 =
[
1 −1

]T 6∈ P 1
−.

Recall that a set C ⊆ Rn is called a cone of rank k [22] if
(i) C is closed;

(ii) x ∈ C implies that rx ∈ C for all r ∈ R;
(iii) C contains a linear subspace of dimension k and no linear

subspace of higher dimension.
For example, R2

+∪R2
− (and more generally, Rn+∪Rn− [15]) is a

cone of rank 1. A cone C of rank k is called solid if its interior
is non empty, and k-solid if there is a linear subspace W
of dimension k such that W \ {0} ⊆ int(C); k-solid cones
are useful in the analysis of dynamical systems [11], [12],
[14], [31]. Roughly speaking, if a trajectory of the system
is confined to an invariant set C that is a k-solid cone then
the trajectory can be projected onto a k-dimensional subspace
contained in C. If this projection is one-to-one then the
trajectory is topologically conjugate to a trajectory of a k-
dimensional dynamical system.

It was shown in [35] (see also [22]) that for any k ∈
{1, . . . , n − 1}, the set P k− is a k-solid cone, and that its
complement

(P k−)c := clos(Rn \ P k−)

is an (n− k)-solid cone. This implies, in particular, that there
exists a k-dimensional subspace W k such that W k ⊆ P k−, and
that there is no (k+1)-dimensional subspace contained in P k−.
For example, let ei ∈ Rn denote the vector with all entries
zero, except for entry i that is one. Then the k-dimensional
subspace span{e1, . . . , ek} is contained in P k−.

We can now introduce and analyze a new class of DT linear
systems.

3. DISCRETE-TIME k-POSITIVE LINEAR SYSTEMS

In this section, we define a k-positive DT linear system.
We then prove two properties of such systems. In Subsec-
tion 3-A, we use the spectral properties of nonsingular SSRk
matrices to prove the k-exponential separation property. In
Subsection 3-B, we analyze the dynamics of exterior products
of solutions.

Definition 1. Consider the DT LTV (1) with every matrix A(i)
nonsingular. The system is called k-positive if it maps P k−
to P k−. It is called strongly k-positive if it maps P k− \ {0}
to P k+.

Note that (10) implies that a [strongly] positive system is
a [strongly] 1-positive system. Note also that since P k+ =
int(P k−), both P k− and P k+ are invariant sets of a strongly k-
positive system.

Theorem 1. The system (1) is a [strongly] k-positive system
iff A(i) is [S]SRk for all i ≥ 0.

Proof: Thm. 1 in [4] shows that a nonsingular matrix A ∈
Rn×n is SSRk iff for any x ∈ Rn \ {0} with s−(x) ≤ k− 1,
we have s+(Ax) ≤ k−1. A standard continuity argument [35]
shows that A is SRk iff for any x ∈ Rn \ {0} with s−(x) ≤
k − 1, we have s−(Ax) ≤ k − 1.

For the case k = 1 this is a generalization of [strongly]
positive linear systems. For example, a system is typically
defined as strongly positive if all the entries of A(k) are
positive, yet it is strongly 1-positive if all its entries are either
all positive or all negative.

Example 1. Consider the system (1) with n = 4 and

A(i) =


9 2 −2 1
3 10 1 −1
−4 1.5 12 4
1 −1 2 15

 , (12)

for all i ≥ 0. Note that A is not SSR1 (as it has both
positive and negative entries), nor SSR2 (as it has both positive
and negative minors of order two, e.g., A(1, 2|1, 2) = 84,
A(3, 4|1, 3) = −20). All the 16 minors of order three are
positive, and det(A) 6= 0, so A is SSR3 and nonsingular.
Figure 1 shows s+(x(j)) as a function of j for x(0) =[
1 1 −1 1

]T
. Note that s−(x(0)) = 2. It may be seen

that, as expected, s+(x(j)) ≤ 2 for all j ≥ 0. �

From here on we focus on the time-invariant linear system

x(j + 1) = Ax(j), x(0) = x0 ∈ Rn, (13)

where A is nonsingular and SSRk for some k ∈ {1, . . . , n−
1}, leaving the time-varying case and nonlinear systems to a
sequel paper. To the best of our knowledge, even for this LTI
case our results are new.

A. k-exponential separation and its implications

Let C ⊆ Rn be a closed cone that is convex (i.e., x, y ∈ C
implies that rx + sy ∈ C for all r, s ≥ 0), and pointed (i.e.,
C ∩ (−C) = {0}). Then C induces a (partial) order defined
by a ≤C b if b − a ∈ C. For example, for C = Rn+ we
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Fig. 1. s+(x(j)) as a function of j for the trajectory in Example 1.

have a ≤C b if and only if bi ≥ ai for all i ∈ {1, . . . , n}.
Dynamical systems whose flow preserves such an order are
called monotone, see, e.g., the excellent monograph [34].

Since P k− and P k+ are not convex sets, k-positive systems
are not monotone systems in the usual sense. However, the
fact that P k− is a k-solid cone has strong implications for the
dynamics of such systems.

The first demonstration of this is a k-exponential separation
property of (13). This is closely related to the generalization
of Perron’s Theorem in [15], see also [22], but we give a direct
proof based on the spectral properties of a nonsingular SSRk
matrix, see Theorem 2 below. We now review these properties
following the presentation in [1].

Fix a nonsingular matrix A ∈ Rn×n that is SSRk for
some k ∈ {1, . . . , n− 1}. Denote the eigenvalues of A by λi,
i = 1, . . . , n, ordered such that

|λ1| ≥ |λ2| ≥ · · · ≥ |λn| > 0, (14)

and let
v1, v2, . . . , vn (15)

denote the corresponding eigenvectors, with complex conju-
gate eigenvalues appearing in consecutive pairs (we say, with
a mild abuse of notation, that z ∈ Cn is complex if it is not
real). We use z̄ to denote the complex conjugate of z. We may
assume that every vi is not purely imaginary. Indeed, otherwise
we can replace vi by Im(vi) that is a real eigenvector. Also,
the fact that A is real means that if vi is complex then its real
and imaginary parts can be chosen as linearly independent.

Define a set of real vectors u1, u2, . . . , un ∈ Rn by going
through the vi’s as follows. If v1 is real then u1 := v1 and
proceed to examine v2. If v1 is complex (and whence v2 = v̄1)
then u1 := Re(v1), u2 := Im(v1) and proceed to examine v3,
and so on.

Suppose that for some i, j the eigenvector vi is real and vj is
complex. Then is not difficult to show that since A is real and
nonsingular, the real vectors vi,Re(vj), Im(vj) are linearly
independent.

Note that if vi, vi+1 ∈ Cn is a complex conjugate pair
and c ∈ C \ {0} is complex then

cvi + c̄vi+1 = 2(Re(c) Re(vi)− Im(c) Im(vi)) ∈ Rn \ {0},

so by choosing an appropriate c ∈ C \ {0} we can get any
nonzero real linear combination of the real vectors Re(vi)
and Im(vi).

For p ≤ q, we say that a set cp, . . . , cq ∈ C matches the
set vp, . . . , vq of consecutive eigenvectors (15) if the ci’s are
not all zero and for every i if the vector vi is real then ci is
real, and if vi, vi+1 is a complex conjugate pair then ci+1 = c̄i.
In particular, this implies that

∑q
i=p civ

i ∈ Rn.
It was shown in [1] that if A ∈ Rn×n is nonsingular

and SSRk with signature εk, then the product εkλ1λ2 . . . λk
is real and positive,

|λk| > |λk+1|, (16)

and if c1, . . . , ck ∈ C [ck+1, . . . , cn ∈ C] match the eigenvec-
tors v1, . . . , vk [vk+1, . . . , vn] of A, then

s+(
k∑
i=1

civ
i) ≤ k − 1, (17)

s−(
n∑

i=k+1

civ
i) ≥ k. (18)

Furthermore, let {u1, . . . , un} be the set of real vec-
tors constructed from {v1, . . . , vn} as described above.
Then u1, . . . , uk are linearly independent. In particular,
if v1, . . . , vk are real then they are linearly independent.

Example 2. Let

A :=


2 6 0 0
0 2 2 0
0 0 4 2
2 0 0 4

 . (19)

It is straightforward to verify that this matrix is nonsingular,
and SSR3 with ε3 = 1. Its eigenvalues are2

λ1 = 3 + s1, λ2 = 3 + is2, λ3 = 3− is2, λ4 = 3− s1,

where i2 = −1, s1 :=
√

1 + 4
√

3 ≈ 2.8157, and s2 :=√
−1 + 4

√
3 ≈ 2.4348. Note that λ1λ2λ3 is real and positive,

and that |λ3| > |λ4|. The matrix of corresponding eigenvectors
is

V :=
[
v1 v2 v3 v4

]

=



s1−1
2

is2−1
2

−(is2+1)
2

−(s1+1)
2

s21−1
12

−(1+s22)
12

−(1+s22)
12

s21−1
12

2
s1−1

−2(1+is2)
1+s22

2(−1+is2)
1+s22

−2
s1+1

1 1 1 1

 ,

2All numerical values in this paper are subject to 4-digits accuracy.
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and thus

U :=
[
u1 u2 u3 u4

]
=
[
v1 Re(v2) Im(v2) v4

]

=


s1−1
2

−1
2

s2
2

−(s1+1)
2

s21−1
12

−(1+s22)
12 0

s21−1
12

2
s1−1

−2
1+s22

−2s2
1+s22

−2
s1+1

1 1 0 1

 .

Note that s−(ui) = s+(ui) = i− 1, i = 1, 2, 4, and

1 = s−(u3) < s+(u3) = 2.

�

We now state the main result in this subsection. Let || · || :
Rn → R+ denote some vector norm.

Theorem 2. Suppose that A ∈ Rn×n is nonsingular
and SSRk for some k ∈ {1, . . . , n − 1}. Let u1, . . . , un

be the real vectors constructed from the eigenvectors of A
as described above. Then there exists subspaces E :=
span{u1, . . . , uk} and Ec such that the following properties
hold:

(i) dim(E) = k and dim(Ec) = n− k;
(ii) both E and Ec are invariant under A;

(iii) E ⊆ int(P k−) ∪ {0}, and Ec ∩ P k− = {0};
(iv) There exist a > 0 and b ∈ (0, 1) such that for

any x(0) ∈ E, x̃(0) ∈ Ec, with ||x(0)|| = ||x̃(0)|| = 1,
the corresponding solutions of (13) satisfy

||x̃(j)|| ≤ abj ||x(j)||; (20)

(v) For any x(0) satisfying

x(0) = f + g, where f ∈ E \ {0} and g ∈ Ec, (21)

there exists a q = q(x(0)) ≥ 0 such that the correspond-
ing solution of (13) satisfies

s+(x(j)) ≤ k − 1 for all j ≥ q.

Remark 1. Condition (v) does not necessarily mean that x(0)
is an element of E, as it may also include some non-zero
combination of the vectors uk+1, . . . , un that are not in E.
Assertion (v) states that for almost any initial condition, the
corresponding solution of the dynamical system converges
to P k+ in finite time. Thus, P k+ is an almost globally attractive
invariant set of the dynamics. Invariant sets play an important
role in systems and control theory (see, e.g., [6]).

Proof of Theorem 2. We consider without loss of generality
the generic case, where u1, . . . , un are linearly independent.
Then Ec = span{uk+1, . . . , un}. The proofs of the properties
of Ec are then very similar to the proofs for E, and thus we
present here only the proofs for E.

We begin by noting that the eigenvalues of A are ordered
as

|λ1| ≥ · · · ≥ |λk| > |λk+1| ≥ · · · ≥ |λn| > 0. (22)

Assertion (i) follows immediately from the fact
that u1, . . . , un are linearly independent.

Pick z ∈ E \ {0}. Since
∏k
`=1 λ` is real, either λk−1, λk

are both real, or they are a complex conjugate pair. Com-
bining this with the definition of E implies that z =∑k
i=1 civ

i, for some c1, . . . , ck that match v1, . . . , vk.
Hence, Az =

∑k
i=1 ciλiv

i. Clearly, {c1λ1, . . . , ckλk} also
match {v1, . . . , vk}, so E is invariant under A.

It follows from (17) and the construction of the ui’s
that s+(z) ≤ k−1 for any z ∈ E \{0}, that is, E \{0} ⊆ P k+.
Since P k+ = int(P k−), we conclude that E ⊆ int(P k−) ∪ {0}.

To prove (iv), pick x(0) ∈ E \ {0} and x̃(0) ∈ Ec \
{0}. Then x(0) =

∑k
i=1 civ

i and x̃(0) =
∑n
i=k+1 c̃iv

i,
where c1, . . . , ck ∈ C [c̃k+1, . . . , c̃n ∈ C] match v1, . . . , vk

[vk+1, . . . , vn]. Using (22), a straightforward argument shows
that there exists m > 0 such that

||x(j)|| = ||Ajx(0)||
≥ m|λk|j ||x(0)||.

Similarly, there exists M > 0 such that ||x̃(j)|| ≤
M |λk+1|j ||x̃(0)||. Thus,

||x̃(j)||
||x(j)||

≤ M

m

∣∣∣∣λk+1

λk

∣∣∣∣j ||x̃(0)||
||x(0)||

,

and combining this with (16) proves (20).
To prove (v), pick x(0) such that (21) is satis-

fied. Then x(0) =
∑n
i=1 civ

i, where c1, . . . , cn ∈ C
match v1, . . . , vn, and

∑k
i=1 civ

i 6= 0. Thus,

x(j)

||
∑k
i=1 ciλ

j
iv
i||

=

∑k
i=1 ciλ

j
iv
i

||
∑k
i=1 ciλ

j
iv
i||

+

∑n
i=k+1 ciλ

j
iv
i

||
∑k
i=1 ciλ

j
iv
i||
.

The first term on the right-hand side of this equation is a unit
vector in E, and the second term goes to zero as j →∞. Thus,
there exists r ≥ 0 such that x(r) ∈ P k−. Then x(r+ 1) ∈ P k+,
and the invariance of P k+ implies that x(j) ∈ P k+ for all j ≥
r + 1.

The next example demonstrates a simple application of
Theorem 2.

Example 3. Consider the matrix

A =

a11 a12 0
0 a22 a23
a31 0 a33

 .
We assume that det(A) = a12a23a31 + a11a22a33 6= 0, so A
is nonsingular. It is straightforward to verify that A is SSR2

iff either a31 is negative and all the other aij’s are positive or
if a31 is positive and all the other aij’s are negative. For con-
creteness, we assume the first case. Note that since a31a11 < 0
the matrix is not SR1. The dynamics x(k + 1) = Ax(k)
represents a cyclic linear system, where the dynamics of each
state-variable xi, i = 1, 2, depends on the state of xi, xi+1

in a cooperative manner, and there is a negative feedback
from x1(k) to x3(k+1). Continuous-time cyclic systems have
found many applications in various fields (see, e.g. [17]).
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Theorem 2 implies that for almost every initial condition x(0)
the solution x(k) converges to P 2

+, that is,

s+(x(k)) ≤ 1 for all k sufficiently large. (23)

Note that if we multiply A by any c ∈ R\{0} then the required
sign pattern of A still holds, and thus the same conclusion
holds. This implies that (23) is independent of stability. In
other words, (23) cannot be used to determine if solutions go
to the origin, to a limit cycle, or to infinity, yet it implies that
the solutions must go there “through” P 2

+. �

B. Dynamics of exterior products

The exterior product (also called wedge product) of vectors
is an algebraic construction that can be used to study geomet-
ric properties: areas, volumes, and their higher-dimensional
analogues [18]. Pick Z ∈ Rn×k, with k ≤ n. Denote the
columns of Z by z1, . . . , zk ∈ Rn. Then its kth multiplicative
compound Z(k) ∈ R(n

k)×(n
k) is the exterior product z1 ∧

· · · ∧ zk, represented as a column vector [25]. For example,
for z1 =

[
r1 r2 r3

]T
and z2 =

[
w1 w2 w3

]T
, we have

Z(2) =

r1 w1

r2 w2

r3 w3

(2)

=
[
r1w2 − r2w1 r1w3 − r3w1 r2w3 − r3w2

]T
.

Consider the dynamics (13), where A ∈ Rn×n is SSRk,
and pick k initial conditions w1, . . . , wk ∈ Rn. Let

X(j) :=
[
x(j, w1) . . . x(j, wk)

]
∈ Rn×k. (24)

Then X(j + 1) = AX(j). Taking the kth multiplicative
compound on both sides of this equation and using (7) yields

η(j + 1) = A(k)η(j), (25)

where
η(j) := x(j, w1) ∧ · · · ∧ x(j, wk). (26)

The magnitude of this wedge product is the volume of the k-
dimensional parallelotope whose edges are the given vectors.

Example 4. Suppose that n = 3, A :=

λ1 0 0
0 λ2 0
0 0 λ3

, k =

2, w1 = ep and w2 = eq for some p, q ∈ {1, 2, 3}. Then

η(j) = x(j, ep) ∧ x(j, eq)

= (λjpe
p) ∧ (λjqe

q)

= λjpλ
j
q(e

p ∧ eq)
= (λpλq)

jη(0).

This implies that under the dynamics (13) the unsigned
area of the parallelogram having ep and eq as two of
its sides scales as (λpλq)

j . On the other-hand, A(2) =λ1λ2 0 0
0 λ1λ3 0
0 0 λ2λ3

. �

If A is SSRk then either every entry of B := A(k) is
positive or every entry is negative. We assume that B > 0. By
the Perron Theorem, the spectral radius of B, denoted ρ(B), is
a positive eigenvalue and there exist positive vectors vB , wB ,
such that BvB = ρ(B)vB and BTwB = ρ(B)wB . By
normalization, we may assume that (vB)TwB = 1. Then
furthermore

lim
j→∞

(
B

ρ(B)

)j
= vB(wB)T (27)

(see, e.g., [19, Chapter 8]). This yields the following result.

Theorem 3. Suppose that A is SSRk and that B := A(k) > 0.
Pick k initial conditions w1, . . . , wk ∈ Rn, and define X(j)
and η(j) as in (24) and (26). Then

lim
j→∞

η(j)

(ρ(B))j
= (wB)T η(0)vB . (28)

Proof. By (25), η(j) = Bjη(0), i.e., η(j)
(ρ(B))j =

(
B
ρ(B)

)j
η(0).

Taking j →∞ and using (27) completes the proof.

Remark 2. Suppose that the spectral radius ρ(A) of A
satisfies ρ(A) < 1. Then limj→∞Ajx = 0 for all x ∈ Rn
and thus

η(j) = (Ajw1) ∧ · · · ∧ (Ajwk),

satisfies limj→∞ η(j) = 0. Since every eigenvalue of A(k) is
the product of k eigenvalues of A, ρ(B) < 1 so (28) also
shows that η(j) goes to zero as j →∞.

Example 5. Consider the case n = 3, k = 2,

A :=

0.79 0.2 0.01
0.1 0.8 0.1
0.01 0.1 0.89

 ,
w1 = e1, and w2 = e2. In other words, we consider the
evolution of the unsigned area of the parallelogram with e1

and e2 as two of its sides. A calculation yields

B := A(2) =

0.612 0.078 0.012
0.077 0.703 0.177
0.002 0.088 0.702


(so A is SSR2), ρ(B) = 0.8430,

vB =
[
0.2991 0.8075 0.5084

]T
,

and
wB =

[
0.2203 0.6394 0.8217

]T
,

(note that (wB)T vB = 1). We compute η(15) in two different
ways. First,

η(15) = (A15e1) ∧ (A15e2)

=
[
0.2397 0.2190 0.1858

]T
∧
[
0.4228 0.4103 0.3859

]T
= 0.0057e1 + 0.0139e2 + 0.0083e3. (29)
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Second, it follows from (28) that

η(15) ≈ (ρ(B))15(wB)T η(0)vB

= (ρ(B))15wB1 v
B

=
[
0.0051 0.0137 0.0086

]T
,

and this is indeed an approximation of (29). �

Recall that if A ∈ Rn×n is Schur and A ≥ 0 then (13)
admits a diagonal Lyapunov function, that is, there exists a
diagonal and positive-definite matrix P ∈ Rn×n such that
ATPA−P is negative-definite [5]. Diagonal Lyapunov func-
tions play an important role in stability analysis of nonlinear
systems and in passivity theory (see, e.g. [?], [?]). Now
assume that A is SSRk, with εk = 1, and Schur. Then there
exists a diagonal and positive-definite matrix D ∈ Rr×r,
with r :=

(
n
k

)
, such that (A(k))TDA(k) − D is negative-

definite. In other words, the dynamical system (25) admits
a diagonal Lyapunov function. This suggests that in this
case many of the powerful ideas based on using diagonal
Lyapunov functions can be extended to study the evolution
of k-dimensional exterior products.

4. DISCUSSION

Positive systems and their nonlinear counterpart of mono-
tone systems form a class of dynamical systems of funda-
mental importance in systems biology, neuroscience, and bio-
chemical networks, and has recently also found important ap-
plications in control engineering for large-scale systems [30].

We introduced a new class of DT linear systems that map
the set of vectors with up to k − 1 sign variations to itself.
For k = 1 this reduces to the important notion of DT positive
linear systems.

An interesting research direction is to study DT nonlinear
systems whose variational equation is a k-positive linear
system. Since the variational equation (3) includes the integral
of a matrix, this raises the following question: when is the
integral of a matrix SSRk?

Theorem 3 describes the convergence to a ray for the
exterior product. We believe that this can generalized to the DT
time-varying linear system (1), with the matrices A(i) taken
from a compact set, using the Birkhoff-Hopf theory [7].

Another interesting research direction may be the extension
of k-positive systems to DT control systems as was done
for CT monotone systems in [3]. Finally, our results highlight
the importance of an efficient algorithm for determining if a
given matrix is SSRk for some k. This issue is currently under
study [2].

Acknowledgments: We thank the AE and the reviewers for
many helpful comments.

APPENDIX: PROOF OF FACT 1

Let vi, i = 1, 2, . . . , be a set of vectors such that vi ∈ P k−
for all i and v := limi→∞ vi exists, Applying (8) yields

s−(v) ≤ lim inf
i→∞

s−(vi) ≤ k − 1,

so v ∈ P k−. We conclude that P k− is closed.

To prove (9) pick z ∈ P k+. Then s−(z) ≤ s+(z) ≤ k − 1,
so z ∈ P k−. This shows that P k+ ⊆ P k−. Thus, it is enough to
show that the boundary of P k−, denoted ∂P k−, satisfies

∂P k− = P k− \ P k+. (30)

Pick x ∈ ∂P k−. Then s−(x) ≤ k − 1 and for any ε > 0 there
exists y ∈ Rn such that ||x−y|| ≤ ε and s−(y) > k−1. This
implies that we can find a set of vectors xi, i = 1, 2, . . . , such
that limi→∞ xi = x and s−(xi) > k−1 for all i. Applying (8)
yields

k − 1 < lim inf
i→∞

s−(xi) ≤ s+(x).

We conclude that x ∈ P k− and x 6∈ P k+, so

∂P k− ⊆ P k− \ P k+.

Now pick x ∈ P k− \P k+. Thus, s−(x) ≤ k− 1 and s+(x) >
k − 1. This implies that there exists a nonempty set of
indexes E such that for every i ∈ E we have xi = 0 and
there exists ri ∈ {−1, 1} such that the vector y defined by

yk :=

{
rk, k ∈ E,
xk, k 6∈ E,

satisfies s−(y) > k − 1. Seeking a contradiction, assume
that x ∈ int(P k−). Then for any sufficiently large c > 0 the
vector z defined by

zk :=

{
rk/c, k ∈ E,
xk, k 6∈ E,

satisfies z ∈ P k−. But by s−(z) = s−(y) > k − 1 we obtain a
contradiction which shows that x ∈ ∂P k−. Since

P k− \ P k+ ⊆ ∂P k−,

the proof of Fact 1 is completed. �
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