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Abstract: In this paper we analyze the selection of industry branches by
employees in the Austrian labor market. For this purpose we use the stan-
dard logit model and the heteroscedastic extreme value model. We show that
the likelihood ratio test rejects the multinomial logit model in favor of the
heteroscedastic specification. Consequently, we concentrate on estimation
results of the heteroscedastic extreme value model. In our investigation we
use 1997 social security records provided by the Hauptverband der Sozialver-
sicherungen.

Zusammenfassung: In dieser Arbeit analysieren wir die Wahl des Indus-
triezweigs durch die Arbeitskräfte imösterreichischen Arbeitsmarkt. Zu die-
sem Zweck verwenden wir das multinomiale Logit-Modell und das hetero-
skedastische Extremwertmodell. Mit Hilfe des likelihood Verhältnis Tests
zeigen wir, dass das multinomiale Logit Modell ungeeignet ist, und unter-
suchen in der Folge nur die heteroskedastische Spezifikation. Für unsere Un-
tersuchungen verwenden wir Sozialversicherungsdaten des Hauptverbands
der Sozialversicherungen für das Jahr 1997.

Keywords: Labor Market, Choice Model, Unobserved Utility, Heteroscedas-
ticity.

1 Introduction

A labor market is formed by industries which have advantages and disadvantages from
the employees’ point of view. The employee in turn has a set of its own characteristics.
These characteristics along with its preferences about industries and its unobserved in-
centives are supposed to lead it to choose a particular industry. The goal of this paper
is to investigate the behavior of the employee in the Austrian labor market depending on
employee’s properties. In particular, we address here the following issue: which proper-
ties of the decision maker (i.e., employee) change the probabilities to be employed in a
certain sector. For instance, we can easily assume that being high educated increases the
probability to work in a science or manufacturing sector, while living in lower developed
area may increase the probability to be engaged in the agriculture. In this study, an indus-
trial sector of the economy is a nominal dependent variable. That refers our investigation
to the class of multinomial choice models.

Choice models are derived from the utility maximization hypothesis. This hypothe-
sis assumes that a decision maker’s choice is the result of its preferences. The decision
maker selects the alternative with the highest preference or utility. The utility that a deci-
sion maker associates with an alternative is specified to be the sum of a deterministic and
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random components. The deterministic component is a function, which depends on ob-
served attributes of the alternative and observed individual characteristic of the decision
maker. The random component is a random process representing the effect of unobserved
attributes of the alternative and unobserved characteristics of the decision maker.

In most choice models, the random components of the utilities of the different al-
ternatives are assumed to be independent and identically distributed (IID) with a type I
extreme value distribution (see Johnson and Kotz, 1970). This results in the multinomial
logit choice model (see McFadden, 1974). The multinomial logit model has a simple
closed form structure, making it easy to estimate and interpret. However, the IID property
of the multinomial logit is unlikely to represent actual choice behavior in many situations
(see Stopher et al., 1981).

Inflexibility of the multinomial logit can be relaxed by removing, fully or partly, the
IID assumption on the random components of the utilities of the different alternatives.
The IID assumption can be relaxed in the following ways:

(i) allowing the random components to be non-identical and non-independent,

(ii) allowing the random components to be correlated, maintaining the assumption that
they are identical distributed, and

(iii) allowing the random components to be non-identical (different variances), but main-
taining the independence assumption.

These three cases are discussed briefly.
Case (i): models with non-identical, non-independent random components are re-

ferred to the mixed logit (also called random-parameters logit) model (see McFadden and
Train, 2000; Ben-Akiva et al., 2003) and the probit model (see Daganzo, 1979). The
mixed logit generalizes standard logit by allowing the parameter associated with each
observed variable to vary randomly across decision-makers. Variance in the unobserved
decision-maker-specific parameters induces correlation over alternatives in the random
component of utility. The distribution of the parameters is usually assumed to be normal,
lognormal or gamma, but it can be any other. Simultaneously, that makes the mixed logit
very flexible, however, on the other hand there is no economic theory which motivates the
distribution selection of the unobserved decision-maker-specific parameters. Estimation
of the mixed logit parameters is computationally intensive, and involves evaluation of the
manifold integral with no closed form solution. The dimension of the integral is equal
to the number of parameters to be estimated. The accurate Gaussian quadrature is feasi-
ble in cases of only one- or two-dimensional integration, that requires a very restrictive
specification.

The multinomial probit model assumes that a normal distribution for the error terms
can accommodate a very general error structure. However, the increase in flexibility of the
error structure can lead to some statistical and practical difficulties, including difficulty in
interpretation, non-intuitive model behavior, and low precision of covariance parameter
estimates (see Horowitz, 1981). The multinomial probit choice probabilities also involve
high dimensional integrals and this may pose computational problems when the number
of alternatives exceeds three.
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Case (ii): the distribution of the random components in the model which uses iden-
tical non-independent random components is usually specified as a type I extreme value
distribution. The resulting model is referred to the nested logit model. This model allows
partial relaxation of the independence among random components of alternatives (see
Daly and Zachary, 1979; McFadden, 1978). The nested logit has closed form solution, is
relatively simple to estimate. However, it requires an a priori specification of homogenous
sets of alternatives for which the IID property holds. This requirement has at least two
drawbacks. First, the number of different structures to estimate in a search of the best
structure increases rapidly as the number of alternatives increases. Second, then actual
competition structure among alternatives may be a continuum which cannot be accurately
represented by partitioning the alternatives into mutually exclusive subsets.

Case (iii): models with independent, but not identically distributed error terms taking
heteroscedasticity in alternative error terms into account are presented in the literature in
various forms. Daganzo (1979) used independent negative exponential distributions with
different variances for the random error components to develop a closed form discrete
choice model. However, his model has not seen much application since it requires that
the utility of any alternative does not exceed an upper bound. Steckel and Vanhonacker
(1988) suggested a heterogeneous conditional logit model, where the error component is
a mixture of type I extreme value and gamma distribution. They derived a closed form
solution of the choice probability. Bhat (1995) developed a random utility model with
independent, but not-identically error terms distributed with a type I extreme value distri-
bution, allowing the utility of alternatives to differ in variances of the random components
across alternatives. This model nests the multinomial logit model. Furthermore, it is flex-
ible enough to let differ cross-elasticities among all combinations of alternatives, as the
unobserved part of individual utility function (see the next section) is allowed to vary with
the choices. It does not require an a priori identification of mutually exclusive partitioning
as does the nested logit structure. In addition, it poses much less computationally burden,
requiring only the evaluation of a 1-dimensional integral (independent of the number of
alternatives) compared to the evaluation of multidimensional integral in the mixed model
and multinomial probit model. Bhat (1995) applies this so-called heteroscedastic extreme
value model for an intercity travel mode choice. Allenby and Ginter (1995) proposed a
similar model in marketing context. However, the discussion of the model and the proce-
dure to estimate the model are different in the two research efforts.

In this paper we apply the standard logit model McFadden (1974) and the heteroscedas-
tic extreme value model (see Bhat, 1995; Allenby and Ginter, 1995) in the Austrian labor
market choice model. The heteroscedastic extreme value model does not require any
prior identification of mutually exclusive partitioning as does the nested logit structure.
In addition, it poses much less computationally burden, requiring only the evaluation of a
1-dimensional integral (independent of the number of alternatives) compared to the eval-
uation of multidimensional integral in the mixed model and multinomial probit model.
The heteroscedastic extreme value model allows different variances on the random com-
ponents across alternatives, that intuitively makes it more attractive than the standard logit
model. Unequal variances of the random components is likely to occur when the variance
of an unobserved variable is different for different alternatives (see Horowitz, 1991). For
example, in a labor market choice model, if guarantee of employment is an unobserved
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variable whose values vary considerably for manufacturing (based on, say, the degree
of competition in different firms), but little for science, then the random component for
manufacturing and science will have different variances.

The paper is organized as follows. Section 2 describes the two choice models we
will apply in the paper, i.e. the multinomial logit, and the heteroscedastic extreme value
model. The data used in this study is described in Section 3. Section 4 discusses the
estimation results, and Section 5 concludes.

2 The Model Specification and Estimation

In this section, we describe two models used in the paper, namely, the multinomial logit,
and the heteroscedastic extreme value model. We overview the utility maximization hy-
pothesis on which these models are based, and sketch the estimation procedure of the
models. As well as a method of the model interpretation is described.

2.1 The Random Utility Model

Let decision-makern choose from a set of mutually exclusive alternatives,j = 1, ..., J .
The decision-maker obtains a certain level of utilityUnj from each alternative. The dis-
crete choice model is based on the principle that the decision-maker chooses the outcome
that maximizes the utility. We do not observe her utility, but observe some attributes of
the alternatives as faced by the decision-maker. Hence, the utility is decomposed into
deterministicVnj and random partεnj:

Unj = Vnj + εnj, ∀j. (1)

Sinceεnj is not observed, the decision-maker’s choice cannot be predicted exactly. In-
stead, the probability of any particular outcome is derived. The unobserved term is treated
as random with densityf(εnj). The joint density of the random vectorεn = 〈εn1, ..., εnJ〉
is denotedf(εn). Probability that decision-makern chooses alternativei amongJ alter-
natives is

Pni = Pr(Uni > Unj ∀j 6= i)

= Pr(Vni + εni > Vnj + εnj ∀j 6= i) (2)

=

∫
I(Vni + εni > Vnj + εnj ∀j 6= i)f(εn)dεn,

whereI(·) is the indicator function, equaling 1 when the term in parenthesis is true and 0
otherwise. This is a multidimensional integral over the density of the unobserved portion
of utility f(εn). Different discrete choice models are obtained from different specifica-
tions of the density. The deterministic partVnj of utility is usually treated as a linear
function of explanatory variablesx and an unknown vector of underlying parametersθ.
In random utility models the expectation of the random componentE(εnj) is assumed to
equal0, that in turn impliesE(Unj) = Vnj. A vector of utilitiesUnj, ∀j is assumed to be
continuously distributed with an existing covariance matrix (see Tutz, 2000).
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The absolute level of utility in Equation 2 is irrelevant to the decision maker behavior.
For example, if a constant is added to the utility of all alternatives, the alternative with the
highest utility does not change. The choice probability isPni = P (Uni > Unj) = P (Uni−
Unj > 0), which depends only on the difference in utility, not its absolute level. The fact
that only differences in utility matter has several implications for the identification and
specification of discrete choice models. In general it means that the only parameters
that can be estimated (that is, are identified) are those that capture differences across
alternatives.

In order to investigate the way how observed factors influence the decision maker to
make a choice, unknown parametersθ of the model are estimated. The log-likelihood
estimator can be used to estimate the parameters. The log-likelihood function to be max-
imized over parametersθ is given:

ln L(θ) =
N∑

n=1

J∑
j=1

ynj ln Pnj. (3)

Whereynj equals 1 if alternativej is chosen and equals 0 for all other non-chosen alter-
natives.

2.2 The Multinomial Logit

The multinomial logit(MNL) model, invented by McFadden (1974), is obtained by the
assumption that each random componentsεnj in the utilities (1) is distributed indepen-
dently, identically type I extreme value, where the variance of the error term is equal to
π2/6. The density for each unobserved component of utility and the cumulative distribu-
tion are given, respectively, by

λ(εnj) = e−εnje−e−εnj
and Λ(εnj) = e−e−εnj

. (4)

The random utility (1) is combined with the probability distribution for the random
componentsεnj in equation (4) and assume independence among the random components
of the different alternatives. The probability that an decision makern chooses alternative
i among theJ alternatives is given by

Pni = Pr(εnj < Vni − Vnj + εni ∀j 6= i)

=

∫ ∏

j 6=i

Λ (Vni − Vnj + εni) λ (εni) dεni. (5)

Thus, the choice probability is the integral over all values ofεni weighted by its density
λ (·) as defined in (4). This integral has a closed form solution and after some manipula-
tion the logit probabilities, withVnj = x′nβj, become:

Pni =
ex′nβi

∑
j ex′nβj

. (6)

Since MNL is a model where regressors do not vary over choices, coefficients are esti-
mated for any choice. MNL requires identification: one of the choices, sayj, is treated as
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the base category (correspondentβj is constrained to equal 0). Substitution equation (6)
into (3) yields the log-likelihood function to be maximized over parametersβ

ln L(β) =
N∑

n=1

J∑
j=1

ynj ln
ex′nβi

∑
j ex′nβj

. (7)

Estimation results of the multinomial logit model for the Austrian labor market is
given in Table A.1 in the appendix. The base category ismanufacturing.

2.3 The Heteroscedastic Model

The heteroscedastic modelis derived under the assumption that the random components in
the utilities (1) are independent, but not-identically distributed. The random components
is assumed to have a location parameter equal to 0 and a scale parameter equal toγj

for the jth alternative, then the variance of thejth alternative’s error term isπ2γ2
j /6.

The assumption of a location parameter equal to zero for the random components is not
restrictive since constants are included in the systematic utility for each alternative. Thus,
the probability density functionf (·) and the cumulative distribution functionF (·) of the
random error for thejth alternative are, respectively,

f(εnj) =
1

γj

e
− εnj

γj e−e−εnj
and F (εnj) = e−e

− εnj
γj

. (8)

The random utility (1) combined with the assumed probability distribution for the random
components in equation (8) and assumed independence among the random components
of the different alternatives, enables to develop the probability that a decision makern
chooses alternativei form theJ alternatives

Pni = Pr(εnj < Vni − Vnj + εni ∀j 6= i)

=

∫ ∏

j 6=i

Λ

(
Vni − Vnj + εni

γi

)
1

γi

λ

(
εni

γi

)
dεni (9)

=

∫ ∏

j 6=i

Λ

(
Vni − Vnj + γiwn

γi

)
1

γi

λ (wn) dwn

whereΛ (·) andλ(·) are given by equation (4), andwn = εni/γi. The probabilities given
by equation (9) sum up to one over all alternatives (Bhat, 1995). If the scale parameters
of the random components of all alternatives are equal, then the probability expression in
equation (9) collapses to the multinomial logit (McFadden, 1974).

The heteroscedastic model is estimated using the maximum likelihood technique. As
beforeVnj = x′nβj. The parameters to be estimated in the model are the parameter
vectorβ and the scale parametersγ of the random component of each alternative (one of
the scale parameters is normalized to one for identification). The log-likelihood function
to be maximized is given as

ln L(β, γ) =
N∑

n=1

J∑
j=1

ynj ln

∫ ∏

j 6=i

Λ

(
Vni − Vnj + γiwn

γi

)
1

γi

λ (wn) dwn. (10)
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The log-likelihood function (10) has no closed form solution. The integral has to be
computed for each alternative-decision maker combination at each iteration of the maxi-
mization of the log-likelihood function.

To maximize the log-likelihood function, we use the Newton-Rhapson maximization.
The idea of the method is to find the valueβ andγ that maximizeln L(β, γ). Numeri-
cally, the maximum can be found by “walking up” the likelihood function until no further
increase can be found. Each iteration moves to a new value of the parameters at which
ln L(β, γ) is higher than at the previous value. A new value of coefficientsβt+1 andγt+1

is given by(−H−1
t )gt, wheregt andHt are, respectively, gradient (i.e., the vector of first

derivatives) and Hessian (i.e, the matrix of second derivatives) ofln L(βt, γt) evaluated at
βt, γt. For further details see, for example, Judge et al. (1980).

The estimation of the log-likelihood function involves a one-dimension integral with
no close form solution. The Gaussian quadrature is used to obtain an accurate approxi-
mation of the integral in (10). The idea of the Gaussian quadrature is based on the device
of adding up the value of the integrand at a sequence of abscissas within the range of
integration. To evaluate an integral of a functionf(x) the following approximation is
used: ∫ b

a

f(x)dx =

∫ b

a

p(x)w(x)dx ≈
n∑

i=1

wip(xi) (11)

wherep(x) is polynomial of degree2n− 1 or lower, andw(x) is a chosen basis function,
or weight. The computation of the integral involves two distinct phases: (i) the genera-
tion of the orthogonal polynomialsp(x) i.e., the computation of the coefficients; (ii) the
determination of the zeros ofp(x), and the computation of the associated weights. The
advantage of the Gaussian quadrature is the freedom to choose not only the weighting
coefficients, but also the location of the abscissas at which the function is to be evaluated.
For an extensive overview on the numerical integration, the reader is referred to Geweke
(1996), or Press et al. (1992). In our analysis, the numerical evaluation of the integral was
done with an in-built Gauss procedure.

Estimation results of the heteroscedastic extreme value logit for the Austrian labor
market choice model is given in Table A.1 in the appendix. As for MNL the based cate-
gory ismanufacturing.

2.4 Interpretation of Parameters

The amount of parameters in the multinomial logit model as well as in the heterogenous
extreme value model increases with the number of outcomes and the number of indepen-
dent variables and hence it is usually very large. Magnitudes and signs of parameters are
hardly directly informative.

In this paper interpretation of parameters of the model is based on a discrete change
in predicted probabilities (see Scott Long, 1997). The probability that the decision maker
chooses alternativei from J alternatives is given by equations (5) for the multinomial
logit and (9) for the heteroscedastic model, in which substitutingβ̂ instead ofβ yields the
predicted probability. The discrete change in the predicted probability occurs when an
explanatory variable, sayxk, changes fromxs (for the starting value) toxe (for the ending
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value):
4Pr(y = i|x)

4x
= Pr(y = i|xe)− Pr(y = i|xs).

The predicted probabilities on the right hand side of the expression are calculated holding
all other variables, exceptxk, constant.

3 Data Design

To develop a labor market choice model we use a sample from the social security records
in Austria (Hauptverband der Sozialversicherungen, 1997). This records cover individual
characteristics of employees (decision-makers) such as age, gender, place of residence,
field of action, wage, number of employed days a year, etc, from 1984 to 1998. The
sample used in this study observes 3234 employees in 1997.

The observed dependent variable is the industry which the decision-maker chooses to
work in (or employers of the decision-makers). The six industry categories are:(1) agri-
culture, (2) manufacturing, (3) service, (4) science, (5) public administration, (6) public
health. These six industries form a set of mutually exclusive and exhaustive alternatives
from employees’ point of view.

Table 1: Descriptive statistics of the data (3234 observations)

Explanatory Variable Mean St. Dev. Min Max
Age/100 0.38 0.10 0.17 0.71
Gender 64 % 0.00 1.00
High-Education Indicator 22 % 0.00 1.00
Middle-Education Indicator 59 % 0.00 1.00
High-Developed Land Indicator 49 % 0.00 1.00
Middle-Developed Land Indicator 15 % 0.00 1.00

To explain a choice of the decision-maker, six explanatory variables are used:age,
gender, and four dummy variables. The first two control education:high-education indi-
cator andmiddle-education indicator, the other two dummieshigh-developed land indi-
cator andmiddle-developed land indicatorare regional factors of development where the
decision-maker lives. For convenience, variableageis premultiplied by10−2. In dummy
variablegender, 1 is reserved for men. The data available do not contain a direct control
variable for education, instead two dummies are constructed using ratio of two explana-
tory variables,wageover age. The largest 716 elements of the ratio are assigned 1 in
high-education indicatordummy, the next 1319 largest elements of the ratio are assigned
1 in middle-education indicatordummy and for the remaining elements both dummies are
set to 0. The dummyhigh-developed land indicatorequals 1 if the decision-maker lives
in the most developed region of Austria, and equals 0 otherwise. The dummymiddle-
developed land indicatorequals 1 if the decision-maker lives in the middle developed
region of Austria, and equals 0 otherwise. The words ”most developed” and ”middle
developed” reflect a level of the regional GDP per capita.
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Table 1 summarizes the variables used in the model with descriptive statistics. For
dummy variables only the percentage of the decision-makers with value 1 is indicated,
whereas for the continuous variablesagethe standard deviation is also given. To specify
for a set of explanatory variables, we have performed several tests investigating the mixed
effect of age, gender, and education. Since the mixed specifications were rejected, the
final set of variables contains only separate variables.

4 Estimation Results and Discussion

We match the decision-maker behavior in the Austrian labor market for the year 1997.
The decision-maker chooses an industry among a set of the mutually exclusive choices
described above. We computed two models: the multinomial logit model and the het-
eroscedastic extreme value model. The parameter estimates in the first model were ob-
tained with an own maximum likelihood routine programmed in Gauss. We verified these
results with the ones obtained by Stata package. The codes underlying to the latter model
were also performed in Gauss. As mentioned before, we maximized the likelihood func-
tion (10) with the own programmed Newton-Rhapson method, while the inner integral
was computed with an in-built Gauss procedure.

The final estimation results (parameters, standard deviations, and P-value) are shown
in Table A.1 in the appendix for both the multinomial model and the heteroscedastic
extreme value model. Moreover, in Figure A.1 we graphically compare the parameters
arose from the both specifications. The asymptotic covariance matrix of parameters in
both estimations computed asH−1BH−1, whereH is the hessian andB is the cross-
product matrix of the gradients, provides consistent standard errors (see Börsch-Supan,
1987).

A comparison of the multinomial logit and the heteroscedastic extreme value model is
based on the likelihood ratio test (see Greene, 2000). The multinomial logit is rejected in
favor of the heteroscedastic specification. Here, the null hypothesis is defined as equality
of the random termsεnj in the utility function (1) across the sectors, i.e.H0 : εnj = εni for
all j 6= i. This is equivalent with setting theγj = 1 (see in 8) for allj’s. The test statistics
is 12.23 which is significant at any reasonable level of significance when compared to a
chi-squared statistics with five degrees of freedom. The rejection of the multinomial logit
confirms the assumption about unequal variances of the random components made earlier.
Hence, in the subsequent discussion we will concentrate on interpretation of the model
parameters of the heteroscedastic extreme value model.

Three tests, based on the Wald methodology (see Scott Long, 1997), requiring only
estimation of a single model, are run to test the parameters of the model. The null hy-
pothesis of the first test is that a variable has no effect throughout the alternatives, i.e.
H0 : βn· = 0, whereβn· is the parameter vector underlying to the variablen. The hy-
pothesis is rejected for all of the variables (Table 2). The null hypothesis of the second
test is whether all parameters for a choicej equal to 0, i.e.H0 : β·j = 0, whereβ·j is
the parameter vector underlying to the choicej. This assumption is also rejected for all
choices (Table 3). The last is a test of whether a pair of choices is indistinguishable with
respect to the variables and, hence, can be combined. The underlying null hypothesis is
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formulated asH0 : β·j = β·i for j 6= i, whereβ·j is as in the second test. This hypothesis
is easily rejected for all possible pairs (Table 4).

Table 2: Chi square values of the test that a variable has no effect throughout the
alternatives

Age Gender

High-

Education

Indicator

Middle-

Education

Indicator

High-

Develop.

Land Ind.

Middle-

Develop.

Land Ind.

χ2(5) 24.43 229.44 38.73 21.12 109.52 19.23
P-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Table 3: Chi square values of the test whether all parameters for a choice are equal to 0

Agriculture Service Science Public Adm. Public Health

χ2(6) 18.66 160.93 116.18 172.89 169.55
P-value (0.00) (0.00) (0.00) (0.00) (0.00)

Table 4: Chi square values of the test that a pair of choices is indistinguishable with
respect to the variables

Service Science Public Adm. Public Health

Agriculture χ2(6) 21.13 27.31 28.15 41.02
P-value (0.00) (0.00) (0.00) (0.00)

Service χ2(6) 19.92 36.46 96.16
P-value (0.00) (0.00) (0.00)

Science χ2(6) 26.83 76.62
P-value (0.00) (0.00)

Public Adm. χ2(6) 64.53
P-value (0.00)

To examine the effects of the explanatory variables of the model, we use the difference
in predicted probabilities (see Subsection 2.4). Table 5 contains estimates of discrete
change in predicted probabilities from the heteroscedastic extreme value model.

First, consider the dummy variablegender(recall that 1 is reserved for men). The
effect ofgenderis largest on the probabilities of working inmanufacturing(0.30). On the
contrary being woman increases the probability to be engaged in all the other industries
exceptagriculture, with the largest effect on the probability to work inpublic health
(0.14).

Next, let us consider the dummy variablehigh-education indicator. Holding all other
variables constant, being high educated decreases the probability to work inserviceby
0.11, inpublic administrationby 0.08, inagriculture by 0.06, and increases the proba-
bility to be engaged inmanufacturingby 0.14, inscienceby 0.07, inpublic healthby
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0.04. TheMiddle-education indicatordemonstrates almost the same tendency as the
high-education indicatorwith weaker changes in probabilities. TheMiddle-education in-
dicator positively changes only the sign in the sectorpublic administrationindicating the
inflow of middle educated employees in thepublic administrationsector.

Now, we turn our attention on how the industrial development of the area where the
decision-maker lives influences its choice. Living in high-developed land decreases the
probability to work inmanufacturingby 0.22. In comparisonservice, scienceandpublic
administrationincrease the probabilities to choose by 0.17, 0.09, 0.09, respectively. Only
change in the probability to work inpublic healthchanges from increasing (forhigh-
developed land indicator) to decreasing (formiddle-developed land indicator).

Table 5: Discrete changes in predicted probabilities of the heterogenous extreme value
model

Age Gender

High-

Education

Indicator

Middle-

Education

Indicator

High-

Develop.

Land Ind.

Middle-

Develop.

Land Ind.

25 → 40 → 55 0 → 1 0 → 1 0 → 1 0 → 1 0 → 1
Agriculture -0.04 -0.02 0.05 -0.06 -0.03 -0.05 0.02
Manufacturing 0.06 0.07 0.30 0.14 0.07 -0.22 -0.16
Service -0.07 -0.09 -0.06 -0.11 -0.06 0.17 0.06
Science -0.02 -0.04 -0.05 0.07 -0.04 0.09 0.03
Public Adm. 0.03 0.04 -0.10 -0.08 0.03 0.09 0.03
Public Health 0.04 0.04 -0.14 0.04 0.03 -0.08 0.02

The model contains only one continuous variable:age. To examine the effect of
age we consider two discrete changes, first, from 25 to 40 years, second, from 40 to
55 years. We see that the tendency in the both columns in Table 5 is the same for the 6
sectors exceptagriculture, where the sign of the discrete change in the probability remains
the same, and the effect softens up. On the contrary, the effect for all the remaining
alternatives strengthens with ages. Getting older in the age class from 40 to 55 increases
the probability to work inmanufacturingby 0.07, inpublic administrationby 0.04, in
public healthby 0.04, and decreases the probability to work in theservicesector by 0.09,
in scienceby 0.04 and inagricultureby 0.02. The largest effect ofageis observed in the
manufacturing(increasing) and in theservicesector (decreasing).

To a large degree the effect of the variables in the model corresponds to economic
intuition. For instance, it is natural to suppose, that being man increases the probability
to work in manufacturing, and being woman increases the probability to work inpublic
health. Also it is sensible to expect that getting older only strengthens any effect, keeping
the sign unaffected. However, the estimation results reveal some effects that are rather
surprising. One would expect, e.g. that living in the low-developed area decreases the
probability to choose the manufacturing sector, while in our analysis the reverse holds.
The probability to choose the manufacturing sector increases by 0.38.
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5 Conclusion

In this paper we applied the multinomial logit model and the heterogenous extreme value
model to the problem of employee’s choice of her preferred industry. We grouped all em-
ployers under six industries, namely agriculture, manufacturing, service, science, public
administration and public health. As explanatory variable we chose 4 factors, i.e. age,
gender, education and economic development of her residence, representing the charac-
teristics of the employee.

Using a likelihood ratio test, we found that the heterogenous extreme value model is
more appropriate for the data. This conclusion is not surprising as this model allows for
extra variation in the random components of the utility function (1) across the industrial
sectors. The differences in predicted probabilities support also some plausible decision
making. For instance, being high educated increases the probability to work in manu-
facturing about 0.14, while the increase of probability to work in the scientific sector is
rather low (0.07). We found some unexpected results, e.g. that living in the low-developed
area increases the probability to choose the manufacturing sector by 0.38. This might be
because of lack of other alternatives.

In the paper we demonstrated the usefulness of the multiple choice model for mod-
elling employee’s job decisions. As a further extension one could apply another choice
model, the mixed logit model (see McFadden and Train, 2000; Ben-Akiva et al., 2003),
which allows in addition, for non-independent random components of the utility function.
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A Appendix

Table A.1: Estimation results of the multinomial logit and heteroscedastic extreme value
model (manufacturing is base)

Variable Multinomial Logit Heteroscedastic
Extreme Value Model

Parameter Std.Err. P-value Parameter Std.Err. P-value

Constant
Agriculture -2.5024 1.0479 0.01 -1.7822 0.6348 0.00

Service 1.0274 0.2381 0.00 1.8126 0.2096 0.00

Science -0.6595 0.2811 0.00 -1.5219 0.5421 0.00

Public Administration -0.6145 0.2451 0.00 -1.1261 0.4252 0.00

Public Health -1.0454 0.4652 0.02 -0.4521 0.2144 0.00

Age
Agriculture -3.1320 1.4291 0.05 -3.3209 1.5089 0.01

Service -1.9124 0.6322 0.00 -1.7199 0.4671 0.00

Science -1.6348 0.6342 0.00 -1.3942 0.6505 0.02

Public Administration -0.2409 0.1103 0.03 -0.3309 0.2012 0.10

Public Health 1.5112 0.9121 0.09 1.1105 0.5114 0.03

Gender
Agriculture 1.1038 0.7857 0.16 0.9611 0.5114 0.06

Service -0.4921 0.0613 0.00 -0.8900 0.0964 0.00

Science -1.3490 0.1265 0.00 -1.0490 0.1445 0.00

Public Administration -1.1128 0.1172 0.00 -1.3193 0.1345 0.00

Public Health -2.7601 0.3541 0.00 -2.3032 0.1874 0.00

High-Educ.Indicator
Agriculture -2.6881 0.9952 0.00 -3.1961 1.1190 0.00

Service -0.3441 0.1056 0.00 -0.5550 0.1556 0.00

Science -0.1203 0.0471 0.00 -0.1591 0.0683 0.00

Public Administration -0.6301 0.2932 0.03 -0.7939 0.2421 0.00

Public Health 0.1428 0.0893 0.11 0.1083 0.0591 0.06

Middle-Educ.Indicator
Agriculture -0.4431 0.2546 0.08 -0.6973 0.3892 0.07

Service -0.6217 0.2703 0.02 -0.2787 0.1042 0.00

Science -0.5428 0.3568 0.12 -0.2839 0.1941 0.06

Public Administration -0.3721 0.2054 0.07 -0.1164 0.1718 0.11

Public Health -0.2329 0.1502 0.12 -0.1074 0.0551 0.05

High-Develop.Land Indic.
Agriculture 0.3219 0.6347 0.04 0.1721 0.4266 0.01

Service 0.5201 0.0346 0.00 0.6851 0.0941 0.00

Science 1.4214 0.2368 0.00 1.0649 0.1589 0.00

Public Administration 1.1621 0.1931 0.00 0.9022 0.1449 0.00

Public Health -0.3525 0.1356 0.00 -0.3052 0.1279 0.00

Middle-Develop.Land Indic.
Agriculture 0.7121 0.7178 0.32 0.5571 0.4855 0.25

Service 0.1253 0.0539 0.00 0.2980 0.1156 0.00

Science 0.3726 0.1038 0.00 0.4444 0.1827 0.00

Public Administration 0.4112 0.2648 0.00 0.3648 0.1737 0.00

Public Health 0.4515 0.1430 0.03 0.3902 0.1537 0.04

Scale Parameter
Agriculture 1.0000 2.5354 1.0986 0.02

Service 1.0000 0.8324 0.2017 0.00

Science 1.0000 1.2493 0.4302 0.00

Public Administration 1.0000 0.7543 0.3002 0.00

Public Health 1.0000 1.6850 0.8245 0.04
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Figure A.1: Graphical comparison of the parameter estimates for the Multinomial Logit
Model and the Heterogenous Extreme Value Models
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Modellierung und kategoriale Regression. Oldenbourg Wissenschaftsverlag GmbH,
München, 2000.

Authors’ addresses:

Ivan Pryanishnikov
Department of Computer Languages
Vienna University of Technology
Argentinierstr. 8
A-1040 Vienna
Austria

Tel. +43 1 58801 / 58520
Fax +43 1 58801 / 18598
E-mail: prianich@complang.tuwien.ac.at

Katarina Zigova
Vienna Institute of Demography
Austrian Academy of Sciences
Prinz-Eugen Str. 8
A-1040 Vienna
Austria

Tel. +43 1 51581 / 7712
Fax +43 1 51581 / 7730
E-mail: katarina.zigova@assoc.oeaw.ac.at




