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Hybrid quantum dot-oscillator systems have become attractive platforms to inspect quantum coherence effects
at the nanoscale. Here, we investigate a Cooper-pair splitter setup consisting of two quantum dots, each linearly
coupled to a local resonator. The latter can be realized either by a microwave cavity or a nanomechanical
resonator. Focusing on the subgap regime, we demonstrate that cross-Andreev reflection, through which Cooper
pairs are split into both dots, can efficiently cool down each resonator into its groundstate. Moreover, we show
that a nonlocal heat transfer between the two resonators is activated when opportune resonance conditions are
matched. The proposed scheme can act as a heat-pump device with potential applications in heat control and
cooling of mesoscopic quantum resonators.

Nonlocality [1, 2] and quantum correlations [3] are at the
heart of many quantum technologies [4–6]. In hybrid quan-
tum dot devices, Cooper pairs are a source of correlated elec-
trons and their nonlocal splitting has experimentally [7–17]
and theoretically [18–32] drawn much attention over the last
few years. In particular, the nonlocal breaking of the particle-
hole symmetry in such Cooper-pair splitters (CPSs) gives rise
to peculiar thermoelectric effects [33–36]. On the other hand,
hybrid cavity quantum electrodynamics (cQED) devices are
suited for correlating few-level systems over a distance [37–
41]. Such cQED devices have applications in the readout of
charge [42–48], spin [49–53], and valley-orbit states [54, 55].
Groundstate cooling of mechanical resonators in cavity opto-
and electro-mechanical systems has been demonstrated [56–
58], and a cooling scheme based on local Andreev reflection
has been recently proposed [59]. Combining CPSs with mi-
crowave cavities or mechanical resonators opens up new av-
enues to tailor energy and heat flows in quantum nanodevices.

In this Letter, we consider a CPS in a double-quantum-dot
setup with each dot linearly coupled to a local resonator, con-
stituted by either a microwave cavity [45, 47, 50, 60–63] or a
mechanical oscillator [64–67], see Fig. 1(a). We demonstrate
that this system can cool efficiently and simultaneously the
oscillators down to their groundstate, and in addition gener-
ate a coherent transfer of photons, and hence heat, between
the two originally uncoupled cavities. This interaction arises
from a strong coupling between the dots and the supercon-
ducting lead, and has a purely nonlocal origin due to cross-
Andreev reflection. Subsequent, we discuss the underlying
physical mechanism following the lines of Ref. 68, where a
single quantum dot system in the single-atom lasing regime
has been investigated.

For large intradot Coulomb interactions, U, and supercon-
ducting gap, |∆| → ∞, the proximity of the superconduc-
tor causes a nonlocal splitting (and recombination) of Cooper
pairs into both dots with the pairing amplitude ΓS > 0. The
corresponding Andreev bound states |±〉 are a coherent super-
position of the dots’ singlet, |S〉, and empty state, |0〉. The
dots are further tunnel-coupled to normal contacts, which are
largely negative-voltage-biased with respect to the chemical
potential µS = 0 of the superconductor. In this configuration,
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FIG. 1. (a) Cooper-pair splitter consisting of two quantum dots cou-
pled to a common superconductor (S) and two normal-metal contacts
(α = L, R). Each dot is capacitively coupled to a local resonator with
frequency ωα. (b) At large bias voltage, incoherent tunneling events
at rate Γ lead to a decay of the singlet state, |S〉, via a singly-occupied
one, |ασ〉 (σ =↑, ↓), to the empty state, |0〉, whereby |0〉 and |S〉 are
coherently coupled with amplitude ΓS . (c) The latter coupling leads
to the formation of hybridized |±〉 states of energy splitting δ. For
weakly hybridized states |0〉 and |S〉, the transitions |±〉 ↔ |ασ〉 are
strongly asymmetric. (d) Photon transfer cycle occurring around the
resonance, δ ≈ ωL − ωR , with the effective coupling strength λNL.

due to single-electron tunneling, the singlet state decays with
the rate Γ into a singly-occupied state, |ασ〉 (α = L, R and
σ =↑, ↓) and further into the empty state, see Fig. 1(b). For
large dot onsite energies ε & ΓS , the charge hybridization is
weak (|+〉 ≈ |S〉, |−〉 ≈ |0〉), and the transitions |+〉 → |ασ〉
and |ασ〉 → |−〉 are faster than the opposite processes, see
Fig. 1(c) [68]. This asymmetry in the relaxation explains both
simultaneous cooling of the two resonators and photon trans-
fer between the cavities. For the latter case, when the energy
splitting δ between the Andreev bound states is close to the
difference of the cavity frequencies, the relevant level struc-
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ture of the uncoupled system is summarized in Fig. 1(d). We
show below that the effective interaction couples the states
|+, nL−1, nR+1〉 and |−, nL, nR〉, where nα indicates the Fock
number in the resonator α. An electron tunneling event favours
transitions |+〉 → |ασ〉 → |−〉 conserving the photon number.
When the system reaches the state |−〉 ≈ |0〉, this coherent cy-
cle restarts. When the system is in |+〉, it can again decay.
During each cycle, a boson is effectively transferred from the
left to the right cavity. However, the two cavities are not iso-
lated, but naturally coupled to external baths. In the steady
state, a heat flow is established between the cavities.

The above-discussed effect refers to a single operation point
of the system. More generally, using a master equation ap-
proach, we show that the interaction between the CPS and the
two resonators opens a rich set of inelastic resonant channels
for the electron current through the dots, involving either local
absorption/emission of photons or nonlocal processes. When
a resonant condition is matched, sharp peaks occur in the cur-
rent. They can be captured by an effective Hamiltonian which
is valid close to the resonance and generalizes the mechanism
described above.

Cooper-pair splitter coupled to resonators.—We consider
the effective model for two single-level quantum dots proxi-
mized by a superconductor, and each linearly coupled to a local
harmonic oscillator. For large intradot Coulomb interaction,
U � |ε |, the subgap physics of the system is described by the
effective Hamiltonian [27, 31, 69–74]

H =
∑
ασ

εNασ −
ΓS

2
(d†

R↑d
†
L↓ − d†

R↓d
†
L↑ + H.c.)

+
∑
α

ωαb†αbα +
∑
α,σ

λα(bα + b†α)Nασ,
(1)

where ~ = 1. Here, dασ is the fermionic annihilation operator
for a spin-σ electron in dot α, with the corresponding number
operator Nασ and onsite energy ε . The interaction of the
dot with the α-oscillator of frequency ωα and corresponding
bosonic field bα is realized through the charge term, with
coupling constant λα. The relevant subspace of the electronic
subsystem is spanned by six states: The empty state |0〉, the
four singly-occupied states |ασ〉 = d†ασ |0〉 and the singlet state
|S〉 = 1√

2
(d†

R↑d
†
L↓−d†

R↓d
†
L↑)|0〉. Polarized triplet states, |Tσ〉 =

d†Rσd†Lσ |0〉, and doubly-occupied states are inaccessible due
to large negative voltages, see Fig. 1(a), and intradot Coulomb
repulsion, respectively. Finally, in the subgap regime, the
superconductor can only pump Cooper pairs, which are in the
singlet state. The states |0〉 and |S〉 are hybridized due to
the ΓS-term, yielding the Andreev states |+〉 = cos(θ/2)|0〉 +
sin(θ/2)|S〉 and |−〉 = − sin(θ/2)|0〉 + cos(θ/2)|S〉, with the
mixing angle θ = arctan[ΓS/(

√
2ε)]. We denote their energy

splitting by δ =
√

4ε2 + 2Γ2
S .

Electron tunneling into the normal leads and dissipation for
the resonators can be treated in the sequential-tunneling regime
to lowest order in perturbation theory, assuming small dot-
lead tunneling rates, Γ � ΓS, kBT , and large quality factors
Qα = ωα/κα for the resonators, i.e., κα � ωα, kBT . Here, κα

is the decay rate for the α-resonator and T is the temperature
of the fermionic and bosonic reservoirs. The fermionic and
bosonic transition rates between two eigenstates |i〉 and | j〉 of
Hamiltonian (1) are given by Fermi’s golden rule [75],

wα,sel, j←i
= Γ f (s)α (sEji)

∑
σ

|〈 j |d(s)ασ |i〉|2, (2)

wα,sph, j←i
= sκαnB(Eji)|〈 j |b(s)α |i〉|2, (3)

with f (s)α (x) = {exp[s(x − µα)/kBT] + 1}−1 the generalized
Fermi function (s = ±) at chemical potential µα, and
nB(x) = [exp(x/kBT) − 1]−1 theBose function. Eji ≡ Ej − Ei

denotes the energy difference between two eigenstates. We use
the notation d(−)ασ (d(+)ασ) for fermionic annihilation (creation)
operators, and correspondingly b(±)α for the bosonic ones. The
populations Pi of the system eigenstates obey a Pauli-type
master equation of the form [27, 76, 77]

ÛPi =
∑
j

wi←jPj −
∑
j

wj←iPi, (4)

which admits a stationary solution given by Pst
i . The total rates

entering Eq. (4) are given by wj←i =
∑
α,s(wα,sel, j←i

+ wα,sph, j←i
).

As mentioned before, we assume the chemical potentials
of the normal leads µα = −eV largely negative biased,
U, |∆| � eV � kBT, ε, ΓS , with V > 0 denoting the ap-
plied voltage. In this regime, the electrons flow unidirec-
tional from the superconductor via the quantum dots into the
leads; the temperature of the normal leads becomes irrele-
vant, and the rates wα,+el, j←i

vanish. Under these assumptions,
the stationary electron current through lead α is simply given
by Iα = eΓ

∑
σ 〈Nασ〉, which we evaluate numerically. For

a symmetric configuration, as assumed here, both stationary
currents coincide, IL = IR.
Polaron transformation.—In order to explain our numeri-

cal results, we perform a polaron transformation to Hamil-
tonian (1) [78, 79]. For any operator O, we define the uni-
tary transformation Ō = eξOe−ξ , with ξ =

∑
ασ ΠαNασ and

Πα = (λα/ωα)(b†α − bα). The polaron-transformed Hamilto-
nian reads then

H̄ =
∑
ασ

ε̄αNασ−
ΓS√

2
(|S〉〈0|X+ |0〉〈S |X†)+

∑
α

ωαb†αbα, (5)

with ε̄α = ε − λ2
α/ωα and X = exp(∑α Πα). Equation (5) con-

tains a transverse charge-resonator interaction term to all or-
ders in the couplings λα. Intriguingly, this coupling has
a purely nonlocal origin stemming from the cross-Andreev
reflection: For vanishing ΓS , the dots-resonator interaction
would simply renormalize the onsite electronic levels. By
expanding X in powers of Π ≡ ∑

α Πα, and moving to the
interaction picture with respect to the noninteracting Hamil-
tonian, we can identify a family of resonant conditions given
by

δ̄ ≈ |pωL ± qωR |, (6)
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with p, q nonnegative integers [80]. Here, δ̄ =
√

4ε̄2 + 2Γ2
S is

the renormalized level splitting energy of the Andreev states
due to the polaron shift, with ε̄ = ε − ∑

α
λ2
α

2ωα
. The renor-

malized mixing angle reads θ̄ = arctan[ΓS/(
√

2ε̄)]. Around
the conditions stated in Eq. (6), a rotating-wave approximation
yields an effective interaction of the order p + q in the cou-
plings λα. Hereafter, we discuss in detail the resonances at
δ̄ = ωL = ωR and δ̄ = ωL − ωR.
Simultaneous cooling.—For δ̄ = ωL = ωR, one can achieve

simultaneous groundstate cooling of both resonators, which is
already described by the first order terms in λα of Eq. (5).
Here, we consider two identical resonators and tune the
dot levels ε around the resonance condition δ̄ ≈ ωα, i.e.
ε̄ = ±

√
ω2
α − 2Γ2

S/2. The effective first-order interaction
Hamiltonian, after a rotating-wave approximation, is given
by [80]

Hloc =
∑
α

1
2
λα sin θ̄ (bατ+ + b†ατ−). (7)

The operators τ+ = |+〉〈−| and τ− = |−〉〈+| describe the
hopping between the two-level system formed by the states
|+〉 and |−〉, coupled to the modes through a transverse
Jaynes-Cummings-like interaction. The effective coupling
is proportional to sin θ̄ =

√
2ΓS/δ̄, and, thus, a direct con-

sequence of the nonlocal Andreev reflection. This effec-
tive interaction in Eq. (7) coherently mixes the three states
|+, nL, nR〉, |−, nL + 1, nR〉, and |−, nL, nR + 1〉 which are de-
generate for Hloc = 0. When |ε | & ΓS , the hybridization
between the charge states is weak. The sign of ε changes the
bare dots’ level structure: For ε < 0, |+〉 ≈ |0〉 and |−〉 ≈ |S〉,
whereas for ε > 0, |+〉 ≈ |S〉 and |−〉 ≈ |0〉. In both regimes,
the chain of transitions |+〉 → |ασ〉 → |−〉 is faster than the
opposite process, see Fig. 1(c) as an example for negative ε .
For ε < 0, energy is pumped into the modes. Conversely, for
ε > 0, we can achieve simultaneous cooling of the resonators.
In Fig. 2, we show the stationary electron current Iα [calcu-
lated using the full Hamiltonian (1)], together with the average
photon number n̄α = 〈b†αbα〉 of the corresponding resonator,
as a function of ε . The broad central resonance of width ΓS
corresponds to the elastic current contribution mediated by
the cross-Andreev reflection. The additional inelastic peak at
negative ε , is related to the emission of photons in both res-
onators at δ̄ ≈ ωα. At finite temperature, a second sideband
peak emerges at positive ε , where the resonators are simul-
taneously cooled down. The cavities are efficiently cooled
down into their groundstate for a wide range of ΓS , as can
be appreciated in the inset of Fig. 2(b). The optimal cooling
region is due to the interplay between the effective interaction
with the resonator—which vanishes for small ΓS—and the hy-
bridization of the empty and singlet state, which increases as ε
approaches the Fermi level of the superconductor and reduces
the asymmetry of the transitions |±〉 ↔ |ασ〉.
Nonlocal photon transfer.— By keeping terms up to second

order in λα in Eq. (5), we can describe the resonances around
δ̄ = ωL − ωR and δ̄ = ωL + ωR. Assuming without loss of
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FIG. 2. (a) Current Iα for two identical oscillators as a function
of the onsite energies ε , at zero (dashed line) and finite (solid line)
temperature. (b) Average photon occupation n̄α in the α-resonator for
kBT = 5ωα. The horizontal dotted line corresponds to the thermal
occupation. Inset: Photon occupation at ε = εc as a function of ΓS ,
for two different values of Γ. The curves are rescaled to the thermal
occupation value. Other parameters are Γ = 2 × 10−4ωα, λα =
0.02ωα, Qα = 105, ΓS = 0.2ωα.

generality ωL > ωR, a rotating-wave approximation yields the
effective interaction terms H(−)NL = λNL(b†LbRτ− +H.c.) for δ̄ ≈
ωL−ωR, and H(+)NL = λNL(bLbRτ++H.c.) for δ̄ ≈ ωL+ωR [80].
These terms show that the two resonators become indirectly
coupled through the charge states, with the strength

λNL =
ΓSλLλR√
2ωLωR

cos θ̄ . (8)

We remark that this interaction is, as well, purely nonlocal.
H(+)NL describes the hybridization of the states in the subspace
|+, nL −1, nR −1〉 with |−, nL, nR〉, through which photons are
simultaneously absorbed (emitted) from (into) both cavities.
Conversely, the term H(−)NL describes processes by which the su-
perconductor mediates a coherent transfer of photons between
the resonators, by coupling the subspaces |+, nL−1, nR+1〉 and
|−, nL, nR〉, see Fig. 1(d). Notice that this effect vanishes if the
two resonators are of the same frequency, as it would require
δ̄ = 0 and, thus, ΓS = 0. In Fig. 3(a), we report the electronic
current, again calculated with the full interaction, assuming
two different resonator frequencies. In addition to the side-
band peaks close to δ̄ = ωL and δ̄ = ωR, we can identify
higher-order multiphoton resonances (e.g. δ̄ = 2ωR, where
the cooling cycle involves the absorption of two photons from
the same cavity) which can be described in a similar way with
a rotating-wave approximation [80]. Moreover, we observe the
second-order peaks described by H(±)NL which are responsible
for processes involving both resonators. The inset of Fig. 3(c)
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FIG. 3. (a) Current Iα through lead α as a function of the on-
site energies ε , for two different values of λ ≡ λL = λR . The
arrows indicate resonances according to Eq. (6). (b) Local cooling
efficiency for the left mode, around δ̄ ≈ ωL . (c) Photon trans-
fer efficiency around δ̄ ≈ ωL − ωR . Inset: Average cavity pho-
ton number, normalized to the thermal occupation. Parameters are
Γ = 10−4ΓS, ωL = 5ΓS, ωR = 3ΓS, QL = QR = 105, T = 5ΓS .

reports the average occupation of the resonators in the vicinity
of the resonance δ̄ = ωL −ωR, where the right mode is heated
and the left one is cooled. The shape of these resonances dif-
fers from the first-order peaks (which are well approximated
by Lorentzians). Indeed, the second-order Hamiltonian con-
tains an additional term proportional to sin(θ̄)(2nα−1)τz [80],
which causes both a small frequency shift for each resonator
(yielding a double-peak structure) and a small renormalization
of the splitting δ̄ between the Andreev bound states. Anyway,
this corrections do not alter the main physics captured by H(−)NL .
Heat transfer and efficiency.—To quantify the performance

of both simultaneous cooling and nonlocal photon transfer, we
calculate the stationary net heat current [75]

ÛEph
α =

∑
i, j,s

Ei jw
α,s
ph, j←i

Pst
i (9)

flowing from a thermal reservoir α to the corresponding res-
onator. It is negative (positive) when the resonator is cooled
(heated), and vanishes for an oscillator in thermal equilibrium.
As a figure of merit for local cooling, we can estimate the num-
ber of bosonic quanta subtracted from the resonator on average
per unit time, and compare it to the rate at which Cooper pairs
are injected into the system. The latter rate is given by |IS |/2e
with IS = −(IL+ IR) being the Andreev current through the su-
perconductor found from current conservation. Consequently,
the local cooling efficiency around δ̄ = ωα can be defined as
η
(α)
loc =

2e | ÛEα |
|IS |ωα

. Similarly, around δ̄ = ωL − ωR, we define the

heat transfer efficiency

ηNL =
2e| ÛEL − ÛER |
|IS |(ωL − ωR)

. (10)

Figures 3(b) and (c) show η
(L)
loc and ηNL, respectively, as a func-

tion of ε close to the corresponding resonances. In both cases,
we obtain high efficiencies close to 90%: Almost one photon
can be absorbed from each cavity (simultaneous cooling) or
transferred from the left to the right cavity (nonlocal transfer)
per Cooper pair.
Conclusions.—We have analyzed a CPS in a double-

quantum-dot setup, with local charge couplings to two res-
onators. In particular, we have demonstrated that cross-
Andreev reflection processes can efficiently cool one or both
resonators into their groundstate. Furthermore, we have shown
that nonlocal Cooper-pair splitting may mediate an effective
transfer of photons and heat from one oscillator to the other,
resulting in a stationary energy flow. Thus, the system can
operate as a high-efficiency heat pump, as well as a simultane-
ous cooling device for nanoresonators. Moreover, this opens
a playground for studying heat flows and energy exchanges
between harmonic cavities mediated by coherent interactions.
The technique can in principle be extended to achieve phonon
control and manipulation [81, 82], e.g., by implementing time-
dependent protocols for the dots’ gate voltages to tune dynam-
ically the strength of the nonlocal features. Experiments in-
volving Cooper-pair splitters [7–17] or mesoscopic cQED de-
vices with microwave cavities [37, 40, 42, 47, 50, 61–63] and
mechanical resonators [64–67] are of appealing and growing
interest, and, therefore, promising candidates for the imple-
mentation of the system described here.
This research was supported by the German Excellence

Initiative through the Zukunftskolleg and by the Deutsche
Forschungsgemeinschaft through the SFB 767. R.H. acknowl-
edges financial support from the Carl-Zeiss-Stiftung.

SUPPLEMENTAL MATERIAL

Polaron-transformed Hamiltonian and effective nonlocal
interaction

We report here the derivation of the effective interactions
that are responsible for the simultaneous cooling and the non-
local photon transfer mechanisms. The starting point is the
polaron-transformed Hamiltonian given in Eq. (5) of the main
text. For small coupling strengths λα, we expand the oper-
ators X and X† up to second order in λα. The dots-cavities
interaction term is

Hint = −
ΓS√

2

[
iσyΠ + σx

(
1 +
Π2

2

)]
+ O(Π3), (11)

with Π =
∑
α Πα the generalized total momentum, σx =

|0〉〈S | +H.c. and σy = −i |0〉〈S | +H.c. The σx-term describes
tunneling between the empty and the singlet state due to the
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superconductor, and is already present in Hamiltonian (1). Di-
agonalizing the bare electronic part leads to the hybridized
charge states

|+〉 = cos
(
θ̄

2

)
|0〉 + sin

(
θ̄

2

)
|S〉, (12)

|−〉 = − sin
(
θ̄

2

)
|0〉 + cos

(
θ̄

2

)
|S〉, (13)

with the mixing angle θ̄ and the energy splitting δ̄ as defined in
the main text. By introducing the Pauli matrices τx = τ+ + τ−,

τy = −i(τ+ − τ−), τz = [τ+, τ−] with τ+ = |+〉〈−| and τ− =
|−〉〈+|, we can express the Hamiltonian (5) to second order by

H̄ =
∑
ασ

ε̄αNασ +
δ̄

2
τz +

∑
α

ωαb†αbα

− ΓS
2
√

2

[
2iτyΠ + (sin θ̄ τz + cos θ̄ τx)Π2] + O(Π3).

(14)

We now move to the interaction picture with respect to
the noninteracting Hamiltonian H0 =

∑
ασ ε̄αNασ + δ̄

2 τz +∑
α ωαb†αbα. By recalling the definition of Π, we obtain in the

interaction picture

Hint(t) = −
∑
α

λαΓS

ωα
√

2

(
eiωα tb†α − e−iωα tbα

) (
eiδ̄tτ+ − e−iδ̄tτ−

)
− ΓSλLλR√

2ωLωR

[
eiΩtb†Lb†R + e−iΩtbLbR − ei(∆ω)tb†LbR − e−i(∆ω)tbLb†R

] [
sin(θ̄)τz + cos(θ̄)(eiδ̄tτ+ + e−iδ̄tτ−)

]
−

∑
α

ΓSλ
2
α

2
√

2ω2
α

[
e2iωα t (b†α)2 + e−2iωα tb2

α − 2b†αbα − 1
] [

sin(θ̄)τz + cos(θ̄)(eiδ̄tτ+ + e−iδ̄tτ−)
]
+ O(λ3

α/ω3
α).

(15)

Here, we have introduced Ω = ωL + ωR and ∆ω = ωL −
ωR. The Hamiltonian (15) contains all the terms that lead
to simultaneous cooling and nonlocal photon transfer. To
isolate these features, we will focus on the relevant resonances
δ̄ ≈ ωα, δ̄ ≈ Ω, and δ̄ ≈ ∆ω. First, let us consider two
identical resonators of frequency ωα = ω and tune ε such
that δ̄ = ω. Notice that this can be fulfilled by two values of
ε , of opposite sign. In the following, we restrict Eq. (15) to
first order in λα, and then discard the fast-oscillating terms by
performing a standard rotating-wave approximation (RWA).
Thus, we obtain the time-independent interaction Hamiltonian
given by Eq. (7) in the main text,

H δ̄=ω
RWA =

∑
α

1
2
λα sin(θ̄) (bατ+ + b†ατ−). (16)

We have used the resonance condition ω = δ̄ and the relation
sin θ̄ =

√
2ΓS/δ̄.

Let us now consider the nonlocal resonance, δ̄ = ∆ω. A
peculiarity is here, that we have to go to second order in λα,
since the first-order terms become in theRWA fast rotating and,
thus, average to zero. The corresponding effective Hamilto-
nian reads

H δ̄=∆ω
RWA =

∑
α

ΓSλ
2
α

2
√

2ω2
α

(2nα + 1) sin θ̄τz + λNL(b†LbRτ− +H.c.),
(17)

with nα = b†αbα the photon number operator, and λNL stated
in Eq. (8) of the main text. The second term corresponds to the
interaction H(−)NL (main text), and is responsible for the coherent
transfer of photons between the cavities, leading to a stationary
energy flow. The first term in Eq. (17) proportional to nατz

can be seen as a dispersive shift of the cavity frequencies,
which depends on the Andreev bound state. As the quantities
reported in Fig. 3 of the main text are averages calculated
from the density matrix, this translates into a fine double-
peak structure of the nonlocal resonance, see Fig. 3(c) of the
main text. Further, the additional term proportional to τz
renormalizes the level splitting δ̄ and, therewith, the resonance
condition, δ̄ = ∆ω.
Considering the condition δ̄ = Ω, we obtain the effective

RWA Hamiltonian

H δ̄=Ω
RWA =

∑
α

ΓSλ
2
α

2
√

2ω2
α

(2nα + 1) sin θ̄τz + λNL(b†Lb†Rτ− + H.c.).
(18)

Here, the relevant interaction (H(+)NL of main text) describes
absorption (and emission) from both cavities simultaneously
while flipping the Andreev state. So, this second-order effect
may entail simultaneous cooling, ε > 0, and heating, ε < 0,
of both cavities.
From the last line of Eq. (15), one can infer an effective RWA

Hamiltonian governing the resonance condition δ̄ ≈ 2ωα. It
is similar to Eq. (16), but involves absorption and emission of
two photons from the same cavity. Indeed, this two-photon
resonance is also observable in Fig. 3(a) and yields cavity
cooling for ε > 0 and heating for ε < 0, respectively.
By including terms up to n-th order in Π in Eq. (14), one

obtains terms (bα)n and (b†α)n, which, after moving to the in-
teraction picture and performing a suitable RWA, will yield
n-photon local absorption/emission processes. The expansion
contains also terms of the form (b†α)p(bᾱ)q and (b†α)p(b†ᾱ)q to-
gether with their Hermitian conjugates, with p+ q = n (ᾱ = R
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if α = L and vice versa). The former terms describe the coher-
ent transfer of |p − q | photons between the cavities, while the
latter describes coherent emission and re-absorption of p and q
photons from the α and ᾱ cavity, respectively. The general (ap-
proximate) resonance condition thus reads δ̄ ≈ |pωL ± qωR |,
stated in Eq. (6) in main text. If either p or q is zero, the
resonance corresponds to local cooling/heating of the cavities.
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