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Theory of double Cooper-pair tunneling and light emission mediated by a resonator
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Photon emission by tunneling electrons can be encouraged by locating a resonator close to the tunnel junction
and applying an appropriate voltage bias. However, studies of normal metals show that the resonator also affects
how the charges flow, facilitating processes in which correlated tunneling of two charges produces one photon.
We develop a theory to analyze this kind of behavior in Josephson junctions by deriving an effective Hamiltonian
describing processes where two Cooper pairs generate a single photon. We determine the conditions under which
the transport is dominated by incoherent tunneling of two Cooper pairs, while also uncovering a regime of
coherent double Cooper-pair tunneling. We show that the system can also display an unusual form of photon
blockade and hence could serve as a single-photon source.
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I. INTRODUCTION

The tunneling of electrons in mesoscopic conductors or
scanning tunneling microscopy (STM) is often accompanied
by the generation of photons. Photon emission at a particular
frequency can be enhanced, and its detection facilitated, by
coupling to a resonator [1–6]. However, the resonator is not
simply passive and it can exert a dramatic influence on the
charge dynamics, leading even to a change in the effective
charge that tunnels. Recent studies [5,7–10] have shown that
the presence of an electromagnetic resonator mediates the
correlated tunneling of two electrons through a barrier to
generate a photon with an energy larger than either electron
could individually have provided, a phenomenon known as
overbias emission.

In this paper we present a theoretical analysis of overbias
emission in superconducting circuits, considering a model
circuit consisting of a Josephson junction (JJ) in series with
an electrical resonator. When the voltage bias applied is such
that individual tunneling Cooper pairs provide half the energy
required to generate a photon, charge transport and photon
production are dominated by correlated tunneling of two
Cooper pairs (see Fig. 1). Superconducting circuits are ideally
suited to studying higher-order charge tunneling effects.
In contrast to a normal conductor, all of the voltage-bias
energy of tunneling Cooper pairs has to be transferred to the
electromagnetic environment [3,6,11] and a high-Q resonator
can be used to resonantly enhance a wide range of transport
processes [12]. Furthermore, the photons produced and the
charge current flowing are both readily measured [6,12].

While photon emission due to tunneling of individual
Cooper pairs has been studied extensively, both experimen-
tally [6,12–17] and theoretically [18–30] in JJ-resonator sys-
tems, higher-order tunneling remains almost completely un-
explored. Here we derive an effective Hamiltonian describing
tunneling of two Cooper pairs and use it to investigate the

charge transport and photon emission. As the Josephson en-
ergy of the junction is increased, nonlinearity up-converts the
junction Josephson frequency to that of the resonator and the
transport evolves from a regime involving tunneling of both
one and two Cooper pairs to one where incoherent double
Cooper-pair tunneling dominates. At still larger Josephson
energies, the double Cooper-pair tunneling becomes coherent.
Although this resonance has been discussed within a classical
analysis of the resonator dynamics [31], a quantum descrip-
tion of the coupled charge-photon dynamics has not been
provided until now.

Our analysis also reveals that double Cooper-pair tunneling
leads to a photon-blockade effect [32,33], which could be ex-
ploited as a single-photon source [16]. The effect is similar to
that seen at single Cooper-pair tunneling resonances [21,26],
but the blockade we find occurs at a lower value of the
resonator impedance, only slightly higher than that achieved
in very recent experiments [17].

II. RESONATOR-JUNCTION SYSTEM

The model system we consider consists of a LC resonator
with frequency ω0 = 1/

√
LC in series with a Josephson junc-

tion. The resonator could be realized either as the fundamental
mode of a superconducting cavity [6,12,13] or as lumped-
element oscillator [17] [see Fig. 1(b)]. Taking into account the
possibility of an additional low-frequency impedance in series
with the junction, and assuming the resonator capacitance is
much larger than that of the junction [20,31], the system can
be described by a Hamiltonian of the form [21,28]

H (t ) = h̄ω0â†â − EJ cos[ωJt − ϕ + �0(â + â†)], (1)

where â is the lowering operator of the resonator, ωJ =
2 eV/h̄ is the Josephson frequency set by the applied voltage,
EJ is the Josephson energy and �0 = (2e2/h̄)1/2(L/C)1/4
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FIG. 1. (a) Drawing of photon emission accompanying corre-
lated tunneling of two Cooper pairs through a Josephson junction
(JJ). Each Cooper pair releases energy h̄ωJ = 2 eV so two are
required to excite a photon with energy h̄ω0 when ωJ = ω0/2.
(b) Circuit model: A bias voltage V is applied to a JJ in series
with a damped LC resonator with frequency ω0. (c) Level diagram
for the number of resonator photons (n) and the number of Cooper
pairs passing through the junction (N), which illustrates some of
the processes that contribute at the resonance. (d) Time-averaged
resonator occupation number, 〈n〉, and Cooper-pair tunneling rate
(scaled by the resonator damping rate), �CP/γ , calculated using (1)
and (2) with parameters �0 = 0.15, Q = 1500, EJ/h̄ω0 = 0.5, and
γφ = 0. The ratio �CP/γ 〈n〉 � 2, signifying that two Cooper pairs
tunnel for each photon generated as discussed below. Nonlinearities
shift the peak above ωJ = ω0/2.

gives the zero point flux fluctuations of the resonator in units
of the flux quantum. The phase ϕ is conjugate to the number
of Cooper pairs, N , that have passed through the junction
[ϕ, N] = i, so that the operator eipϕ = ∑

N |N + p〉〈N | (for
integer p) describes the transfer of p pairs. The value of �0

is determined by the resonator impedance and although it is
much less than unity in standard microwave cavities [6,12,13],
very recent experiments [17] utilized a JJ-resonator system
with �0 � 1.

We assume that the resonator is subject to losses at a
rate γ while voltage fluctuations due to the presence of low-
frequency impedances in the circuit leads to dephasing of the
junction charge at a rate γϕ . In the limit of low temperatures,
the master equation is given by [21]

ρ̇ = − i

h̄
[H, ρ] + γ

2
D[â](ρ) + γϕ

2
D[N](ρ), (2)

where D[x](ρ) = 2xρx† − x†xρ − ρx†x. The dephasing term
is equivalent to fluctuations in the bias voltage [34] and the
value of γϕ is proportional to the zero-frequency voltage noise
spectral density. Since typically γϕ/γ � 1, in many cases
the dephasing can be neglected [21,26,34,35] and ϕ simply
treated as a constant [20,34].

III. EFFECTIVE HAMILTONIAN DESCRIPTION

We focus on the regime where 2ωJ � ω0 and processes in
which two Cooper pairs produce a single photon are expected
to dominate. Moving to a frame rotating at frequency 2ωJ , the

corresponding Hamiltonian can be written as

H̃ = h̄δâ†â − ẼJ

2

∞∑
q=0

[Ôqei(2q+1)ωJ t + H.c.], (3)

with δ = ω0 − 2ωJ and

Ôq = : iq(â†)qe−iϕ Jq(2�0

√
n̂)

n̂q/2

+(−i)q+1(â†)q+1eiϕ Jq+1(2�0

√
n̂)

n̂(q+1)/2
:, (4)

where Jq(z) is a Bessel function of order q, ẼJ = EJe−�2
0/2,

n̂ = â†â is the photon number operator and : · · · : implies
normal ordering.

We obtain an effective (time-independent) Hamiltonian for
the system by averaging over short time scales [36] (of order
∼1/ωJ ), making what is in effect a second-order rotating wave
approximation [37],

Heff = h̄δâ†â + Ẽ2
J

4h̄ωJ

∞∑
q=0

[Ôq, Ô†
q]

(2q + 1)
(5)

=
(

h̄δ + Ẽ2
J Ĝ

4h̄ωJ

)
n̂ − i

Ẽ2
J

4h̄ωJ
[F̂ â†e2iϕ − H.c.], (6)

where F̂ (�0, n̂) and Ĝ(�0, n̂) are higher-order functions of
the number operator and �0 (see Appendix A for explicit
expressions and a representation in the Fock-state basis). The
overall factor of a†e2iϕ tells us that the effective Hamiltonian
describes coherent processes in which a photon is created in
the resonator and two Cooper pairs pass through the junction.
In terms of the original Hamiltonian, this is a second-order
process [36], which can be seen as occurring via a range of
intermediate (virtual) states as indicated by the sum arising
in (5) [see Fig. 1(c)].

Equation (6) also describes a nonlinear shift in the
resonator frequency [31], which accounts for the shifted
resonance seen in Fig. 1(d). The origin of the frequency shift
is rather like the ac-Stark effect, whereby an off-resonant field
gives rise to shifts in atomic level spacings without inducing
transitions [36]. In our case a strong off-resonant drive is
present, but it also leads to up-conversion (through the non-
linearity), which in turn drives resonant processes. Effective
Hamiltonians, which are similar in form (though significantly
simpler), have been used to describe circuit-QED systems
driven by external fields to engineer higher-order photon
processes [37,38]. In contrast, our effective Hamiltonian
describes a higher-order charge transport process.

Although the full expressions for F̂ (�0, n̂) and Ĝ(�0, n̂)
are rather cumbersome (see Appendix A for details), if photon
numbers are low and �0 � 1 an expansion in which only the
lowest-order terms in �0 are retained is sufficient, leading to

H (0)
eff = h̄δ′n̂ + i

Ẽ2
J �3

0

3h̄ωJ
[âe−2iϕ − â†e2iϕ], (7)

with δ′ = δ + 8Ẽ2
J �4

0/(15h̄2ωJ ).
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FIG. 2. (a) Time-averaged steady-state photon occupation num-
ber using the full Hamiltonian H (t ), (1), compared with the predic-
tion of Heff , (6). Also shown are the O(E 2

J ) and O(E 4
J ) contributions

to 〈n〉 obtained from a semiclassical analysis, with a dashed vertical
line at ẼJ�

2
0Q/h̄ω0 = √

5/8 indicating the crossover. (b) Onset of
double Cooper-pair transport seen through the ratio �CP/γ 〈n̂〉. The
time-averaged calculation using (9) and H (t ) (black line) increases
slowly and then saturates whereas (11) predicts a value of precisely
2 (red dashes). The parameter values are: ωJ = ω0/2, Q = 1500,
�0 = 0.15, and γϕ = 0.

IV. AVERAGE PHOTON NUMBERS
AND CHARGE CURRENT

The photonic properties of the system in the low photon-
number regime are readily obtained using (7) and (2). Using
standard methods [39], we find that the first-order coher-
ence function, G(1) = 〈a†(t )a(t + τ )〉, decays at a rate � 2γϕ

(details are provided in Appendix B). This implies that the
linewidth of the resonator spectrum will be a factor of 4 larger
than for the resonance at ωJ ∼ ω0 where a single Cooper pair
produces a photon [21]; this is important because it means a
signature of the double Cooper-pair tunneling can be found
by measuring just the resonator spectrum. The corresponding
steady-state occupation number of the resonator

〈n̂〉 =
(

Ẽ2
J �3

0

3h̄2ωJ

)2
1 + 4γϕ/γ

(γ /2)2(1 + 4γϕ/γ )2 + (δ′)2
, (8)

grows as E4
J (to lowest order). In contrast to the spectral

linewidth, the occupation number is only very weakly depen-
dent on low-frequency voltage fluctuations (since γϕ/γ � 1
in typical experimental setups [6,21,34]). In the following we
set γϕ → 0 for simplicity.

Comparisons with numerical calculations [40] using the
full Hamiltonian [Eq. (1)] in Fig. 2(a) show that 〈n〉 does
indeed scale as E4

J , but only for intermediate values. For
larger EJ values, the contributions at higher order in EJ , which
are described by (6) are required and the photon-number-
dependent nonlinearities lead to a saturation in photon num-
bers. However, the behavior at very low EJ is not captured
by the effective Hamiltonian (6). This is inevitable because
the system is bound to have a period 2π/ωJ matching that of
the underlying Hamiltonian (7) in the limit of very weak EJ ,

whereas the effective Hamiltonian only describes oscillations
at 2ωJ � ω0.

The low-EJ behavior can be obtained through a physi-
cally transparent semiclassical analysis (details of which are
given in Appendix C), utilizing the fact that for γϕ → 0
the system can be mapped onto a nonlinearly driven os-
cillator [20,31,35]. This reveals that there is a competition
between oscillations with periods 2π/ωJ and π/ωJ leading
to contributions to (time-averaged) 〈n〉 that grow as Ẽ2

J �2
0 and

Ẽ4
J �6

0, respectively. The contributions have the same weight
when ẼJ�

2
0Q/h̄ω0 = √

5/8 [see Fig. 2(a)].
The instantaneous expectation value of the current flowing

through the junction is given by 〈ÎCP〉 = 2e〈Ṅ〉. Since the
dissipative terms in the master equation transfer no charge,
the current operator is defined by the operator [21,35]

ÎCP(t ) = (2eEJ/h̄) sin[ωJt − ϕ + �0(â + â†)]. (9)

The expectation value of the current is not stationary, but
averaging over a time T � 1/ωJ leads to a corresponding
expression for the average, or dc, current:

ICP = 1

T

∫ t0+T

t0

dt ÎCP(t ). (10)

We can also use the effective Hamiltonian to write down an
expression for a time-averaged current operator directly,

ICP = i
2e

h̄
[Heff , N]. (11)

In terms of the Cooper-pair tunneling rate, �CP = 〈ICP〉/2e,
this expression taken together with (2) leads to a straightfor-
ward relationship in the steady state: �CP/γ 〈n̂〉 = 2. The ratio
has this simple integer value because the effective Hamilto-
nian describes a resonator oscillating at a single frequency
(it is stationary in the frame rotating at 2ωJ ) in which indi-
vidual photons are always generated (or destroyed) in asso-
ciation with the tunneling of two Cooper-pairs [see (6)]. As
Fig. 2(b) shows, when �CP/γ 〈n̂〉 is calculated using (9) there
is excellent agreement with the prediction of the effective
Hamiltonian approach at sufficiently large EJ values, but it
drops below 2 when EJ is very small and oscillations at
the Josephson frequency can no longer be neglected. In this
regime the charge transport is a mixture of processes involving
either two or one Cooper pair(s).

V. FROM INCOHERENT TO COHERENT DOUBLE
COOPER-PAIR TUNNELING

To gain an understanding of how the charge transport takes
place, we define a time-averaged current noise [41] for the
system through the relation

SCP = 2Re
∫ ∞

0
dτ

∫ t0+T

t0

dt

T
[〈ÎCP(t + τ )ÎCP(t )〉

−〈ÎCP(t + τ )〉〈ÎCP(t )〉]. (12)

When the effective Hamiltonian holds, an equivalent expres-
sion for the current noise can be written in terms of the
time-averaged current operator, (11). The corresponding Fano
factor, FCP = SCP/(2e〈ICP〉), compares the noise to that of
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FIG. 3. Variation of FCP with EJ . Numerical integrations using
the time-dependent Hamiltonian [Eq. (1)] (points) are compared
with calculations using the effective Hamiltonian [Eq. (6)] (line);
a dashed vertical line indicates ẼJ�

2
0Q/h̄ω0 = √

5/8. The inset
shows the corresponding behavior of the fluctuations in the resonator
occupation number, Fn, calculated using (6). Parameters match those
used in Fig. 2.

a Poissonian process involving a single Cooper pair [35],
providing a convenient way of characterizing the behavior.

As Fig. 3 shows, using the effective Hamiltonian leads to
a value of FCP, which tends to 2 in the limit of small EJ ;
this signifies incoherent tunneling of two Cooper pairs [42]
(i.e., charge 4e). For larger EJ values, FCP drops. We know
that in this regime on average two Cooper pairs tunnel for
each photon entering the resonator so this implies that the
transport of pairs of Cooper pairs becomes coherent [43]. This
is accompanied by sub-Poissonian photon statistics within
the resonator (i.e., Fn = (〈n̂2〉 − 〈n̂〉2)/〈n̂〉 < 1, see the inset
of Fig. 3), and is similar to the transition from incoherent
to coherent tunneling of Cooper pairs [21,35] that occurs
for ωJ � ω0. For low values of EJ the effective Hamiltonian
approach fails and numerical calculations using (12) and the
full time-dependent Hamiltonian show that FCP drops below
2, but in this case it is because single Cooper-pair tunneling
processes have become important.

The regime where charge transport is almost entirely due
to incoherent double Cooper-pair tunneling (IDCPT), and
hence FCP ∼ 2, maps onto the domain of validity of (7): set
below by the crossover to (off-resonant) single Cooper-pair
tunneling events (ẼJ�

2
0Q/h̄ω0 ∼ √

5/8) and above by the
onset of strong effective nonlinearities (4�2

0〈n̂〉 ∼ 1). Hence,
we expect IDCPT to dominate when

√
5/8 � ẼJ�

2
0Q/h̄ω0 �√

3Q/8, which means that it will only be well separated from
other transport regimes for weak damping, Q � 1.

VI. SINGLE-PHOTON NONLINEARITY AND
PHOTON BLOCKADE

We now turn to the strongly nonclassical behavior of
the system, which emerges when �0 ∼ 1. Of particular
interest is the behavior of the matrix element 〈1|Heff |2〉,
for which a closed form expression can be derived ana-
lytically (see Appendix A). If this is zero the system be-
comes trapped within the two-state basis of the n = 0, 1
Fock states [21,24,26,44]. As a consequence, the correspond-
ing correlation function g(2)(0) = 〈â†â†ââ〉/〈â†â〉2 vanishes

0.2 0.4 0.6 0.8 1 1.2 1.4

0

0

0.5

1

1.5

2

2.5

g(2
) (0

)

0 0.5 1 1.5
-1

-0.5

0

h 1,
2

FIG. 4. Variation of g(2)(0) [calculated using (6)] and h1,2 =
(4h̄ωJ/Ẽ 2

J )|〈1|Heff |2〉| with �0. In the main plot, ẼJ/h̄ω0 = 0.1,
ωJ = ω0/2, Q = 500, and γϕ = 0.

indicating photon blockade and the system can function as a
single photon source [17].

Despite their apparent complexity the matrix elements of
the effective Hamiltonian (6) do have zeros, implying de-
structive interference of the many processes, which contribute
[Fig. 1(c)], and hence there is a strong photon blockade effect
as Fig. 4 illustrates. The zero of 〈1|Heff |2〉 with lowest �0

occurs at �0 � 1.07. Surprisingly, this is a significantly lower
value than the corresponding matrix-element zero that occurs
for the single photon resonance where Cooper pairs tunnel
individually (ωJ � ω0), which occurs at �0 = √

2 [17,21].

VII. CONCLUSIONS

In conclusion, we have analyzed charge transport and
photon emission in a JJ-resonator system biased so that the
Josephson frequency is just half the resonator frequency. As
the Josephson energy is increased, the underlying dynamics
of the system crosses over from oscillations at the Joseph-
son frequency to the resonator frequency, accompanied by
a corresponding crossover in charge transport from single
to double Cooper-pair tunneling. By deriving an effective
Hamiltonian description, we found that while double Cooper-
pair transport is incoherent when it first begins to dominate, a
regime of coherent double-Cooper pair tunneling emerges at
larger Josephson energies. For large resonator impedances the
system displays a photon blockade, which could be exploited
as a single photon source.

While double Cooper-pair processes are higher order in
both the Josephson energy and resonator impedance than
their single Cooper-pair counterparts, the values of both these
quantities can be tuned in experiments within broad ranges
(e.g., �0 up to ∼1 [17] and EJ beyond h̄ω0 [12]), mak-
ing the novel charge transport and photon-emission regimes
we describe readily accessible with current device archi-
tectures [12–17]. Our work opens the way for future work
exploring how charge transport might be controlled via mi-
crowave cavities and could also stimulate interest in overbias
emission in superconducting STM [45], a potentially very
fruitful direction given the rich behavior seen in normal state
STM [5,7–9].
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Note added. Recently another study appeared, which also
involves double Cooper-pair tunneling [46], albeit in a very
different context.
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APPENDIX A: EFFECTIVE HAMILTONIAN

The operators Ĝ(n̂,�0)n̂ and âF̂ (n̂,�) that appear in the
expression for the effective Hamiltonian [Eq. (6)] are defined
by the relations,

Ĝ(�0, n̂)n̂ =
+∞∑
p=1

4p

4p2 − 1
[Âp, Â†

p] (A1)

âF̂ (�0, n̂) =
+∞∑
p=0

(−1)p

2p + 1
[Âp, Â†

p+1] (A2)

with Âp = (â†)pK̂p, where the Hermitian operator K̂p is a
function of the number operator only and is defined as

K̂p =:
Jp(2�0

√
n̂)

n̂p/2
:=

+∞∑
m=0

(−1)m�
2m+p
0 (â†)mâm

m!(m + p)!
. (A3)

The effective Hamiltonian [Eq. (6)] can also be expressed
directly in terms of the Fock state basis,

Heff =
+∞∑
q=0

(qh̄δ + δEq)|q〉〈q|

+ i
+∞∑
q=0

[Mq,q+1|q〉〈q + 1|e−2iϕ − H.c.], (A4)

with the matrix elements defined as

δEq = Ẽ2
J

4h̄ωJ

⎧⎨
⎩

q∑
p=1

4p

4p2 − 1

[
κ2

p (q − p)q!

(q − p)!

]

−
+∞∑
p=1

4p

4p2 − 1

[
κ2

p (q)(q + p)!

q!

]⎫⎬
⎭ (A5)

Mq,q+1 = Ẽ2
J

4h̄ωJ

⎧⎨
⎩

q∑
p=0

(−1)p

2p+1

√
q!(q+1)!

(q−p)!
κp(q − p)κp+1(q−p)

−
+∞∑
p=0

(−1)p

2p + 1

(q + p + 1)!√
q!(q + 1)!

κp+1(q)κp(q + 1)

⎫⎬
⎭,

(A6)

where κp(q) is the qth eigenvalue of K̂p (i.e., K̂p|q〉 =
κp(q)|q〉), which is given by

κp(q) = q!
q∑

n=0

(−1)n�
2n+p
0

n!(n + p)!(q − n)!
. (A7)

Using this matrix representation, one can then derive closed
form expressions for specific matrix elements of the Hamilto-
nian. In particular, we find

M1,2 = Ẽ2
J

4
√

2h̄ωJ

[
�0e−�2

0

(
2

3
�4

0 − 10

3
�2

0 + 3

2

)

+√
πerf (�0)

(
2

3
�6

0 − 3�4
0 + 7

2
�2

0 − 3

4

)]
(A8)

with erf (x) the (Gauss) error function. As discussed in the
main text, this has its first zero at �0 ∼ 1.07 [see the inset
of Fig. 4].

APPENDIX B: FIRST-ORDER COHERENCE FUNCTION

In this section we outline the calculation of the first-
order coherence function, a similar calculation for the sin-
gle Cooper-pair resonance (where ωJ � ω0) is discussed in
Ref. [21]. Starting from Eqs. (2) and (7), we obtain the
equations of motion

d

dt
〈â〉 = −(iδ′ + γ /2)〈â〉 − X 〈e2iϕ〉 (B1)

d

dt
〈e2iϕ〉 = −2γϕ〈e2iϕ〉. (B2)

where X = Ẽ2
J �3

0/(3h̄2ωJ ). Hence, using the regression for-
mula [39] we find

〈â†(t )e2iϕ (t + τ )〉 = 〈â†(t )e2iϕ (t )〉e−2γϕτ , (B3)

〈â†(t )a(t + τ )〉 = 〈â†(t )â(t )〉e−(γ /2+iδ′ )τ

− X
〈â†(t )e2iϕ (t )〉
γ /2−2γϕ+iδ′ (e−2γϕτ−e−(γ /2+iδ′ )τ ).

(B4)

Using the steady-state values (t → ∞)

〈n̂〉 = 〈â†â〉 = X 2(1 + 4γϕ/γ )

(γ /2 + 2γϕ )2 + (δ′)2
(B5)

〈â†e2iϕ〉 = −X

γ /2 + 2γϕ − iδ′ , (B6)

leads to

〈â†â(τ )〉 = 〈n̂〉e−(iδ′+γ /2)τ

+ X 2[e−2γϕτ − e−(iδ′+γ /2)τ ]

[iδ′ + (γ /2 − 2γϕ )][−iδ′ + (γ /2 + 2γϕ )]
.

(B7)

Finally, assuming γϕ/γ � 1, we can simplify this to

〈â†â(τ )〉 � 〈n̂〉e−2γϕτ . (B8)
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APPENDIX C: SEMICLASSICAL ANALYSIS

A simple semiclassical model for the system (similar in
spirit to that discussed in Ref. [31]) is obtained from Eqs. (1)
and (2) by making the ansatz that the resonator is in a coherent
state |α〉. Taking the limit γϕ → 0 and setting ϕ = 0 for
convenience, we find

α̇ = −
(

iω0 + γ

2

)
α − iẼJ�0

h̄
sin[ωJt + �0(α + α∗)]. (C1)

For ωJ � ω0/2 and the very smallest EJ values the system
will behave like a linear oscillator subject to two off-resonant
drives so that in the limit of long times, α � α−e−iωJ t +
α+e+iωJ t with constants α±. However, for slightly larger EJ

values the nonlinearity will up-convert the oscillations (with
amplitudes α±) at frequency ωJ into an effective drive near
the resonant frequency (ω0 � 2ωJ ), to take these into account
we assume a solution of the form α = α0e−2iωJ t + α−e−iωJ t +
α+eiωJ t , substituting this into (C1) and assuming harmonic
balance leads to the relations

α0 = −i
ẼJ�

2
0

2h̄

(α− + α∗
+)

i(ω0 − 2ωJ ) + γ /2
(C2)

α− = ẼJ�0

2h̄

1 − i�0α0

i(ω0 − ωJ ) + γ /2
, (C3)

α+ = − ẼJ�0

2h̄

1 + i�0α
∗
0

i(ω0 + ωJ ) + γ /2
. (C4)

Using the fact that ωJ � ω0/2, assuming γ /2 � ωJ and
working to fourth order in ẼJ (and sixth order in �0) leads
to the approximate expression

〈n〉 � |α|2 = |α0|2 + |α+|2 + |α−|2 (C5)

� Ẽ2
J �2

0

2h̄2

[
ω2

0 + ω2
J(

ω2
0 − ω2

J

)2

]

×
{

1+ Ẽ2
J �4

0

2h̄2

ω2
0[

ω2
0+ω2

J

]
[(ω0−2ωJ )2+γ 2/4]

}

(C6)

where the bar implies a time average. The oscillations at ±ωJ

give rise to a contribution to 〈n〉 that grows as ∼Ẽ2
J �2

0, while
the oscillations at frequency 2ωJ give rise to one that grows
as ∼Ẽ4

J �6
0. The crossover between these two components is

obtained by equating the two terms in the braces. As (C2)
and (C6) make clear, the amplitude oscillating at 2ωJ is indeed
an up-conversion of the oscillations at ωJ . Furthermore, one
cannot neglect the most off-resonant component (α+), doing

so leads to a value for |α|2 which is very noticeably less
accurate. Notice that the O(E4

J ) component of the average
occupation number,

|α0|2 �
(

Ẽ2
J �3

0

3h̄2ωJ

)2
1

δ2 + γ 2/4
, (C7)

matches Eq. (8) in the limit γϕ → 0, up to higher-order
corrections (in �0 and EJ ) arising from the frequency shift
δ′ − δ. The frequency shift can also be obtained within the
semiclassical approach, but through a calculation that goes to
higher order [31]. In Fig. 2, Eq. (C7) is the O(E4

J ) expres-
sion plotted, whilst the O(E2

J ) one is the corresponding part
of (C6),

|α+|2 + |α−|2 � Ẽ2
J �2

0

2h̄2

[
ω2

0 + ω2
J(

ω2
0 − ω2

J

)2

]
. (C8)

In the semiclassical description, the time-averaged current
is given by

ICP

2e
= ẼJ

h̄
sin[ωJt + �0(α + α∗)]. (C9)

Using the same ansatz for α as above, together with the
assumptions ωJ � ω0/2, γ /2 � ωJ and again working to
fourth order in ẼJ (and sixth order in �0) leads to

ICP

2e
� γ Ẽ2

J �2
0ω0ωJ

h̄2
(
ω2

0 − ω2
J

)2

+ γ Ẽ4
J �6

0

2h̄4

ω2
0(

ω2
0 − ω2

J

)2
[(ω0 − 2ωJ )2 + γ 2/4]

. (C10)

Hence in the limit EJ → 0 the time-averaged current to pho-
ton number ratio will be

〈ICP〉
2eγ 〈n〉 = 2ω0ωJ

ω2
0 + ω2

J

. (C11)

This matches the drop below unity seen in the top panel of
Fig. 2. On the other hand, if just the Ẽ4

J contributions are
included then the ratio is simply 2.
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[33] D. E. Chang, V. Vuletić, and M. D. Lukin, Nat. Photonics 8, 685
(2014).

[34] H. Wang, M. P. Blencowe, A. D. Armour, and A. J. Rimberg,
Phys. Rev. B 96, 104503 (2017).

[35] A. D. Armour, B. Kubala, and J. Ankerhold, Phys. Rev. B 96,
214509 (2017).

[36] D. F. V. James and J. Jerke, Can. J. Phys. 85, 625 (2007); O.
Gamel and D. F. V. James, Phys. Rev. A. 82, 052106 (2010).

[37] S. O. Mundhada, A. Grimm, S. Touzard, U. Vool, S. Shankar,
M. H. Devoret, and M. Mirrahimi, Quantum Sci. Technol. 2,
024005 (2017).

[38] S. O. Mundhada, A. Grimm, J. Venkatraman, Z. K. Minev, S.
Touzard, N. E. Frattini, V. V. Sivak, K. Sliwa, P. Reinhold, S.
Shankar, M. Mirrahimi, and M. H. Devoret, arXiv:1811.06589.

[39] H. J. Carmichael, Statistical Methods in Quantum Optics, Vol. 1
(Springer, Heidelberg, 1999).

[40] J. R. Johansson, P. D. Nation, and F. Nori, Comp. Phys.
Commun. 183, 1760 (2012); 184, 1234 (2013).

[41] Y. M. Blanter and M. Büttiker, Phys. Rep. 336, 1 (2000).
[42] A. A. Clerk, New Directions in Mesoscopic Physics, NATO

Advanced Studies Institute, Series B: Physics Vol. 125 (Kluwer,
Amsterdam, 2003), p. 325.

[43] H. Grabert and G.-L. Ingold, Europhys. Lett. 58, 429 (2002).
[44] J. Estève, M. Aprili, and J. Gabelli, arXiv:1807.02364.
[45] C. R. Ast, B. Jäck, J. Senkpiel, M. Eltschka, M. Etzkorn, J.

Ankerhold, and K. Kern, Nat. Commun. 7, 13009 (2016).
[46] W. C. Smith, A. Kou, X. Xiao, U. Vool, and M. H. Devoret,

arXiv:1905.01206.

054515-7

https://doi.org/10.1103/PhysRevB.90.020506
https://doi.org/10.1103/PhysRevB.90.020506
https://doi.org/10.1103/PhysRevB.90.020506
https://doi.org/10.1103/PhysRevB.90.020506
https://doi.org/10.1126/science.aah6640
https://doi.org/10.1126/science.aah6640
https://doi.org/10.1126/science.aah6640
https://doi.org/10.1126/science.aah6640
https://doi.org/10.1103/PhysRevLett.119.137001
https://doi.org/10.1103/PhysRevLett.119.137001
https://doi.org/10.1103/PhysRevLett.119.137001
https://doi.org/10.1103/PhysRevLett.119.137001
https://doi.org/10.1038/s41928-018-0055-7
https://doi.org/10.1038/s41928-018-0055-7
https://doi.org/10.1038/s41928-018-0055-7
https://doi.org/10.1038/s41928-018-0055-7
https://doi.org/10.1103/PhysRevX.9.021016
https://doi.org/10.1103/PhysRevX.9.021016
https://doi.org/10.1103/PhysRevX.9.021016
https://doi.org/10.1103/PhysRevX.9.021016
https://doi.org/10.1103/PhysRevLett.122.186804
https://doi.org/10.1103/PhysRevLett.122.186804
https://doi.org/10.1103/PhysRevLett.122.186804
https://doi.org/10.1103/PhysRevLett.122.186804
https://doi.org/10.1103/PhysRevB.86.054514
https://doi.org/10.1103/PhysRevB.86.054514
https://doi.org/10.1103/PhysRevB.86.054514
https://doi.org/10.1103/PhysRevB.86.054514
https://doi.org/10.1103/PhysRevLett.110.267004
https://doi.org/10.1103/PhysRevLett.110.267004
https://doi.org/10.1103/PhysRevLett.110.267004
https://doi.org/10.1103/PhysRevLett.110.267004
https://doi.org/10.1103/PhysRevLett.111.247001
https://doi.org/10.1103/PhysRevLett.111.247001
https://doi.org/10.1103/PhysRevLett.111.247001
https://doi.org/10.1103/PhysRevLett.111.247001
https://doi.org/10.1103/PhysRevLett.111.247002
https://doi.org/10.1103/PhysRevLett.111.247002
https://doi.org/10.1103/PhysRevLett.111.247002
https://doi.org/10.1103/PhysRevLett.111.247002
https://doi.org/10.1103/PhysRevB.91.184508
https://doi.org/10.1103/PhysRevB.91.184508
https://doi.org/10.1103/PhysRevB.91.184508
https://doi.org/10.1103/PhysRevB.91.184508
https://doi.org/10.1103/PhysRevB.92.014503
https://doi.org/10.1103/PhysRevB.92.014503
https://doi.org/10.1103/PhysRevB.92.014503
https://doi.org/10.1103/PhysRevB.92.014503
https://doi.org/10.1103/PhysRevB.92.054508
https://doi.org/10.1103/PhysRevB.92.054508
https://doi.org/10.1103/PhysRevB.92.054508
https://doi.org/10.1103/PhysRevB.92.054508
https://doi.org/10.1103/PhysRevLett.115.027004
https://doi.org/10.1103/PhysRevLett.115.027004
https://doi.org/10.1103/PhysRevLett.115.027004
https://doi.org/10.1103/PhysRevLett.115.027004
https://doi.org/10.1103/PhysRevA.93.060301
https://doi.org/10.1103/PhysRevA.93.060301
https://doi.org/10.1103/PhysRevA.93.060301
https://doi.org/10.1103/PhysRevA.93.060301
https://doi.org/10.1103/PhysRevB.98.224511
https://doi.org/10.1103/PhysRevB.98.224511
https://doi.org/10.1103/PhysRevB.98.224511
https://doi.org/10.1103/PhysRevB.98.224511
https://doi.org/10.1088/2058-9565/aacbf3
https://doi.org/10.1088/2058-9565/aacbf3
https://doi.org/10.1088/2058-9565/aacbf3
https://doi.org/10.1088/2058-9565/aacbf3
https://doi.org/10.1103/PhysRevApplied.11.034035
https://doi.org/10.1103/PhysRevApplied.11.034035
https://doi.org/10.1103/PhysRevApplied.11.034035
https://doi.org/10.1103/PhysRevApplied.11.034035
https://doi.org/10.1103/PhysRevB.100.014505
https://doi.org/10.1103/PhysRevB.100.014505
https://doi.org/10.1103/PhysRevB.100.014505
https://doi.org/10.1103/PhysRevB.100.014505
https://doi.org/10.1103/PhysRevB.92.174532
https://doi.org/10.1103/PhysRevB.92.174532
https://doi.org/10.1103/PhysRevB.92.174532
https://doi.org/10.1103/PhysRevB.92.174532
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1103/PhysRevLett.79.1467
https://doi.org/10.1103/PhysRevA.91.053815
https://doi.org/10.1103/PhysRevA.91.053815
https://doi.org/10.1103/PhysRevA.91.053815
https://doi.org/10.1103/PhysRevA.91.053815
https://doi.org/10.1103/PhysRevLett.121.043602
https://doi.org/10.1103/PhysRevLett.121.043602
https://doi.org/10.1103/PhysRevLett.121.043602
https://doi.org/10.1103/PhysRevLett.121.043602
https://doi.org/10.1038/nphoton.2014.192
https://doi.org/10.1038/nphoton.2014.192
https://doi.org/10.1038/nphoton.2014.192
https://doi.org/10.1038/nphoton.2014.192
https://doi.org/10.1103/PhysRevB.96.104503
https://doi.org/10.1103/PhysRevB.96.104503
https://doi.org/10.1103/PhysRevB.96.104503
https://doi.org/10.1103/PhysRevB.96.104503
https://doi.org/10.1103/PhysRevB.96.214509
https://doi.org/10.1103/PhysRevB.96.214509
https://doi.org/10.1103/PhysRevB.96.214509
https://doi.org/10.1103/PhysRevB.96.214509
https://doi.org/10.1139/p07-060
https://doi.org/10.1139/p07-060
https://doi.org/10.1139/p07-060
https://doi.org/10.1139/p07-060
https://doi.org/10.1103/PhysRevA.82.052106
https://doi.org/10.1103/PhysRevA.82.052106
https://doi.org/10.1103/PhysRevA.82.052106
https://doi.org/10.1103/PhysRevA.82.052106
https://doi.org/10.1088/2058-9565/aa6e9d
https://doi.org/10.1088/2058-9565/aa6e9d
https://doi.org/10.1088/2058-9565/aa6e9d
https://doi.org/10.1088/2058-9565/aa6e9d
http://arxiv.org/abs/arXiv:1811.06589
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1016/S0370-1573(99)00123-4
https://doi.org/10.1209/epl/i2002-00657-1
https://doi.org/10.1209/epl/i2002-00657-1
https://doi.org/10.1209/epl/i2002-00657-1
https://doi.org/10.1209/epl/i2002-00657-1
http://arxiv.org/abs/arXiv:1807.02364
https://doi.org/10.1038/ncomms13009
https://doi.org/10.1038/ncomms13009
https://doi.org/10.1038/ncomms13009
https://doi.org/10.1038/ncomms13009
http://arxiv.org/abs/arXiv:1905.01206



