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Abstract

Optimization and variational problems are considered in a conditional setting. To enlarge
the classical deterministic case we optimize utilities conditioned on information given by
a o-algebra. Naturally, these optimization problems can be described by conditional
analysis, formally using conditional sets or L°-modules. In L°%-modules, P-almost sure
convergence can be induced by a conditional metric, thus, conditional sets give a different

approach to optimization in stochastics.

Assumptions on the utility in conditional analysis are weaker than in the theory of
random sets. Therefore, conditional variational analysis provides directly the existence
of optimizers. Based on conditional sets we derive conditional topological results and
give a conditional integral dependent on the information. Further, conditional versions

of standard theorems in measure theory are stated.

As in classical variational analysis, a conditional set convergence is derived and applied to
conditional hypographs which is used to control maximizers. Then, we give a conditional
version of a saddle point problem. A conditional version of Brouwers fixed point theorem
gives the existence and stability of a Walras equilibrium, an economy randomly driven
by offer and demand. Finally, the optimization problem is solved in multiple periods by
the Bellman principle where the utility function additionally may depend on observed
history.

With a fixed probability measure conditional variational analysis provides all results di-
rectly without a lot of technical assumptions known from variational analysis for random
sets an measurable selection. These are, for example, topological properties or integra-
bility conditions on the utility. The setting also works for infinite dimensional spaces.

Thus, conditional variational analysis contributes to stochastic optimization.



Zusammenfassung

Optimierungs- und Variationsprobleme werden in einem bedingten Zusammenhang un-
tersucht. Den klassischen, deterministischen Fall erweitern wir, indem wir Nutzenfunk-
tionen auf durch eine o-Algebra gegebene Information bedingt optimieren. Natiirlicher-
weise konnen diese Optimierungsprobleme mittels bedingter Analysis beschrieben wer-
den, formell durch die Verwendung von bedingten Mengen oder L°-Modulen. In L°-
Modulen wird P-fast sichere Konvergenz durch eine bedingte Metrik induziert, daher

gibt bedingte Theorie einen alternativen Ansatz zur stochastischen Optimierung.

Die an die Nutzenfunktion gestellten Bedingungen sind schwécher als bei zufélligen men-
genwertigen Abbildungen. Deshalb liefert bedingte Variationsrechnung direkt die Ex-
istenz von Optima. Auf Grundlage bedingter Mengen leiten wir bedingte topologische
Resultate her und fiihren ein bedingtes informationsabhangiges Integral ein. Weiterhin

werden bedingte Versionen von wesentlichen Satzen in der Mafitheorie ausgewiesen.

Wie in klassischer Variationsrechnung wird eine bedingte Mengenkonvergenz hergeleitet
und auf bedingte Hypographen angewendet, um Maximierer zu kontrollieren. Danach
geben wir eine bedingte Version eines Sattelpunktproblemes. Eine bedingte Version des
Brouwerschen Fixpunktsatzes liefert die Existenz und Stabilitdt eines Walras-Gleich-
gewichtes, ein zuféllig durch Angebot und Nachfrage getriebener Markt. Schliellich wird
das Optimierungsproblem in mehreren Zeitschritten mittels des Bellman-Prinzips gelost,
wobei die Nutzenfunktion zusétzlich von der beobachteten Vergangenheit abhingen

kann.

Mittels eines festgesetzten Wahrscheinlichkeitsmafles liefert bedingte Variationsrechnung
alle Ergebnisse auf direkte Weise und ohne einige technische Pramissen der Variation-
srechnung fiir mengenwertige Funktionen. Zum Beispiel sind dies topologische Eigen-
schaften oder eine Integrabilitdtsbedingung an die Nutzenfunktion. Dieses funktioniert
in endlich- und unendlich-dimensionalen Raumen. Auf diese Weise trigt bedingte Vari-

ationsrechnung zur stochastischen Optimierung bei.
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Introduction

The main subject of this thesis is the study of utility optimization in a conditional
setting. With information given by a o-algebra, the utility is optimized with respect to
the information. In a natural way, conditional sets or L°-theory consider this class of

problems.

In stochastics, P-almost sure convergence on a probability space (2, F,P) is not in-
duced by a metric. Convergence in probabilty is induced by a metric, but stronger. In
LO-theory, a conditional metric inducing P-almost sure convergence can be introduced
which allows for a different approach to optimization in stochastics. Thus, classical
optimization is done pointwisely, in a conditional setting we optimize with topological

methods in a measurable way.

In multiple time steps, conditional theory allows for measurable and not only expected
utilities when passing from one time step to another. Also, utilities may depend on the

observed history and not only to current information.

There are different ways to evaluate assets in stochastics: preferences, risk measures or
utility functions. For preference and risk measures, the conditional setting is natural and
has been applied to optimization. Risk measures have been introduced by Artzner et al.
[ADEH99| and put in a dynamically setting, for example in Cheridito et al. [CDKO06] or
Detlefsen and Scandolo [DS05]. A conditional setting for risk measures has been given
by Filipovié¢ et al. [FKV12]. Preferences in a dynamic setting have been introduced
by Kreps and Porteus [KP78, KP79] and preferences in a conditional setting have been
studied by Bielecki et al. [BCDK13], Karliczek [Karl4] or Drapeau and Jamneshan
[DJ16].

To involve the information given by the o-algebra, the optimization problems have been
regarded in L°-modules. Early applications of the theory of L%-modules can be found
in Cheridito et al. [CKV15], Filipovi¢ et al. [FKV09] and Guo [GuolOb], [Guoll].
The concept of o-stability which is a local property is very important for L°-theory.
Therefore, conditional theory has been introduced as a generalization of L°-theory by
Drapeau et al. [DJKK16] and Jamneshan [Jam14]. For further references to conditional

analysis in L%-modules and applications, we refer to Bachhoff and Horst [BH16], Cerreira
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et al. [CVKM™16], Cheridito et al.[CKV15], Frittelli and Maggis [FM14], Guo [Guol0a,
Orihuela and Zapata [0Z16b, OZ16a, Zap|, and for optimization in conditional analysis
we refer to Jamneshan et al. [JKZ18].

In variational analysis or stochastic control theory, measurable optimization problems
are regarded pointwisely as set-valued maps. In order to find an optimal solution, the
problem is optimized pointwisely for each w € 2. The existence of a global solution
which is measurable is obtained by the application of a measurable selection theorem,
cf., for example, Kuratowski and Ryll-Nardzeski [KRNG65] or Castaing [Cas67], with
applications provided in Rockafellar and Wets [RW09] and Pham [Pha09]. To avoid to
verify the assumptions of the measurable selection, or simply, the necessity to consider
measurablity additionally, we make use of the approach that is proposed by L%-modules,
namely, we make use of the conditional metric that induces P-almost sure convergence

and covers the classical pointwise results simultaneously.

In Chapter 1, based on the definition of conditional sets we sum up the main results
of conditional topologies from [DJKK16]. Then, a conditional integral is derived anal-
ogously to that in standard measure theory, cf. Elstrodt [Els96] as well as applications
like a conditional Radon-Nikodym or Fubini theorem. A discussion of conditional ex-

pectation in the context of conditional theory is posponed to Chapter 4.

In Chapter 2, a conditional variational analysis setting is introduced whose classical
equivalent can be found in Rockafellar and Wets [RW09]. The concept of set conver-
gence is transferred to conditional sets. It originally dates back to Painlevé, Hausdorff
[Hau27] and Kuratowski [Kur33], and for economic application see for example in Debreu
[Deb67]. Then, we introduce conditional versions of hypo- and lopsided convergence
in the context of conditional sets, classically, the former was introduced by Wijsman
[Wij64], [Wij66], the latter appears in Attouch [Att84], Attouch and Wets [AW83] and
Aubin and Frankowska [AF90]. Convex optimization problems and dual characteriza-
tions in L°-Theory can be found in Filipovié¢ et al. [FKV09].

The Brouwer fixed point theorem is a fundamental theorem in mathematics. We give the
introduction as in the paper by Drapeau et al. [DKKS13| in Chapter 2.11. Its application
in game theory suits to the intentions of L°-theory. Equivalent to the Brouwer fixed point
theorem is the Ky Fan inequality. The setting in Aubin and Ekeland [AE06] is put into

a conditional context and its equivalence to the Brouwer fixed point theorem is shown.

The conditional variational analysis setting is applied to solve a Walras equilibrium
problem in Chapter 3. Here, in the context of random variables, the measurable selection

theorem is crucial and its preconditions cannot be easily verified. The classical Walras
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problem is described in Jofré and Wets [JW02] where the Walrasian is introduced for
an economic, a set-valued bivariate function similar to the Hamiltonian in a Calculus
of Variations setting which we put it into a conditional setting. The stability of the
equilibrium is also described in terms of hypo- and lopsided convergence. Other authors
deal with slightly different assumptions, cf. Flam [F1la94] or Lucchetti and Patrone
[LP86], or with dependency on the endowment, cf. Mas-Colell [MC85], or Balasko
[Bal88], [Bal03].

Finally, in Chapter 4, we apply the Walras equilibrium in multiple periods in order
to optimize utilities. Conditional sets on a filtration of o-algebras is a family of L°-
modules over different rings which are nested. For a first examination in a martingale
context, see [Heild]. The effects on basic concepts in conditional theory are discussed,
such as conditional topology and conditional functions along with their continuity and
semicontinuity. Here, we also consider the conditional expectation in the context of
conditional theory. To solve the utility optimization problem in multiple periods, it
is decomposed in one-step models where utilities are connected by generators. This
procedure is as in dynamic programming principle, but the conditions on the generator
are somewhat different. Optimal utilities at time ¢ — 1 are obtained by maximizing the
generator over trading strategies where the generator depends on the maximal utility at
time t and trading strategies from time ¢ — 1 to time t. Together with the conditional
integral definition, the setting also gives an alternative approach to normal integrands,
cf. Rockafellar and Wets [RW09].

Basic Notation

In this section we sum up some notation which will be used in the sequel. By doing so

we generally follow Bauer [Bau92].

By N and R we denote the sets of natural numbers and of real numbers, respectively.
Extending the real line by +oo to make it compact we define R to be this extended
real line. Addition with +oo is defined as follows: a + (+o0) = 4oo for all a € R,
(+00)+ (+00) = +00 and (—o0) 4 (—00) = —00. Both, (—o0)+ (+00) and (400) 4 (—o0)
are not defined. Multiplication with 00 is defined as follows: a-(+£o0) = oo for a € R
which are positive and a = 00, a-(£00) = Foo for a € R which are negative and a = —oc.
Additionally, we define 0 (£00) = 0. The relation < extends to R via —0o < a < o for
all a € R, and —oo < o0.

We write m € M if m is an element of a set M. A set M is a subset of M if for

any m € M’ it holds m € M and we write M C M. For operations on sets we use

10
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the symbol |J for union, the symbol () for intersection and the symbol - ¢ for the set

complement. Sets are called disjoint if their intersection is ().

A mapping of a set L into a set M is denoted by f: L — M. The mapping f is real-
valued if M = R. A sequence in a set M is a mapping f: N — M. For f(n) we usually
write a,, and for the mapping f we write (ay)nen. More generally, if we have a mapping

f: I — M for some index set I, we write (a;);c; for a family of elements in M.

Next we consider measurable spaces. A measurable space (2, F) is a pair consisting
of a set 2 and a o-algebra F on 2. A o-algebra F on 2 is a family of subsets of Q2
such that ) € F and for any elements of F their complements and countable unions
are also elements of F. For two c-algebras F and G we say JF is finer than G if any
element of G is an element of F and we write G C F. The trace of the o-algebra F
on A € F is denoted by F4, i.e. FA4 ={ANF|Fc F}. If (Q,F) and (M, M) are
measurable spaces then a mapping X: 2 — M is measurable if f~1(M*) € F for all
M* € M, where f~1(M*) denotes the pre-image of M*. If M = R is endowed with
the Borel-o-algebra, the o-algebra generated by the open intervals in R, then X is a

real-valued F-measurable function, a random variable.

Next, we consider probability spaces. A probability space (€2, F,P) is a triplet consisting
of a set (), a g-algebra F on () and a probability measure IP on the measurable space
(©, F). The probability measure P is a function on F with values in [0, 1]. It holds that
P(0) =0 and P(U,en Frn) = X pen P(Fr) for pairwise disjoint F,, € F, n € N. By F,
we denote all elements of F which have positive measure.

A partially ordered set P is a set endowed with a partial order <. A partial order <
is a binary relation which is reflexive, antisymmetric and transitive. That means, for
all a, b,c € P, we have a < a,if a < band b < a thena =0, and if a < band b < ¢
then a < ¢, respectively. A lattice (P, <) is a partially ordered set which in addition
fulfills the following condition: if a, b € P then a Ab, a Vb € P, where a A b denotes the
supremum or least upper bound of a and b and a V b denotes the infimum or greatest
lower bound of a and b. For an introduction into rings, see Jacobson [Jac09] or Lang
[Lan02].

Basic Notation in L’-theory

We fix a probability space (Q, F,P). Let L := L°(Q, F,P) and L° be the space of
all F-measurable random variables with values in R and R, respectively, where IP-

almost surely equal random variables are identified. In particular, we identify A, B €
F if P((A\B)U (B\A)) = 0 and we define Fy = {Ae€ F|P(A) >0}. For X,Y €

11
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L°, the relations X > Y and X > Y are understood P-almost surely. The set L°
with the almost everywhere order is a lattice ordered ring, and every nonempty subset
C C L° has a least upper bound esssupC and a greatest lower bound essinfC (cf.
[FKV09],[FS04]). For a subset M C L° we further denote M, := {X € M | X >0}
and My == {X € M| X >0} as well as L° := {X € L° | X < oco}. For m € R, we
denote the constant random variable m - 1 by m. The L°-scalar product and L°-norm
on (Lo)d = {(X1,...,Xq) | Xi € L'} are defined as

[SIE

d
(X,Y) =) X% and [IX| = (X,X)
=1

We call C C (Lo)d bounded if esssupy¢c | X|| € L°. We introduce the balls B (X) :=
{Y € L° | | X = Y| < &} of random variables centered at X with radius ¢ > 0. We recall
that L is an L%module.

A sequence (X,),, of random variables converges P-almost surely to a random variable
X e LV if P(weQ|limy o X" (w) =X (w)) = 1. A function f: LY — L is called
P-almost surely continuous if f (X,,) converges P-almost surely to f (X) whenever X,

coverges P-almost surely to X.

In many optimization problems, continuity, in this case, P-almost sure continuity, is
relaxed to semicontinuity when considering the extended-valued reals. Thus, a function
f: (Lo)d — (Lo)d is called upper semicontinuous if esslimsup,,_, f(X,) < f (X) for
every P-almost surely converging sequence X,, — X, where esslimsup,,_, f(X,) :=
essinf,, o esssup,, <, f (Xm).

Classically, IP-almost sure convergence is not induced by a metric. So, one can pass to
convergence in probability, induced by the metric d (X,Y) := E [min(1,|X —Y|)] on
the space of random variables. If we consider L°-modules as in Filipovi¢ et al. [FKV09]
and Cheridito et al. [CKV15] the conditional distance has many properties of metrics,

but we do not need convergence in probability.

The concept of o-stability introduced in Filipovié¢ et al. [FKV09] turns out to be crucial.
The o-stable hull of a set C C L is defined as

o(C)= {Z 14, X | Xi€C, (Ai)jen Isa partition} ,
1€EN

where a partition is a countable family (A;);c C F such that P (4; N A;) =0 for i # j
and P ({J;cn 4i) = 1. We call a nonempty set C o-stable if it is equal to o (C).

12



1 Conditional theory

1.1 Introduction to conditional sets

Stochastic optimal control problems will be solved by methods of conditional theory
which fundamentally has been introduced in [DJKK16] with some ideas already pre-
sented in L%-theory such as in [CKV15], [DKKS13] or [FKV09]. Classically, these opti-
mization problems are regarded pointwisely. In the end a measurable solution is obtained
by applying a measurable selection theorem. The measurable selection approach can be
found in [RW09, Chapter 14] or the preceeding work by [Cas67]. To present an alterna-
tive approach in conditional theory, we give an introduction to conditional sets for our

purpose.

1.1.1 Conditional sets

Let A := (A,V,A,°,0,1) be a complete Boolean Algebra. The probabilistic example
is the o-algebra F = (F,U,N,°,0,Q), where A, B € F are identified if P (AAB) = 0,
other examples with their pecularities can be found in [DJKK16]. With the relation
a < bif and only if a Ab = a for a,b € A, the pair (A, <) is a complete complemented
distributive lattice, particularly this holds for the example (F, C). A partition of a € A
is a family (a;);c; in A such that Vicra; = a and a; Aaj = 0 if i # j. In F, a partition
of A€ Qis a family (A4;);c in F such that | J;cne Ai = Q and P (A; N Aj) = 0 for i # j.
By the well-ordering theorem, for every family (a;);c; there exists a partition (b;);.; of
Viera; such that b; < a; for all i € I [DJKK16]. Thus, in the sequel, we assume all

families (ai)z‘e ; to be partitions of V;cra;. Now, we can define conditional sets.

Definition 1.1 (Conditional set, [DJKK16]). Let X be a nonempty set and let A :=
(A, V,A,°,0,1) a Boolean Algebra. The set X := (X,.A) is a conditional set if it is a
nonempty collection of objects of the form X|a for X € X and a € A such that

(i). X]a=Y|bimplies a =b for all X, Y € X and a,b € A,
(ii). X|a =Yla implies X|b =Y |b for all X,Y € X and a,b € A with b < a,

13



1 Conditional theory

(iii). there exists exactly one X € X such that X|a; = Xjla; for all X; € X, i € I and
every partition (a;);c; of 1 € A (and thus also for any partition of any element in

A, cf. [DJKKI16]).

In (iii), the element X is denoted by >._; Xi|a;.

i€l
We remark here that in (i), if we set b = 1, we have X = {X|1 | X € X}. That is why we
also write X for the pair (X,.A4). Furthermore, by (iii), the set {X|0 | X € X} consists

of exactly one element, denoted by X|0. There is no further meaning of this element.

Example 1.2. The main example in the sequel is the set of random variables. We
write LY = L° (Q,F4,P|4) for P|a(B) := P (AN B) and consider the sets X|A =
{Yely|PweAd|X(w)=Y (w)) =P (A)} forany X € L and A € F; which form

a conditional set.

Remark 1.3. The element X|0 plays the role of a random variable that is defined on
a [P-nullset, or, equivalently, on the empty set. Thus, it may be identified with the
empty set, with the necessity to modify condition (iii). For simplicity of condition (iii)
we regard conditional sets as stated. This connection will be clear when defining the
conditional inclusion, where {X|0} is conditionally subset of any conditional subset of
X.

Definition 1.4 (Conditional inclusion, [DJKK16]). Let X be a conditional set. A subset
Y]a € X is called stable, if Y = {Ziel Y;|a; for a partition (a;);.; ofaandY; € y}. Let
(X1,.A4;) and (Xg, A2) be two stable conditional sets. We say that Xy C X is a condi-
tional subset of X if there exists @ € A; such that Ay = {@aAai|a; € A1} and Xs|a C
Xi|a. The conditional power set is P (X;) = {X2 T X; | X21is a conditional set}. Typ-

ically, we write X C X for a conditional subset X of a given conditional set X.

By Definition 1.1, every conditional set X is stable. Thus, the conditional inclusion as
a relation between conditional sets inherits stability. There may be further subsets of a
conditional set X. In L°, any stable subset of L° is a conditional subset of L". Instead
of conditional subset or stable, we say o-stable subset of L° for the underlying algebra

is a o-algebra.

Theorem 1.5. Let X be a conditional set. Then (P (X),C) is a complete complemented

distributive lattice.

Proof. The proof can be found in [DJKK16]. The main difficulty is to ensure that
there are the supremum and infimum of conditional subsets with respect to conditional

inclusion that also are conditional sets. O

14



1 Conditional theory

Definition 1.6 (Conditional operations on conditional sets, [DJKK16]). Let (X}, a;);c;
be conditional subsets of a conditional set X. Then, we define the conditional intersection
[Nicr & == ({X € X | X € &jfor alli € I'}, Ajera;) which is a conditional set and the
largest conditional set with respect to conditional inclusion that is a conditional subset
of all &;, i € I. The conditional union Y = | |;¢;
with respect to conditional inclusion such that X; ©— Y for all ¢ € I, or |—|i6 1 X =
{Zie 1 Xi|b; for a partition (b;),o; of Vier a;and X; € Xi}. The conditional complement
of a conditional subset X C X is AT := | [{Y C X | A NY = X]|0}.

A; is the smallest conditional set

We say that some X C X lives or ison a € Aif X C X|a for a € A. For XY € X,
it holds that X N Y # 0 if and only if X 1Y lives on 1 € A. We remark that also
Y icr Xilai = | ;e Xilai for all X; € X, i € I and every partition (a;);c; of 1 € A.

Theorem 1.7. Let X be a conditional set. Then P (X) = (P (X),U,Mn,5,X]0,X) is a

complete Boolean algebra.

Proof. The proof in all detail can be found in [DJKK16]. O

Definition 1.8 (Conditional partial order, [DJKK16]). Let (X;);.; be a nonempty con-
ditionally countable family of conditional sets and their conditional product [],.; X; :=
{((Xi)ie I ]a)a A’ X, € XZ} which is a conditional set. A conditional relation < on
X1 x X5 is a conditional subset of X; x Xy that lives on 1 € A. A conditional partial
order on X x X is a conditional relation that is antisymmetric, reflexive, symmetric and
transitive. It is conditionally total if for all X,Y € X there are ai,as € A such that
a1 Vaz =1, X|a; <Y |a; and X|ay > Y|ag. A conditional set is conditionally directed

if it is closed with respect to supremum or infimum of 2 elements.

For simplicity, for all conditional sets C = X, we write C; := {X € C| X >0} and
Ciy ={X eC|X >0}

Having introduced conditional sets we discuss how to generate a conditional set E from
a given nonempty set E and a given Boolean algebra A. The elements e € E are iso-
morphic to the elements e|1 € E. Next, we consider the stable hull generated by e|l
for e € E for all partitions of 1 € A and identify elements ), ;e;la; and ), efla;
if they are equal, that is, for all e € E, it holds that V,es{a; € A| e;la; =ela;} =
Vier{a, € A| ella, =el|a}}. Indeed, this is an equivalence relation. Now, the con-
structed conditional set E contains the objects ) ;.; (ei|a;) |a for all a € A under the
identification of the equivalence classes. This conditionel set E is the conditional set on

the Boolean algebra A with values in E. Examples are the random variables with values

15



1 Conditional theory

in N, denoted by N, or with values in @@, denoted by Q. A natural conditional partial
order on Q x Q order is given by » . ; X;la; < ZjeJ Ys|b; if X; <Y; in Q whenever
a; \bj > 0.

For the construction of R, the random variables with values in R, one usually introduces
conditional relation, Cauchy sequences and completeness. The proof is done as for the

construction of R, we do not give it explicitely and refer to [DJKK16] for the details.

This construction yields the same result as passing from R to L° via equivalence classes
of P-almost sure equal random variables, as shown in [DJKK16]. In the sequel, we
only write R instead of LY to stress the conditional point of view, not the pointwise
approach as classically for L%, although, as been shown in [DJKK16], the extension of
the natural conditional partial order from Q to R yields a conditional partial order that
coincides with almost-sure dominated order. In order to maintain this, we write essential
supremum, infimum and limit, and, as classically, X <Y for random variables, elements
of R. The conditional set R is then the extended conditional set R which includes also

oo and —oo by the same construction starting from N U {oo}.

Definition 1.9 (Conditional function). Let X and Y be conditional sets over the same

Boolean algebra A. Let f: X — Y be a function. It is a conditional function if

f(Cier Xilai) = Xies £ (X0) |ai.

Conditional functions appear naturally, for example, if a function from L° to L9 is LO-
convex, it is a conditional function, cf. [FKV09]. Convexity is discussed in Section
2.8.

Remark 1.10. With the observation that any element X € X that lives on 1 is up
ier Xilai) =
Y icr f (Xi) |a; for a conditional function f: X — Y is induced by the same porperty

to equivalence classes an element of X and vice versa, the property f (Z

but for a stable function f: X — %). This identification allows for writing all the theorems

in the setting of conditional sets. We will do so in the sequel.

Since the most important example of conditional sets is R, to consider the space of
random variables covers already a large subclass of conditional sets. Then passing to
a Boolean algebra is barely an algebraic question. Thus, for the economic examples
considered here we put rather emphasis on the probability and measurable discussion.
Similarly, the R-valuedness as a restriction of general conditional sets is reasoned by
practicability and economic applicability. That is why in Chapter 1 we put the more
general case of arbitrary conditional sets to demonstrate generality, and in the preceeding

chapters we restrict ourselves to R. Additionally, semicontinuity which will be discussed
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1 Conditional theory

later is classically only defined in topological spaces or in the space of random variables.
The example of R is the main example for all the properties discussed in conditional

sets.

Definition 1.11 (Conditionally countable, [DJKK16]). Let X be a conditional set. It
is conditionally countable if there exists a injective conditional function f: X — N.

It is conditionally finite if there exists N € N and a bijective conditional function
f+ X—=A{1,...,N}.

In a conditional set, conditional sequences are images of conditional functions of condi-

tionally countable index sets.

Definition 1.12 (Conditional family and sequence, [DJKK16]). Let X be a conditional
set. The set (X) ;¢ is a conditional family if it is the image of a conditional function

t: J — X. It is a conditional sequence if 7 C N and ¢ is injective.

1.1.2 Conditional topology

Definition 1.13 (Conditional topology, [DJKK16]). Let X be a conditional set. A
family T = (Oy) jc; of conditional subsets O; of X is a conditional topology if

(). X|0,X,0lac T forallae Aand O €T
(ii). O1MO0y €T for O1,0,€%
(ii). [ |jes Oy €T for OyeTforall Je J' CJ.

Elements of ¥ are conditionally open. The conditional complement of a conditional open

set is conditionally closed. A conditional topology generated by (77) Jes is the smallest

JeJ: A
conditional topological space is the pair (X, ¥). Further, we denote the set of conditional

conditional topology with respect to conditional inclusion that contains (77)

neighbourhoods of X by i (X) where a conditional set & C X is called a neighbourhood
of X if there exists a conditionally open conditional set O such that X € O and O C U.

Definition 1.14 (Conditional closure, conditional interior). Let (X,%) be a condi-
tional topological space. The conditional set cl(C) :=[|{DC X |CC D, D- € T} of
a conditional subset C C X is called the conditional closure of C. The conditional set
int (C):=[|{PCX|DCC,De T} is called the conditional interior of C.

Remark 1.15. By definition, int (C=) = ¢ (C)~ and cl(C™) = int (C)~. A conditional
subset Y T X is conditionally dense if cl (Y) = X.

17



1 Conditional theory

In the sequel, as in [DJKK16], we assume all conditional sets to be conditionally Haus-
dorff, that is, for X,Y € X with X MY = X]|0, there a conditional neighbourhoods
Ux € S(X) and Uy € U(Y) such that Ux MUy = X|0. In the sequel, we assume
all sets to be conditionally Hausdorff and include it in every definition without further
mentioning. Since the conditional set is conditionally Hausdorff, all limit points will be
unique [DJKK16].

Definition 1.16 (Conditional compactness). Let (X,T) be a conditional topological
space. A cover of X is a family of conditional subsets (Oy) ;c s such that | |, , O5 = X.
It is a conditionally open cover, if each O is conditionally open. The conditional set
X is conditionally compact, if for any conditionally open covering (Oy) ;¢ s of X there

exists a conditionally finite subcover (O), ;5 C (Of) ;e of X, J € N.

Remark 1.17. In R, a conditional subset C C R is conditionally compact if and only if is
is conditionally closed and bounded, that is, there exists X € R such that — X <Y < X
for all Y € C. The proof is the same as in R, we do not give it explicitely.

Conditional topologies can be induced by conditional distances.

Definition 1.18 (Conditional distance, [DJKK16]). Let X be a conditional set. A
conditional distance is a conditional function d: X x X — R such that for all X, Y, Z €
X holds that d(X,Y) =0 if and only if X =Y, d(X,Y) =d(Y,X) and d(X,Y) <
d(X,Z)+d(Z,Y). The pair (X,d) is a conditional metric space.

Example 1.19. Consider R%. The balls B° (X) :={Y e RY| [|[Y — X|| <¢e} for X e R
and ¢ € R4 generate a conditional topology [DJKK16] and is called the conditional

Fuclidean distance on R.

We now give the definition of continuity of a conditional sequence in terms of the con-

ditional Euclidean distance.

Definition 1.20 (Continuity in R). In R, a conditional sequence (X ) ;on converges
to X € R if vor all ¢ € R4 there exists N € N such that X; € B (X) for all J > N.
We also write X = limjen X

1.2 Conditional-valued integration and applications

The following section (including Remark 2.3) is joint work with Asgar Jamneshan and
Michael Kupper [JKS18].
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1 Conditional theory

1.2.1 Conditional measurable structures

Definition 1.21. Let X be a conditional set. A conditional o-algebra on X is a condi-

tional family § of conditional subsets of X satisfying
(i). X €5,
(ii). if C € §, then C- € §,
(iii). if (Cn)yen is @ conditional sequence in §, then | |y .nCn € .
The pair (X,§) is a conditional measurable space. Given two conditional measurable

spaces (X, §) and (Y, $), a conditional function f: X — Y is conditionally measurable
whenever f~! (D) € § for every D € $.

A conditional g-algebra § is a o-complete Boolean subalgebra of the conditional power
set P (X). Thus the conditional version of those properties of a classical o-algebra which
are due to Boolean arithmetic (see for the elementary arithmetic of Boolean algebras
Chapter 1 of [MKB89]) are automatically fulfilled by a conditional o-algebra. For in-
stance, one can weaken Definition 1.21 by replacing the conditional sequence (Cn)yen
by conditionally pairwise disjoint conditional sequences in (iii). Since X € §, it follows
from (ii) that X|0 = X® € §. Thus by stability also C|a + (X]0) |a© € §F for every C € §
and a € A.

The conditional intersection of any non-empty family (SZ)2 cI of conditional o-algebras
on some fixed conditional set X coincides with their classical intersection since X € §°
for all ¢ € I, and thus it is a conditional o-algebra on X. For a conditional set & of
subsets of some conditional set X let ¥ (€) denote the conditional intersection of all
conditional g-algebras § such that € C §. Given a conditional g-algebra §, we say that
¢ C § generates § whenever ¥ (€) = §.

Let X be a conditional set, (Y, ) a conditional measurable space and f: X — Y a con-
ditional function. Then f~1 (§) := {f~! (D) | D € $} is a conditional s-algebra on X by
Proposition 2.19 in [DJKK16]. Moreover, if € C P (Y) then ¥ (f~ (€)) = f~1 (X (€)).
Indeed, since f~! (&) = f~1 (2 (€)) and since f~! (X (€)) is a conditional o-algebra, it
follows that X (f~'(€)) © f~' (2 (€)). Conversely, it follows from Proposition 2.19 in
[DJKK16] that {DC Y | f~* (D) € f~!(X(€))} is a conditional o-algebra including €,
and thus it also holds that f~1 (3 (€)) C X (f~1(€)).

Example 1.22. (i). The conditional trivial o-algebra on some conditional set X is the
conditional set {X]a | a € A}.

(i). Let N € N where N = Yy mpla,, and let RY = 3> R™|a, be the N-

dimensional conditional Euclidean space. Denote by BY the conditional o-algebra
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1 Conditional theory

conditionally generated by the conditional set of conditionally open sets in RY
and call it the conditional Borel o-algebra on R™. Let K € N be such that K =
Y nen knlan where 1 <k, < my,. The conditional K-th projection 7 : RY - R,
mapping Y o (T1,. .., Tm, ) [an t0 D, cn Tk, |an, is conditionally measurable.
(iii). We define B to be the conditional Borel o-algebra on R generated by the condi-

tional topology of conditionally open conditional sets on R.

Definition 1.23. Let (X, §) be a conditional measurable space. A conditional measure

is a conditional function p: § — [0, 0o] such that
(). 1 (XJ0) =0,

(ii). 1 (UyenCn) = 2 nen i (Cn)yen for every conditional sequence (Cn)yen Of
conditionally pairwise disjoint conditional sets in §.

The triplet (X, §, 1) is called a conditional measure space. Let a = V {a | u (X]|a) = co}.
Then the conditional measure p is finite if @ = 0; it is conditionally infinite if a > 0; it
is a conditional probability measure if y (X) = 1. If X = | |yn Cn for some conditional
sequence of conditional sets in § satisfying u(Cny) < oo for each N € N, then p is

conditionally o-finite.

Remark 1.24. We collect some properties of a conditional measure space (X, 5§, 11).

(i). Due to stability and (i) in Definition 1.23,
p(Cla+ (X[0)[a%) = u(C) |a + p(X]0) [a® = p (C) [a + Ofa®,

for every C € § and a € A.

(ii). For conditionally finite and pairwise disjoint conditional sets (Crr)y<pr<y C 3, it
holds that

1 |_| Cu | = Z 1 (Car)-

I<M<N 1<M<N

(iii). If C © D, then pu(C) < p (D). Indeed, let a = V{a | u(D)|a = +oc}. Then
p(C)la < (D) ]a. So assume without loss of generality that a = 0. Then

p(D)=p(CU(DNCH)) =p(C)+p(PNC-) > pu(C).
(iv). For all C, D € § such that 1 (C), (D) < 400, it holds that

p(CUD)=p(C)+p(D)—p(CND).
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1 Conditional theory

Indeed, write CUD = (CMD)U(CMND-)U(DMC-). Then u(CUD) = p(CND)+
uw(CMNDE) + uw(DMCE). Subtracting twice u(CMD) < +oo yields the result.
By conditional induction one extends the previous equation in order to obtain
the conditional version of the inclusion-exclusion formula (see e.g. Section 10 in

[Bilg6)).

. Let (Cn)yen be an increasing, that is Cy C Cas for N < M, conditional sequence

in § such that C = | |yen On. Let Dy =Cy and D,, = C, M C},_;. Then

Yo = p(Cp) = p <|_| Dk) => (D) <p(C).
k=1 k=1

Let a:=Vv{a | p(C)|a= oc}. Define Xy = > o Yom,|an for N =3 v mpla, €
N. Then (Xy|a) yen is a conditionally increasing and bounded sequence in R. By
Lemma 5.2.9 in [Jam14] the sequence has an essential supremum. Thus 1 (Cn) yen

converges to p (C) from below.

. For a conditional sequence (Cn)yen in &, we have g (| |yen Cn) < D nven & (Cn).

Indeed, define Dy = C; and Dy = Cy M (CiU...UCN_1)". By monotonic-
ity w(Dn) < p(Cn) and p (UyenCn) = o (UnvenDn) = Zyen it (Dn) <
ZNGN/L(CN)'

Example 1.25. (i). Let v be ameasure on N. Let C C N and for every non-empty I C

(i)

N let ar := V{a|Cla =I}. Then Vienas = 1. Then i (C) := > cnv (In) |an,
defines a conditional measure p: P (N) — [0, +-00].

Let (X,§) be a conditional measurable space. A conditional measure p on (X, §)
is conditionally discrete if there are conditional sequences (Xy )y in X and

(mN)yen in [0, +00] such that for any C € §,

p(C) = (mylay +0laf), av=v{a|XylaccCla}.
NeN

In particular, for X € X and m = 1 we obtain the conditional Dirac measure on
X eX.

Definition 1.26. Let X be a conditional set. A conditional 7-system on X is a con-

ditional family of conditional subsets of X which is closed under conditionally finite

conditional intersections. A conditional A-system on X is a conditional family ® of

conditional subsets of X satisfying

(i).

XenD,
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1 Conditional theory

(ii). if C € ©, then C- € D,
(iii). if (Cn)yen is @ conditional sequence of conditionally pairwise disjoint sets in D,
then | |yenCn € 9.

Remark 1.27. Since X € D, the conditional intersection of any non-empty family
of conditional A-systems is a conditional A-system. Let A (€) denote the conditional

A-system generated by some conditional set € of conditional subsets of X.

Theorem 1.28. Let X be a conditional set and € C P (X) a w-system. Then ¥ (€) =
A(€).

Proof. The proof of Dynkin’s m-A theorem (see e.g. proof of Theorem 3.2 in [Bil86])
relies only on Boolean arithmetic. Since Boolean arithmetic is valid in conditional set
theory by Theorem 2.8 in [DJKK16], a proof of a conditional version of Dynkin’s m-A

theorem follows analogously to the classical proof. O

Theorem 1.29. Let € be a conditional w-system on some conditional set X, and let
w1 and po be two conditional measures on X (€). Suppose there exist two conditional
sequences (Cn) yen and (DN) yen i € such that py (Cn) , p2 (D) < 400 for all N € N

and | |yen CN = Uyen Py = X. If 11 (C) = p2 (C) for all C € &, then p1 (D) = pa (D)
for all D € X (€).

Proof. The theorem follows analogous to a proof of the respective classical statement
(e.g. proof of Theorem 10.3 in [Bil86]) by Theorem 1.28 and Properties (iv) and (v) of

conditional measure spaces. O

Definition 1.30. Let X be a conditional set. A conditional function p*: P (X) — [0, o0]

is a conditional outer measure if

(i), 4 (X]0) = 0,

(ii). p*(C) < p* (D) for CC D,

(iii). p* (UyenCn) < X yen #* (Cn) for any conditional sequence (Cn) yen in X.
A conditional set C C X is conditionally p*-measurable if

prWne) 4+ p* (Wnes) <p* (W), forallw c X. (1.1)

Denote by § (u*) the class of conditionally p*-measurable conditional sets.

Theorem 1.31. If u* is a conditional outer measure, then §(u*) is a conditional o-

algebra, and p* restricted to § (u*) a conditional measure.
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1 Conditional theory

Proof. From Properties (i) and (ii) of Definition 1.30 it follows that X € § (u*). Since
(1.1) is symmetric in C and C-, for every C € § (u*) it follows also that C= € F (u*).
To show that for all C,D € § (u*), it follows that C LUD € §F(u*), one can proceed as
in the classical argument by applying (1.1) twice and using the conditional subaddi-
tivity of p* and the distributivity and De Morgan’s law on the conditional power set.
For conditionally disjoint C,D € § (p*) it follows from (1.1) that p* (W N (CuUD)) >
w* Wnce)+ p* (WnD), and thus by induction for Cy,...,C, € F (u*), pairwise condi-
tionally disjoint, that

3

w* <W M <|i| Ck)) > pwr WnNCcy). (1.2)

k=1 k=1

The inequation (1.2) extends by stability of the conditional set operations and of p*
to every conditionally finite family of conditionally pairwise disjoint sets. Thus for a

conditionally finite and pairwise disjoint family (Car);<pr<y i mnlan 1 § (p*) it holds

that
w (W) > p* <WF| ( | | cM>> + p* <Wm ( | | CM> )
MeN MeN

> (%u*(WﬂCk)\an> + <Wm ( | | cM>E>.

neN \k=1 MeN

(1.3)

Given a conditionally pairwise disjoint conditional sequence (Cn)yen, We take in (1.3)

the limit for M € N and by applying conditional subadditivity twice it follows that

V) = > pt(Wney) + (Wﬂ < | | CN> >

NeN NeN

which implies that § (x*) is a conditional o-algebra by (1.1) and also that p* on F (u*)

is a conditional measure. O

Definition 1.32. Let X be a conditional set. A conditional semiring SR on X is a

conditional family of conditional subsets of X such that
(i). X|0 € R,
(ii). If C,D € R, then CM D € R,

(iii). IfC,D € R and C C D, then there exists a conditionally finite family War),<pr<n
of conditional subsets in R such that DM1CE = [ |« y W
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1 Conditional theory

Example 1.33. Let RY be the conditional N-dimensional Euclidean space. Then
RY = {|Pla,Qla] | P,Q € QV,P < Q.a € A}

is a conditional semiring.

Theorem 1.34. Let X be a conditional set and let R be a conditional semi-ring on X.

Let p: R — [0, 00] be a conditional function such that
(i). 1(X]0) =0,
(7). 1 (l_llgNgﬁcN) = > 1<n<n 1 (Cn) for every conditionally finite and pairwise
disjoint conditional sequence (Cn) < <5 in R such that | |,y Cn € R,

(iti). 1 (UnenCn) <D nen (Cn) for every conditional sequence (Cn)yen n R such

Then p extends to a conditional measure on X (R).

Proof. Let ac := V{a€ A|3 (Dn)yen C R, ClaC [ yenDn} for every € C X, and
define

u* (C):= inf{ Z uw(Dy) | Dy €R,CC |_| DN} lac + oolag. (1.4)

NeN NeN

We need to show that p* is a conditional outer measure. First, we show that y* is a con-
ditional function. To this end let (a,), ¢ be a partition in A and (Cy,),,cx be a sequence
in X. For each n, it holds that a,, ¢, = an Aac, implying 4y anCn = VneN (an N ac,).
Thus p* (3 ,enCnlan) = X ,en #° (Cn) |an. Second, we verify the axioms of a condi-
tional outer measure. Since a (X|0) = 1, it follows that p* (X]0) = w(X]0) = 0 by
assumption. Let C,D C X and such that C = D. Since every conditional cover of D is a
conditional cover of C by Boolean arithmetic, ap < ac, and thus p* (C) < p* (D) by def-
inition of p*. Finally, let (Cn)yen be a conditional sequence in X. By Proposition 2.25
in [DJKK16] NN is conditionally countable. Thus Vyenacy = Ay en O On A |y en CN
we argue with sequences. That is to say, by [DJKK16, Theorem 4.4], that for every
n € N there exists a conditional cover (Dy k), for Cn such that >, o p (Dpg) <
p(Cn) + /2%, and then p* (UyenCn) = 1" (UnenCn) < Xnmensn #(Dnk) <
Yonen B (Cn) + € =D nen i* (Cn) +e. This shows that p* defines a conditional outer

measure.
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1 Conditional theory
Next we show that R § (u*). Let C € R and W C X and
a=V{aec Al u* (Wla) = oo}

The relation (1.1) is trivially true on a. We argue on a° in the following. For every
€ > 0, there exists a conditionally sequence (Dy)ycn in R such that W C | |yen P
and ) yen 47 (D) < p* (W)+e [DJKK16, Theorem 4.4]. Since R is a conditional semi-
ring, Ex = CM Dy € R and there exist (€ x)1<x<m(n) in R such that C- M Dy =
Dy NEL = |_|1§K§M(N) SEV,K for every N. Thus Dy = |_|1§K§M(N) 51/\,71{ U &y is
a conditionally disjoint conditional union and it holds that C MW C | |yen €N and
CMWE C Uyen Lh<x<nmv EN - By definition of y* and conditional finite additivity
of p,

pCIW) +u (CEnW) < ST wEN+ Y. Y u(Ehk)

NeN NeN 1<K<M(N)

=S uen) <t W) e

Letting € going to 0 yields (1.1) on a® and thus C is p*-measurable by stability.

It remains to show that p and p* coincide on R. Let C,D € R be such that C C D. Then
there exists a conditionally finite family (Was), < ;< n such that DNCE = ||, cjyen Wn
since R is a conditional semi-ring. By Boolean arithmetic Lli<pren Wu ne = X]0.
Given N = ) _n Mnlan, by stability and associativity, -

|| W |uc= (Z (D Wk|an>> uc=>y_ (n|i| (WkI_IC)|an>

1<M<N nelN \k=1 nelN \k=1
mn+1
=2 | L Welew ) = L
neN k=1 1I<M<N+1

where W,, 11 = C for all n. By conditionally finite additivity,

mn+1
p@=pnl [ Wul|=>] (Z (W) Ian> > p(C). (1.5)

I<SM<N+1 neN \ k=1

Let C € R and (Cn)yen in R be a conditional cover of C. By (1.5), it holds that
p(C) <Y new i (CMNCN) < D nen i (Cn). Thus p(C) < p*(C). Since for C € R, it
holds that ac = 1 and since C'is a conditional cover of C, it holds also that p*(C) < u(C),
and thus p(C) = p*(C) for all C € R.
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Since R C § (1*) and since § (u*) is a conditional o-algebra by Theorem 1.31, it holds
that ¥ (R) C §F(p*). Since p* is countably additive on § (u*) by Theorem 1.31, p*

restricted to X (R) is a conditional extension of u on 9. O

We show that every kernel on d-dimensional Euclidean space R? extends naturally to
a conditional measure on the d-dimensional conditional Euclidean space R¢ and from
there by stability to R for every D € N. In particular, every measure on R¢ extends

to a conditional measure on RP.

Example 1.35. Recall that (2, F,P) is the underlying probability space. Let B¢ denote
the Borel o-field on RY. Let v: Q x B — R satisfy

(i). for all w € Q, v (w, ) is a measure on B,
(ii). for every A € B v (-, A) is a measurable function.

Let R be the conditional semi-ring of bounded conditional rational rectangles. For
|P,Q]la € R, where a = A, define

u (P, Qlla) (w) :=v(w,|P,Q] (w)), P-ae weA.

Measurability implies that p: 98 — [0, 00] is a conditional function. Inspection shows
that p satisfies the assumptions of Theorem 1.34. Thus p can be extended to the
conditional Borel o-field B on RY. Note that if v (w,-) = p(-) for all w where p is
a o-finite measure on RY, then its conditional extension p to R? is conditionally o-
finite, and thus by Theorem 1.29 it is unique. We call the conditional extension of the
Lebesgue measure the conditional Lebesgue measure. The extension of the conditional
Borel o-field to R is denoted by 5.

1.2.2 Conditional integrals

The conditional Borel o-algebra is generated by either of the following conditional sys-
tems; the conditionally open conditional balls, the conditionally closed conditional balls,
the conditionally compact conditional balls, or the bounded conditional rational rectan-

gles. This is a result of the properties of Boolean arithmetic in [DJKK16].

Remark 1.36. A conditional function f: (X,§) — (R,B) is §-B-conditionally mea-
surable if {X C X | f(X) C [~o0,a]} € § for all & € R. This coincides with the more

general definition of measurability as in Definition 1.21.

Being consistent with the standard literature on measure and integration theory, we
consider the short notation {f < g} :={X € X | f(X) < ¢(X)}|a with the definition
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a = V{a € A| there exists X € Xsuch that f (X)|a < g (X)|a} for F-B-conditionally
measurable conditional functions f,g: (X,§) — (ﬁ, %)

Theorem 1.37. The conditional function f: (X,§) — (ﬁ,g) is F-B-conditionally

measurable if and only if one of the following conditions holds true

{f>a}eF VaeR, {f>aleF VaeR
{f<a}eF VaeR, {f<a}leF VYaeR.

Furthermore, it is equivalent if quantification ranges over o € R.

Proof. Clearly, the conditional intervals generate the conditional o-algebra %B. Further,

we observe that {f >a} = |_|N€N{f2a+%}, (f<a} = {f>al", {f<al =
Unen {f <o+ §}and {f > a} ={f <a}". -

Theorem 1.38. Let f,g: (X,§) — (ﬁ, %) be §-B-conditionally measurable conditional
functions. Then {f < g} . {f < g} . {f=9g}. {f#9} €T

Proof. This follows by Theorem 1.37, {f < g} = [ |geq ({f < Q}N{Q < g}) and that
Q is conditionally dense in R. O

Theorem 1.39. Let f,g: (X,§) — (R,B) be F-B-conditionally measurable conditional
functions. Then, f-g, f+g, f —g are F-B-conditionally measurable conditional functions
if they are well-defined.

Proof. The conditional sets {f = +o00} and {g = £oo} are in § by Theorem 1.37. On
their conditional complement, by Theorem 1.37, 8 + g is §-B-conditionally measur-
able for 8,7 € R if g is §-B-conditionally measurable. Hence, with {f + ¢ > a} =
{f>a—g}, f+gand f — g are §-B-conditionally measurable. Considering f - g =
% (f+g)? - % (f — g)?, it suffices to show that f2 is §-B-conditionally measurable. To
this end, observe {f?>a} = Xla + ({f > Va}U{f < —y/a})|a® where we use the
definition a = V{a € A | aja < 0}. O

Theorem 1.40. Let (fn)ycn be a conditional sequence of §-B-conditionally measur-
able conditional functions fy: (X,§) — (ﬁ, %), N € N. Then the conditional func-
tions essinf yen fN, esssupyen [, essliminfyen fv and esslimsupyen fv are §-B-

conditionally measurable conditional functions, and, too limyen fn if it exists.
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Proof. We observe that {esssupyen fv < a} = [|yen {/nv < a}, hence, esssupyen fn
is §-B-conditionally measurable. With Theorem 1.39 and by definition, essinf yen fv =

—esssupyen (—fn), essliminfyon fv = esssupyen (essinfy,~ n far) and also finally

esslimsupyen fv = essinf yen (esssupy sy far) are §-B-conditionally measurable. [

Theorem 1.41. The conditional function f: (X,§) — (E,g) is F-B-conditionally
measurable if and only if its positive part fT := esssup{f,0} and its negative part
[~ := essinf{f,0} are §-B-conditionally measurable. If so, the absolute value |f| :=
esssup {f, —f} is §-B-conditionally measurable.

Proof. Considering f = f* — f~ and |f| = f* + f~, Theorem 1.39 and Theorem 1.40
yield the claims. O

We define a conditional sequence (fn)yen Of F-B-conditionally measurable conditional
functions fy: (X,§) — (ﬁ,%) to be increasing if fy > far whenever N > M and
strictly increasing if fxy > fyr whenever N > M.

Definition 1.42. Let § be a conditional o-algebra on a conditional set X. Let X €
X and C € §. The conditional indicator function y¢ (X): X x § — {0,1} = R is
defined by x¢ (X) := (1|a + 0|a®) |b where a :=V{a € A| X[aeCla} <band {X}NC
lives on b. A conditional function f: (X,§) — (R,B) is called elementary if there
exist conditional finite conditional families (an ),y in R and (Cn),y<5 in § such
that f = >, yewanxcy. Further, if p: § — [O:oo} is a conditional measure and
f+ (X5 — _(ﬁ_,g) an elementary conditional function, f = Y, yewanxcy, we
define the integral [ fdp := >, y<x anp (Cn) which is independent of the elementary

representation as the following lemma shows.

Lemma 1.43. Let p: § — [0,00] be a conditional measure. A conditional function
[+ (X,3) = (R,B) may have two elementary representations, f = D I<N<N ONXCy =
ZlSMSMIBMXDM' Then, it holds that ZlgNgN anp (Cn) = ZlgMgMﬂMN (D).

Proof. We observe that ay = By on Cn M Dys. Then,

> anp(Cy)= Y, an >, p(CyNDy)

1<N<N 1<N<N 1<M<M
= > Bu Y, wCnNDy)= > Bup(Du),
1<M<M 1<NKN 1<M<M
which shows the claim. O
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Remark 1.44. The integral is R-linear and monotone, that is, [ af +gdp = o [ fdu+
[gdp and [ fdp < [gdp if f < g for @ € R, elementary conditional functions f, g and

a conditional measure p.

Theorem 1.45. Let p: § — [0,00] be a conditional measure and f, fn: (X,§) —
(ﬁ, %) elementary conditional functions. Then [ fdu < esssupyen [ fndp whenever

[ < esssupyen -

Proof. Let f =3 - yowanxey and a € ]0,1[. By Theorem 1.39, Dy := {fy > af} €
§. Then, [fndu > of fxpydp by Remark 1.44. Since p is a conditional mea-
sure, it holds that [ fdp = ZlgNgNO‘NM (Cn) = limpren ZISNSNCMNIU, (CNMDyp) =
limpyren [ fxp, dpe- To conclude,

esssup/deu > esssupa/uXdeu = alim/fxpMdu: a/udu.
NeN NeN

Since av € ]0,1[ has been chosen arbitrarily, the claim follows. O

Theorem 1.46. Let pu: § — [0,00] be a conditional measure. Let f: (X,F) — (R,DB)
be a nonnegative F-B-conditionally measurable conditional function. Then there ex-

ists an increasing conditional sequence (fN)NeN of elementary conditional functions
Iy (X,5) = (R,DB) such that limyen fv = f-

Proof. We approximate every nonnegative F-B-conditionally measurable conditional
function by dyadic conditional functions in R. To that end, we define conditional sets
Ck:n € S by

{f>£In{f<B2}, 0<k<n2"-1, neNkeN,

Cip i=

We have that X = Uogkgmn Crn. Next, we define f, := Zogkgmn zinXsz and fy :=
Zne]N an fm, for N = ZnEJN anmy which is an elementary conditional function. The

conditional sequence (fn)ycn is increasing and f = esssupyen fv by construction. [

Definition 1.47. Let u: § — [0,00] be a conditional measure. Let f,g: (X,§) —
(ﬁ, %) be §-B-conditionally measurable conditional functions. A nonnegative f may

be represented as an increasing conditional sequence (fn)yen of elementary conditional
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functions. Then, the representation-independent

fdu == ess sup/deu >0 (1.6)
NeN
is the p-conditional integral of f. The conditional function g is called p-conditionally

integrable if the integrals [ ¢gTdu and [ ¢~ du are in R. Then,

/gdu = /g+du— /gdu (1.7)

is the p-condtional integral of g.

Remark 1.48. The p-conditional integral is R-linear, monotone and satisfies | f fd,u’ <
[ |f] dp. Furthermore, the p-conditional integral of f over C € F is defined by fc fdp =
[ fxcdp if fis p-conditionally integrable or a nonnegative §-B-conditionally measurable
conditional function. Plenty of properties of this integral can be derived from properties

of the conditional indicator functions.

Theorem 1.49 (Monotone convergence, Fatou’s Lemma, Dominated convergence). Let
p:§ — [0,00] be a conditional measure. Let (fn)ycn e a conditional sequence of
nonnegative §-B-conditionally measurable conditional functions fn: (X,F) — (ﬁ, %).
Then esssupyen [N 45 a nonnegative &-B-conditionally measurable conditional function

and [ esssupyen fndp = esssupyen [ fndp. Further,
o < o ‘ ‘
/eSS]%flélll\Tlnf fndp < eSS]\ljlélll\Ilnf/de/J, (1.8)

If additionally limyen fy = f for an §-B-conditionally measurable conditional func-
tion f: (X,§) — (ﬁ, %) and there is a p-conditionally integrable conditional function
g: (X,8) — (E,g) with |fn| < g then f and fn are p-conditionally integrable and
limyen [ |f — fnldp = 0.

Proof. Let f* := esssupyen fnv- The claim is to find an increasing conditional sequence
(9N) yen of elementary conditional functions with esssupyen gv = f*. To this end by
definition of fx, there are elementary conditional functions gy with esssup;en 9N =
Jn. Then gy = esssupg< <) gmk is a elementary conditional function. The condi-
tional sequence (gas)sen is increasing. It follows that gy < far and esssuppen gmr <
f*. Further, gnyn < g, hence, esssupy;en 9N = fv < esssupyen 9, and finally,
esssuppen gm = f*, hence, the conditional sequence (gas);s;en has all the required

properties.
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To show Fatou’s Lemma, by monotone convergence, [ esssupycn essinf Mm>N fm =
esssupyen J ess inf />y faurdp. Further, [essinfy>n fndp < [ fardp. Taking the es-
sential infimum on both sides yields [essinfy>n fnvdu < essinfy>n [ fardu. Hence
finally, it holds that [esssupyenessinfy sy far = esssupyen [essinfysy fardp <
esssup yen essinf s v [ fardp.

To show Dominated convergence, we define gy := |f — fn| and we will show that
limyen [ gndp = 0. To this end, consider 0 < gy < g + |f| where the latter is p-
conditionally integrable since |f| < g and by Theorem 1.41, Theorem 1.46 and Remark
1.48. Then gy is p-conditionally integrable for the same reasons. We apply Fatou’s

Lemma to g + |f| — gy and obtain, since limyen gy = essliminfyen gy = 0,

_ . _ < L B
[ o+ 1f1du= [ esstimint 9+ 111 - gx) du < esslimint [ (g +17] - g) s
= /g+ f\d,u—esslimsup/g]vdu
NeN
which yields ess lim sup yen [ gndpe < 0. But gy is nonnegative, thus we have established
that limyen [ gndp = 0 which by definition of gy yields the claim. O

1.2.3 Radon-Nikodym theorem

In the sequel, let 1: § — [0,00] be a conditional measure and let f: (X,§) — (R,B)

be a nonnegative §-28B-conditionally measurable conditional function.

Theorem 1.50. For all nonnegative §-B-conditionally measurable conditional functions
[ (X,3) = (R,B), we define a conditional measure v: § — [0,00] by

v (C) = /C faui= [ Pred (1.9)

Proof. By definition, v (X|0) = 0 and x(C) > 0. For a conditional sequence (Cn)yen
of conditionally pairwise disjoint conditional sets in §, it holds that fXI_lNgN Cy =
> nen fXxcy, hence, by R-conditional linearity and monotone convergence (Theorem
1.49), v (C) = Y nen v (Cn), thus the claim holds. O

Theorem 1.51. Let yu: § — [0, 00] be a conditional measure and let f: (X,§) — (ﬁ, %)
be a nonnegative F-B-conditionally measurable conditional function. Then, [ fdu =
0 if and only if n({f =0}) = 0. A conditional function g: (X,F) — (ﬁ, ‘B) s fu-
conditionally integrable over every C € F with p(C) = 0.
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Proof. Clearly, {f # 0} = {f > 0} € §, since f is §-B-conditionally measurable and by
Theorem 1.37. So, let [ fdp = 0. Further, let Cy := {f > 2LN} €3§. Then, f > QLNXCN
implies 0 = [ fdu > sk p (Cy) > 0. But, g ({f > 0}) = limyen s (Cn) = 0.

On the other hand, let u({f >0}) = 0. Then, f < esssupyen NX{f>0}, and 0 <
J fdp < [esssupyen Nxifso1dp = esssupyen | NX{r>opdp = 0 by monotone conver-
gence. But, for all N € N it holds that [ Nx{r>01 = 0 by construction.

If ¢ > 0 then consider f := gxc¢ which fulfills the conditions of the first part of the
theorem. For arbitrary g, we apply this to g7 and —¢g~ to show the last claim. O

Definition 1.52. For all nonnegative §-B-conditionally measurable conditional func-
tions f: (X,§) — (R,B), the conditional measure v: § — [0, 00] defined by (1.9) is

called the conditional measure with density f with respect to p. We write v = fpu.

Lemma 1.53. Let f,g,¢: (X,5) — (E, %) be nonnegative §-B-conditionally measur-

able conditional functions. We define v := fu and v* := gv. Then,

/gpdl/:/gofdp and v* = (gf) p. (1.10)

Proof. The first part follows directly for simple conditional functions and by monotone
convergence on their supremum. The second part follows from the first part and v* (C) =
[ gxcdv = [ gfxcdp which is the claim. O

Definition 1.54. A conditional measure v: § — [0, 00] is called continuous with respect
to a conditional measure p: § — [0,00] or p-conditionally continuous if u(C)|a = 0
implies v (C) |a =0 for C € .

Theorem 1.55 (Radon-Nikodym). Let p,v: § — [0,00] be conditional measures and
let u be conditionally o-finite. Then, v has a density with respect to u if and only if v

18 [-continuous.

Proof. If v has a density with respect to u, then, by Theorem 1.51, v is p-continuous.
For the inverse implication, we consider the cases, that u,v are finite, then only that u

is finite and finally, p is conditionally o-finite.

First, let 4 and v be finite. We define the set G of nonnegative §-2-conditionally
measurable conditional functions g with gu < v. The conditional function ¢ = 0 is
in G, hence, G is nonempty. Further, define v := esssup { [gdu|ge G} € R which
exists since v is finite. By [DJKK16, Theorem 4.5] und monotonicity of the integral,

there exists an nondecreasing conditional sequence (gn ) yen such that limyen [ gndu =
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7. By monotone convergence, esssupyen gy € G and fNeN esssup gndu = ~v. Thus,
ess Sup yen 9N is a maximizer of g — [ gdp. We show that esssupyen gnpe = v. To this
end, let 7 := v —esssup yen gy Which is p-conditionally continuous by assumption and
assume that 7 (X) |a > 0, since if 7 (X) = 0 we are done. By p-conditional continuity,
w1 (X) |a > 0, thus, we can define § := %]a—i—mac with Bla > 0. Applying Lemma 1.57,
we obtain Cy € § such that 7 (Co) — Bu (Co) > 7 (X) —Bu (X) with (7 (Co) — B (Co)) |a >
0 and 7 (D) |a > Bu (D) |a for all D T Co M F. We show that esssupyen v + Bxe, € G-
First, it is §-B-conditionally measurable. For all C € §, it holds that

/esssupgN+BXcodu§ /esssupgNd,u—l—B,u (ComC)
¢ NeN ¢ NeN

< /esssupgNdu +7(CoMC) <v(C).
C NeN

Since v (Cy) |a = (7 (Co) — B (Co)) |a > 0 and v is p-conditional continuous, it holds that

1 (Co) |a > 0. Then,

/es; SUP gN -+ Bxcodpla = vla + Bu (Co) la > 7la,
S

in contradiction to the maximality of v and esssupycn gnv + Bxe, € G. Hence, 7 = 0,

as required.

In the second part, we consider the case that only p is finite. We construct Cy € § and a
conditional sequence (Cn) v such that | |y CvUCo = X, v (Cw) is finite, and for all
D C CyMg, there exists ap € A such that (D) |ap = v (D) |ap = 0and 0 < p (D) |a$, <
v (D) |a$ = oo. To this end, we define o := esssup {u (D) | D € §, v (D) < oo} € Rsince
w is finite. Again, by [DJKK16, Theorem 4.5], there exists an nondecreasing conditional
sequence (Dy)yen With limyen ¢ (D) = a. Thus, | |yen Py € §, and by monotone
convergence, ,u(|_|NEN DN) = «a. We consider C; := Dj, Cny1 = Dy41 N D]E, and
Co = (Uyen DN)E. For all D C CoM g, let ap := (V{a€e A|v(D)]a=c0})". We
show that p(D)|ap = 0. Since v (D)|ap < oo, it holds that v (Dy M D) lap < oo,
thus, u(Dy M D) |ap < alap, and by monotone convergence, 4 (| |yen Py M D) |ap =
limyen g (Dy M D) lap < alap. Since by construction | |y Py MDD = X|0, it holds
that 11 (| |yen Pn M1P) lap = alap + p (D) |ap. Thus, p (D) |ap = 0.

We make use of this decomposition by considering p» and v restricted on the conditional
o-algebras Cny M § denoted by puy and vy. By assumption, vy is py-conditionally
continuous and p and v are finite. By the first part of the proof, there are nonnegative

Cn M §-B-conditionally measurable conditional functions fx such that vy = fyun. By
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the construction of the decomposition, pg and vy as restrictions of u and v on Cy M §
that fulfill vy = foue with fo = oo. Finally, f defined as fy on Cy satisfies v = fu.

For the third part, assume p to be conditionally o-finite. By Lemma 1.56, there exists
a p-conditionally integrable conditional function f: (X,§) — (R,®B) with f > 0. Thus,
we can define the conditional measure i := fu with p (C) = 0 if and only if i (C) = 0 for
all C € §. Hence, v is f-conditionally continuous. By the second part of the proof, there
exists a nonnegative §-B-conditionally measurable conditional function g with v = gp.
Then, v = (¢gf) u by Lemma 1.53 which yields the claim. O

Lemma 1.56. Let p: § — [0,00] be a conditional measure. It is o-conditionally finite
if and only if there exists a p-conditionally integrable conditional function f: (X,§) —
(R,B) with f > 0.

Proof. By definition of a conditionally o-finite conditional measure, there exists a con-
ditional sequence (Cn)yen in X such that p(Cy) > 0 and | |y Cn = X. We define
ay :==V{@ae A| p(Cy)la =0} and ay = Jxlay + (2% A W) la% > 0. Further,
define f := ) vy anXey- By definition, f is a §-2B-conditionally measurable condi-
tional function with 0 < f <1 and [ fdu < 1. If f > 0, we are done. If fla = 0, we
have that 1 (Cy) |a = 0, hence p = 0, in turn, any f is as required. O

Lemma 1.57. Let p,v: § — [0,00] be finite conditional measures. Let i := v — p.
Then, there is Co € § such that 1 (Co) > 1 (X) and (D) > 0 for all DT Co M F.

Proof. First, we proof that for every € > 0 there exists C. € § such that 1 (C.) > 1 (X)
and (D) > —e for all D T C. M §. We may assume that @ (X) > 0. For if a :=
sup{a € A | (X)|a > 0} then any C. € § with @ (C.) |a > 1 (X) |a and 7 (D) |a > —¢l|a
for all D C C. M § yields C.|a € § fulfilling all the properties of the claim.

We define ag := (V{a€ A|n(D)|a> —elaVD € §})°. If ap = 0, we choose C. :=
X to fulfill the claim. Otherwise, there exists D; € § with @ (D;)|ao < —¢lag. By
definition of f, it holds that 7 (DT)|ag > (7 (X) +¢)lao > 7 (X)|ag. Define a; :=
(V{ae A|n(D)la> —elaVD € DL NF}) Aag. If ap = 0, we choose C. := DT |ag+X]a§
to fulfill the claim. Otherwise, there exists Dy € Df M §F with 1 (D2) |az < —elas.
Assume (D) yen to be constructed pairwise conditionally disjoint with 7 (Dy) < —¢
for Dy € Dy_; M. Then, on ay,

C

fi || ov] |=2X)- Y #((Dy)>AE(X)+Ke>na(X).
1<N<K 1<N<ZK
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Thus, >« n<i B (DN) lax < —Kelak and, hence, 3 yen 7 (Dn) [Axkenarx = —oo. But
also 3o yen 7 (D) | Axen ax = v (UNen D) [ Axen ax — i (Uyen D) | Axen ak >
—00. Thus, Agenax = 0. Then, C. := > yon (an —an—1) Dy + aoD1 + agX fulfills
the claim.

1
N
sequence (Cn)yen such that Cy C Cy-1 in §. Consider, Cy := [|yenCn. Then, it
holds that 7z (D) > —¢ for all D € Cy M § and all € > 0, hence, 7z (D) > 0. Further, since
1 (Cp) > 1 (X) we can apply the limit and obtain @ (Co) = limyen i (Cn) > 1 (X). The
claim then follows by Remark 2.3. O

We conclude with the original claim. We consider € := and choose the conditional

1.2.4 Product measures

Definition 1.58. Let §; be a conditional o-algebra on X;. The conditional o-algebra
by (pri_ 1 (&)) on the conditional product of (X‘)Z I generated by the projection map-
pings pri: [[;e; Xi — X is the conditional product o-algebra ®;crF;.

Lemma 1.59. Let &; be a generator of §; with (Cir)pen i € such that | |, Cix = Xi.
Then, F; = X (xigCi) for C; € €.

Proof. That follows directly from the definitions. O

Theorem 1.60. Let €; be a conditional T-system and a generator of §; with (Cik)pen
i €; such that |_|kelN Cir = X, and p; (Ci,) < oco. Then, there is at most one conditional
measure (1 on ®F; such that pu(xX;erC;) = [Licr 1 (Ci) for all C; € &,.

Proof. Clearly, ®§; is a conditional m-system and Cj, := x;esCyy, are such that | |, Cr =
[I;cr Xi- The claim follows by Lemma 1.59 and Theorem 1.29. O

For the sake of simplicity, we consider the conditional product of two conditional sets
X; and Xs. By induction, the generalisations of the following theorems can easlily be

derived for condtional countable conditional products by Remark 2.3.

Lemma 1.61. Let C C X x X2 and define Cy, = {X2 € Xo | (X1, X2) € C} andCx, =
{X1 € Xy | (X1,X2) € C}, the X1-section of C and the Xq-section of C. If C € §F1 ® §2
then Cx, € §2 and Cx, € §1.

Proof. We observe that

(Cl XCQ)Xl :Cg‘b, b::\/{b*EA’Xﬂb*Ecl‘b*}.
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Thus, the conditional sets {C | Cx, € §} are a conditional o-algebra for fixed X;. Every
connditional set C; x Co for C; € §1 and Co € Fo is in this conditional o-algebra which is

the smallest conditional o-algebra containing all these sets by Lemma 1.59. O

Lemma 1.62. Let p1 and ps be conditionally o-finite. For C € §1 ® §2, the conditional
functions X1 — po (Cx,) \aé(l and X9 — 11 (Cx,) ]aé(Q are §1-B-measurable and Fo-B-
measurable, respectively, where aé{i =VA{b* € A| X;|b* € pr; (C) |b*}.

Proof. We define s¢ (X1) := u2 (Cx,) ]aé( . First, let po be totally finite. The collection
of conditional sets © := {C € §F1 ® 2 | s¢ is F1-B-measurable} is a conditional A-system
for which C; x Cy for C; € §; are a conditional 7-system since s¢ (C1 x Ca) = p2 (C2) xc¢; -
Thus, ® = §1 ® §2 by Theorem 1.28. For conditionally o-finite conditional measures
p2, let (Dy),cn be a sequence in Xy such that | |, .nDp = Xo with pg (D) < oo.
Then, p2, (C2MD,y,) is a totally finite conditional measure on §2. Finally, ps (Cx,) =
limpen p2,n (Cx,) is also §F1-B-measurable by Property (v) following Definition 1.23 and
Theorem 1.49. O

Theorem 1.63. Let X; and Xa be conditional measure spaces where p; and po are
conditionally o-finite. Then, a conditional measure p on F1 @ F2 with p(Cy X C3) =
w1 (C1) o (C2) exists and is unique. It is further conditionally o-finite and it holds that

p@ = [ (na(Cx)la) i @x0) = [ (1 (€)oo (dXe) . (111)

Proof. We define sc (X1) := pa (Cx,) lag " and p(C) := [ scdpr. Then, u: X5 x Xg —
[0, 00] is a conditional measure by the properties of the integral. For s¢, x¢, = p2 (C2) xcy
by integration with respect to p1, it holds that u (C1 x C2) = 1 (C1) pe (C2). By Theorem
1.60, it is unique. The conditional measure p* (C) := [ 1 (Cx,) ]aéng (dX2) is thus
equal to pu, thus, (1.11) holds. Conditional o-finiteness of p follows from the same
property of p; and pg since p(Cp x Ca) = p1 (C1) p2 (C2) < oo for the same exhausting

sequences of 1 and ps. O

Definition 1.64. The conditional measure constructed in Theorem 1.63 on conditionally

o-finite conditional measure spaces is the product measure and denoted by p1 ® uo.

For the X-section and Xa-section of conditional functions f: X; x X5 — R, we consider
conditional functions f: Xy — R with fy, (X2) := f (X1, X3) for fixed X; and f: X; —
R with fX2 (Xl) = f (Xl,XQ) for fixed X5s.
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Lemma 1.65. Let f: X1 x X9 — R be a F1 @ Fo-B-measurable conditional function.
Then, fx, is §2-B-measurable and fx, is §1-B-measurable.

Proof. By §1 ® §2-B-measurability of f, it holds that f)}ll (€) (f_1 (C’))X1 and the

claim follows from Lemma 1.61. O

Theorem 1.66. Let X and Xa be conditional measure spaces where py and po are
conditionally o-finite and let f: X1 xXa — [0,00] be a §1 @F2-B-measurable conditional
function. Then, the conditional functions Xo — ffXQd/,L1|a§2 and X1 — fleduglcél

are §o-B-measurable and F1-B-measurable, respectively. It further holds that

/mwww@—/</hm“&ﬁmmma—/(/kmmﬁﬁmwxy

(1.12)

Proof. We first consider elementary conditional functions f = Zlgngﬁ anXe,- By
Lemma 1.65 and Lemma 1.62, it holds that [ fx,du = E1§n§ﬁ anp1 (Cn x,) 18 o-

B-measurable. By Theorem 1.63, we may intregrate with respect to ps and obtain

i <f fXQdm]aéQ) dpz = 31 cpen @nft (Cn) = [ fdu. For nonnegative f, let (f™),,cx be
an increasing sequence of simple conditional functions with limit f. Then, ¢™ (X3) :=

ffg(”zdulla§2 is Fo-B-measurable and (g™),, o increases to [ fxodpn|ay?. Finally,

/</fxzdm|a§2> p2 (dX2) ZGSSSng/gmduz ZeSSS§p/fmdu= /fdu
me me

by monotone convergence. O

Corollary 1.67 (Fubini). Let Xy and Xg be conditional measure spaces where iy and jio
are conditionally o-finite and let f: X1 x Xo — [0, 00] be a u1 ® pa-integrable conditional
function. Then, the conditional functions Xo — ffX2d,u1|a§2 and X1 — fledp2]a§1
are py-integrable and po-integrable, respectively and (1.12) holds true.

Proof. By (1.12), it holds that

/(/If@ dﬂ1|a§2> 142 (dX2)=/</\f|X1 d/@\a§1> p1 (dX71)

= [171d0n © ) <.

Thus, X1 — [|f] X, d,u2|a§1 is §1-B-measurable, pi-integrable and conditionally real-
valued by Theorem 1.51. Thus, fx, is puo-integrable with [ fx, d,u2|a§1 = f;gl d,u2|a§1—
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ff;(lduglaﬁl. By Theorem 1.66, X; — fled,ug|a§1 is §1-B-measurable and X; —
ff;gldu2|a§1 and X — ff)zld;@]a? are uq-integrable. Consequently,

J (it s
:/</f§1dﬂ2|a§1> o (Xm)—/(/fXIduzla?) pi1 (dX71)

Z/f+d(u1®uz)—/fd(u1®u2)=/fd(u1®uz)

The roles of X7 and X5 can be interchanged, thus the claim is proven. O

1.2.5 A conditional version of the Daniell-Stone theorem and Riesz
representation theorem

In this section we will prove a conditional version of the Daniell-Stone theorem thanks
to which conditional versions of the Riesz representation theorem on the conditionally

n-dimensional Euclidean space are established.

Definition 1.68. Given a conditional set X, a conditional family £ of conditional func-
tions f: X — R is called a conditional Stone vector lattice whenever f + g, Rf and
min { f, 1} are elements of £ for all f,g € £ and R € R and there exist f € L and X € X
such that f (X)|a # 0|a for all a > 0.

Definition 1.69. For a conditional sequence (fx) yen of conditional functions fy: X —
R and a conditional function f: X — R we write fy | f if (fx)yen is decreasing and
limyen fv (X) = f(X) for all X € X.

Theorem 1.70. Let £ be a conditional Stone vector lattice and L: L — R a linear
conditional function such that L(f) > 0 whenever f > 0 and L(fy) | 0 whenever
Jn 1 0. Then there exists a conditional measure ® on X (L) such that L(f) = [x fd®
for all f in L.

Proof. For f,g in £ we define [f,g[ = {(X,R) e X xR | f(X)<R<g(X)}. The
collection X of all conditional unions of conditional finite families ([fm, Gm [ )1<;m<n Of
pairwise disjoint elements is a conditional ring on X x R. The conditional Eun;tion
U: X — R, given by

UL Ueegml )= D L(gm— fm)

1<m<n 1<m<n
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is a conditional pre-measure which by Theorem 1.31 extends to a conditional measure
on ¥ (X). By inspection we have M := ¥ ({f~* (]1,00[) | f € L}) = (L). For f € L
let f=1(]1,00][) live on d, and for X € X and N € N set

o . N4+1-
ax =V {al f(X)la < 1la}, bX:\/{b|1|b<f(X)]b< - |b},
_ . N+1 _
ex =v{el )16 T el () = 0lax V) + N (F(X) = 1)lbx + Llex.
Since | |yen 0,98 = f71(]1,00[) x [0,1] it holds that the conditional function
®(C) := ¥(Cx[0,1]) is a conditional measure on 9. The representation L (f) =
Jx fd® for all f € L follows from (M8) and Theorem 1.49. O

We give a conditional version of Dini’s lemma:

Lemma 1.71. Let (X, %) be a conditionally compact topological space and (fN)yen @
decreasing conditional sequence of continuous conditional functions fy: X — R con-
verging to a continuous conditional function f. Then for all R > 0 there exists Ny in N
such that supxex|fn (X) — f(X)| < R for all N > Ny.

Proof. The proof is similar to the classical proof by using the definition of conditional

compactness. (]

For d € N let ¢ (Rd,R) denote the conditional family of all continuous conditional
functions f: R?* — R. The conditional function f € ¢ (Rd, R) has conditionally compact
support whenever cl ( ft ({O}‘:)) is conditionally compact. We denote by c, (Rd, R) the
conditional family of ¢ (Rd7 R) of all functions with conditionally compact supported.
Both ¢ (Rd, R) and ¢, (Rd, R) are conditional Stone vector lattices.

A finite conditional measure ® on the conditional Borel o-algebra B% is called condi-

tionally tight whenever
® (C) =sup{® (D) | D C C conditionally compact}

for all C € BN

Corollary 1.72. Let L: c (Rd,R) — R be an R-linear conditional function such that
L(f) > 0 whenever f > 0. Then there exists a finite conditionally tight measure ® on
B" such that L (f) = [ga fd® for all f € c(R%,R).
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Proof. Let (fur)yen be a conditional sequence in c (Rd,R) with fy | 0. Let Cx =
{X eR?|||X||< K}, K € N which is conditionally compact by Remark 1.17. Put
9k (X) = max{l —minyec, [|[X —=Y|,0} and hxn = grfu + (1 —gk) f1 ]l /2K.
One has fyy < hgpy for all K,M € N. Fix R > 0. Now choose K such that
1/2K)L(fi(1—g¢1)]|l) < R/2. Next, choose M such that L (gx far) < R/2 by Lemma
1.71. We have L (far) < L(gxfum) +1/ (2K)L((1 —¢1) f1]]]]) < R. By Theorem 1.70
there exists a finite conditional measure ® on B¢ representing L. The regularity condi-
tion follows from an adaptation of the arguments in the proof of [CKT15, Proposition
1.5]. O

Corollary 1.73. Let L: c. (Rd,R) — R be an R-linear conditional function such that
L(f) > 0 whenever f > 0. Then there exists a conditional measure ® on B¢ such that
L(f)= fRd fd® for all f € c. (Rd, R). Moreover, one has ® (K) < oo for all condition-
ally compact intervals K and ® (C) = sup{® (D) | D T C conditionally compact} for all
C € B with ® (C) < oo.

Proof. In order to obtain the assumptions of Theorem 1.70 apply Lemma 1.71 to the
conditional sequence (1x fn)yen Where K denotes the support of fi. For a condition-
ally compact interval  and f(X) = max{l — miny¢x [|[X —Y|,0} one has @ (K) =
Jra fd® < L(f). The conditional regularity condition follows similarly to Corollary
1.72. O

1.3 Partition of unity

We close this Chapter with some topological theorem. In the sequel, we follow an
approach suggested in [AB06] and [Dug75], adapted to conditional theory, where we
show that R is conditionally normal and fulfills Urysohn’s characterization of normality

in a conditional setting.

Definition 1.74 (Partition of unity). A conditional family (f);c7 in R of conditional
functions is a partition of unity if fr: R — [0,1], I € Z, such that f; (X) € R4 for all
X € R only for conditionally finitely many I € Z and ) ;. fr (X) = 1. (An arbitrary
sum of zeros is zero.)

A partition of unity (fr);c7 is subordinated to a cover B of conditional balls (B) ;¢ 7
in R if for all I € 7 there exists J € J such that f[\BE = 0. It is continuous if f; is

continuous for all I € 7.
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Definition 1.75 (Normality). Let (X,%) be a conditional topological space which is
conditionally Hausdorff. It is normal if for all conditionally closed conditional sets C, D C
M which are conditionally disjoint, that is, CD = X|0, there exist conditionally disjoint
conditionally open conditional sets @1 and Os in M such that C = O and D C Os.

Example 1.76. The conditional set R is conditionally Hausdorff, ¢f. [DJKK16] and nor-
mal. Given conditionally closed conditional balls ¢l B! (X7) and cl B2 (X3) = R which
are conditionally disjoint, we choose Y7 := X1, Yo := X5, 61 := 1 + %)_51_52 > e
and 09 := 524—% > g9. By construction, ¢l B! (X1) C B (Y1), cl B2 (X)) C

B% (Y) and B (Y1) N B% (Y3) = R|0.

Theorem 1.77 (Urysohn’s characterization of normality). In a conditional topological
space (X, T), for conditionally disjoint conditionally closed conditional balls C,D = X
there exists a continuous conditional function f: X — [0,1] such that 0 < f (X) <1 for
all X € X and

f(X)=0o0nay for ap:=V{al|Xlae€CCla},
f(X)=1lonay for ay:=V{a|Xl|a€Dla}.

We call f a conditional Urysohn function for C and D.

Proof. Let C and D be conditionally disjoint and conditionally closed conditional sets
in X. We show the existence of a conditional Urysohn function for C and D. We
consider R := {25,1 |0 K<2" KeN,n¢€ JN}, a conditional countable conditional
dense conditional subset of [0,1] C R.

In an inductive procedure, we construct conditionally open B (R) := B°R (YR) C X for
every R € R such that

CCB(R), B(R)NMD=X]|0, and
R —Re R,y implies clB(R)C B(R).

First, we do the construction for £ € N. Let ©, := {B (2%) | k= 0,1,...,2”}. Let
B(1) := (D)~ and B(0) C X be such that C = B(0) = clB(0) = D~ which exists by
the normality assumption. Define Dy := {B(0),B(1)

constructed we note that B (2%) for even k € N is already defined. For k € N odd,
by normality, there exists B (2%) such that cl B (kz_nl) C B (2%) CclB (2%) CB (kzin)
Now, let K € N be arbitrarily. Then, for all R € R, we define B (R) := >_ picr B(R') |a,
where a, := V{a | Rla = R'|a} for R = £ with k € N.

}. Assuming D,,_1 already being
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We continue with the definition of the conditional function f. Now, let B’ (1) := X,
and for R € R, B'(R) := Xla1 + B (R) |a§ where a1 := V{a | R|a = 1|a}, thus, passing
from B (R) to B’ (R) is the identity but B (R)|a is replaced by Rla if Rla = 1|a. We
define f(X) := essinf{R € R | X € B'(R)} which is well defined by the conditional
density of R in [0,1]. By definition, 0 < f(X) < 1 for all X € X. We observe that
X|a € Cla for some a implies that X|a € B’ (0) |a, thus, f (X)|a = 0]a. If X|a € Dla for
some a we observe that X|a’ € D-|a’ for Rla < l|a and X|a € B’ (1) |a = X|a, hence,
J(X) o= 1la
To proof continuity of the conditional function f, let Xy € X and Ry € R such that
f(Xo) = Ry. Let e € Ryy. If Rola = Ola for fixed a there exists R € R such that
Rla € ]0,(Ro +¢)[|a for which holds that B’ (R)|a is a neighbourhood of Xg|a with
f (B (R))|a C [0,Ry+¢[|a since by definition of f it holds that f(X)[a < Rla for
all X|a € B'(R) |a. If Rola = 1|a there exists R € R such that R|a € |Ry —¢,1[|a
for which holds that (c1B’ (R))" |a is a neighbourhood of Xo|a with f ((c1B' (R))") |a T
|Ro — ¢,1] |a since f (X)|a > Rla for all X|ain (c1B' (R))" |a by definition of f. Combin-
ing this whenever Ola < Rgla < 1]a there exist R, R € R such that R|a € Ry, R + €] |a
and Rla € |Ry — €, Ro[ |a for which hold that B'|a := B’ (R) M (c1B' (R))" |a is a neigh-
bourhood of Xp|a with f (B)|a T |Ry — €, Ro + €[ |a since by definition of f it holds that
f(X)|a < Rla for all X|a € B'(R) |a and f(X)|a > R|a for all X|a € (c1B' (R))" |a.

Hence, f is continuous. O

Lemma 1.78. Let B := (By);7 be a conditionally open cover of X. Then, there is a

continuous partition of unity which is subordinated to B.

Proof. For X € X, define ax  :=V{a | {X} N Brla={X}|a}. Since B is a cover of X,
it holds that (J;c7 ax,;r = 1 for all X € X. We fix a partition (as);.7 of 1 subordinated
to (ax.r) 1eT that is, without loss of generality, aj < ax ; and the conditionally open
conditional ball By € B with X|a; € Br|a;. By Urysohns characterization of normality
in Lemma 1.77 on a; for conditionally closed {X|Ar} and BT there is a continuous
conditional function fx: X — [0,1] with fx (Y)|e = 1|a for any a < a; such that
Yl]a = Xla and fx (Y)|a’ = 0]a’ for any a’ < a such that Y|a' € BF|a’. We consider the
conditional set Cx := {Y € X | fx (Y) € R41}. It is a conditionally open conditional
set of X since fx is continuous. Thus, (Cx)yxcx is a conditional open cover of X.
We choose a conditional finite subcover (Cx, ), ;-5 by conditional compactness. On
a < aj, we observe that fx, (Y)|a > 0la for all 1_’|a € Cx,la for all 1 < J < N and
fx, (Y)]a = Ola for all Y|a € C% |a. Now, we define fY) = Yi<g<n fx, (Y) and
observe that f(Y)|a > Ola for all Y € X on a < a;. We normalize fx by dividing
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by f and assume that Yi<gen fx, (Y) = 1 for all Y € X which now, having again
constructed f :=) ;.7 fx,|ar, has all the proterties of the claim. O
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2 Variational analysis in a conditional
setting

In this chapter, we generalize the concepts of variational analysis on R? provided by
[RW09] to the L° (F)-module L° (F)%. To that end, we make use of the basics of con-
ditional theory as explained in Chapter 1. We give all the results within L°-theory. A

generalization to conditional theory can be derived in the same way.

First, we give the details of set convergence in L" (F) followed by its application to
hypographs. After that, we explain the relation of hypoconvergence and maximization.
Further, the concept of lopsided convergence is introduced in an L°-theory setting. Fi-
nally, we present the results for a KY FAN-inequality and its relation to the Brouwer
fixed point theorem in L° (F).

2.1 Conditional subsequences

Having introduced conditional sequences in Definition 1.12 we also consider conditional

subsequences. Therefore, we examine subsets of N (F). Let
N (F)Z :={NCN(F)|VNeN, IN' e N,Vae A;: N'|la> Nla}

be the conditional subset of IN (F) containing strictly increasing conditional sequences

and
N(F), ={NCN(F)|INeN(F), VN > N: N e N'}

be the conditional subset of N (F) containing all elements beyond some N € N (F)
and naturally, strictly increasing conditional sequences. Equivalent definitions are, that
N (F)* are all conditional countable subsets of N (F) and N (F)_ are all sets of the
type N (F) M ME where M is conditionally finite.
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2 Variational analysis in a conditional setting

Lemma 2.1. There is a natural duality given by the relations

N(}—>i:{NEN(-7:) | VA" € N(F)_, NTIN lives onQ},
N(f)oo:{NE]N(]:) | VN" € N(F)%, NN lives onQ}.

Proof. Let N'C N (F) be a conditional subset such that for all N € N (F)* holds that
N TN lives on Q. Assume for all N € N exists N’ € N (F), N' ¢ N with N’|a > Nla
for all @ € A. This yields a strictly increasing conditional sequence in N (F )fo which is
a conditional subset of . This contradicts that N'TT A lives on , thus V' € N (F)_.
Now, let N' C N (F) be a conditional subset such that for all N7 € N (F)_ holds that
N TN lives on Q. Let N := N(F). By assumption, there exist N € N 11N} on
1 with NV := {N | N > Nj_; +1}, k € N. By construction, Nj|a > Ny|a, hence
N eN(F)~. O

Definition 2.2 (Conditional subsequence). Let X be a conditional set. A conditional

subsequence of (X) jen(r) 18 (XJ) jepq where M € N (F)Z-

Remark 2.3. Let P be a property about a conditional set which holds for all n € N.
Then by stability P already holds for all N € N (F) since each N € N (F) is of the
form N = 3 - mnlan. We illustrate this with the following definition. Let (Cy),cn
be a sequence of conditional subsets in L° (). Then (Cy),cy is pairwise conditionally
disjoint if C,, M Cp, = L (F) |0 whenever m # n. Now define Cy := >, . Cm,, |an for
every N =3, ey mn|an € N(F). Then (Cn)yen(r) is a conditional sequence such that
Cn M Cyr = L (F) |0 whenever N1 M = L° (F) 0.

To illustrate, we give the connection between almost sure convergence in L% (Q, F,P)

and conditional convergence in L° (F) if the underlying Boolean algebra is a o-algebra.

Example 2.4. Consider the standard example of R-valued random variables on the
measurable space (2, F) = (R, B(R)) with P being the Lebesgue-measure. It is known
that the sequence (Xp), oy defined by X, := IL[O,%] converges P-almost surely to 0.
Further, the property that

for anye € LQFJF there existsng € Nsuch that X,, < efor alln > ng (2.1)

does not hold since for any ¢ € L9r+ with € < %, we observe that X,, = ﬂ[o,i} > %H[o’l] >
€ly, for all n € N. But, the slightly different condition that

for any e € LY, there exists Ny € N (F) such that Xy < efor all N > N (2.2)
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2 Variational analysis in a conditional setting

does hold, since with the definition Ny := Y 7, nﬂ(; 1] € N (F) we have that 0 <
n—1

Xy < Xno = 20 LineyXn = Y00, L1 1 11y = 0 for all N > Np, thus, the
property (2.2) holds.

1
n’n—1

Lemma 2.5. Let (X,), o be a sequence in L° (Q, F,P) and (XN)Nen(r) e the same
family regarded as a conditional sequence in L° (F). Then the following statements are

equivalent.

The sequence (Xyn),cn convergesP-almost surely to X. (2.3)
The conditional sequence (Xn)yen(r) converges to X

with respect to the conditional topology.

Proof. We first show that (2.4) implies (2.3). Let § > 0 for § € R be fixed. We show
that there exists ng € N such that P (w | | X, (w) — X (w)| > ) < ¢ for all n > ny. By
assumption, there exists Ny € N (F) such that || Xy — X|| < 01q for all N > Ny. Then,
for m € N, we define Ay := {m > Ny}. Since the conditional distance is a conditional
function and thus stable we first observe that, on Az, for all n > 7, || X, — X|[|14. <
6La; + Lac. Thus, P(w|[Xp (w) — X (w)| >6) < P (A7). By construction, it holds
that P (A%) — 0 for n — oo. Thus, there is ng € N such that P (A5, ) < 4, for which
the claim holds.

Now, we show that (2.3) implies (2.4). We show that there exists Ny € N (F) such that
Xy <eforall N> Ngy. Let e € LY (F)4,- Then, thereis e’ € Q (F), | such that &’ <e
since Q (F) C L° (F) is conditionally dense. We proof (2.4) for &’ Since ¢’ is in Q (F), ,
it can be written as ¢’ = "7~ 14, 0, for a partition (Ay),cn of Q and J;, € R. For each
k € N, by assumption, there exists nf € N such that 14, P (w | | X, (w) — X (w)| > &) <
Skl a, for all n > nk. Define Ny := ppay nkly, € N(F). Since X, = Y opey Xnla,
and X = Y 77, X1y,, we further observe that || Xy — X|| = > 2, 14, [ Xy — X| <
Y opey 14,0, =€ for all N > Nj. O

Frequently, we apply this Lemma 2.5 without further mentioning. For example, we write
limyen(r) XN in a conditional setting for lim,en Xy, the P-almost sure limit of the
sequence (Xp), . of random variables. By the indexing the version of the convergence

is made clear, by using conditional or classical index sets.
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2 Variational analysis in a conditional setting
2.2 Hypographs and semicontinuity

For optimization problems, it has been turned out that it is useful to consider epigraphs
and hypographs, and by closedness characterizations the conditional functions are semi-
continuous. Traditionally, semicontinuity rather may be formulated for an arbitrary
conditional topological space. In context with extended-valued conditional functions,
we restrict ourselves to L (F). Further, all relations are clear from L° (F), if not, a
conditional relation along with conditional directness, that is, a conditional set is closed
with respect to the supremum or infimum of 2 elements of the conditional set, should
be imposed. That is as for the construction of R by closing Q. Then, theorems for the
existence of an essential supremum and infimum with respect to the conditional relation
can be derived just as in [FS04].

For the following definition we recall that, by [DJKK16], the product space L (F) x
LY (F) is a conditional set.

Definition 2.6 (Epigraph and hypograph of an extended-valued conditional function).
Let f: L° (F) — L° (F) be a conditional function. Then, the epigraph epi f of f is

epif ={(X,Y)e L' (F) x L°(F) | f(X) <Y}
and the hypograph hypo f is
hypo f := {(X,Y) € L°(F) x L°(F) | f(X) > Y} .

Definition 2.7. Let f: L° (F) — L° (F) be a conditional function. The upper limit of
f at X is defined by

esslimsup f (X) :=essinf [ esssup f(X)
X=X 5>0 \XeB(X)

The conditional function f is upper semicontinuous if esslimsupy % f(X) < f (Y)

and it is lower semicontinuous if —f is upper semicontinuous.

Lemma 2.8 (Characterization of upper limits). Let f: L (F) — L% (F) be a conditional
function. It holds that

; — 0 b ; —
ess)l(linysupf (X) = max {Y € L°(F) | 3(Xg) jenir) = X Jéﬁg(lf)f (Xy) = Y} .
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Proof. Let (Xy) jen(r) — X be a conditional sequence with lim jen(r) f (Xs) =Y. We
show Y <V :=esslimsupy_,x f(X). Let § € LO(F),,. If X; € B’ (X), J € N(F),
then esssup {f (X) | X € B (X)} > limjen(r) f(Xs) =Y. Since § € L°(F),, has
been chosen arbitrarily, ¥ < Y. We show the existence of a maximizing conditional
sequence. For J € N (F), let Y := esssup{f (X) | X € B% (X)} for 6; € L°(F),,
with 6;—0;11 € L (F),, and lim jen(7) 07 = 0. By definition of Y, lim jen(7) Yy =Y.
By definition of the conditional sequence (? J) JEN(F)! there are X; € B%7 (Y) such that
Y; > f(Xy) 2 Y, =46, Then limjenr Xy = X and Y > limjenr) f(Xy) 2
lim jen(F) Y- lim jen(F) 07 = Y. O

Since we always refer to the sequential characterization we write esslimsup jen(r) f (X7)
for esslimsupy_,+ f (X) whenever lim jen(r) Xs = X, similarly, for the essential limes

inferior.

Since the epigraph of a conditional function is a conditional set, it holds that [ ], epi f; =
epi (esssup;c; fi) and | |;c;epi fi = epi(essinfics f;) for a family (f;),c; of conditional
functions f;: L°(F) — L°(F), i € I. Consequently, [],c; hypo f; = hypo (essinf;cs f;)
and | |;.; hypo f; = hypo (esssup;¢; f;). That directly implies that the essential infimum
of a family of upper semicontinuous conditional functions is an upper semicontinuous
conditional function since the conditional intersection of arbitrarily many hypographs is

conditionally closed by the definition of a conditional topology.

For equivalent characterizations of epigraphs and hypographs, we need the following

concepts of level sets.

Definition 2.9 (Level set). Let f: L°(F) — LY (F) be a conditional function. We
define the lower level set lev<y f:= {X € L(F) | f (X) <Y} and the upper level set
levsy fi={X € L(F) | f(X)>Y} forall Y € L°(F).

Theorem 2.10. Let f: L°(F) — L° (F) be a conditional function. Then, the following
s equivalent.

(i). f is upper semicontinuous.

(i3). hypo f is conditionally closed in L° (F) x L° (F).
(iii). The level sets levsy f are conditionally closed in L° (F).
Proof. We show that (i) implies (ii). Assume that (Xj,YJ) ;en(r) is a conditional
sequence in hypo f with limjenr) Xy = X and limjens) Yy = Y. We show that

Y <f (Y) In LY (F), any conditional sequence has a converging conditional subse-
quence, thus, there is some M € N (F)* with limjea f (Xs) = Y*. Then, by construc-
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tion, ¥ < Y*, and Y* < ess limsupy 5 f(X) by Lemma 2.8. Hence, Y <f (Y) by
assumption that f is upper semicontinuous.

We show that (ii) implies (iii). If hypo f is conditionally closed in L% (F) x L° (F) then
also hypo f M (L° (F),Y) © L°(F) x L°(F) is conditionally closed for all Y € L° (F)
which is the level set levsy f for Y € L (F). If Y € L (F)" then the level set levsy f =
[1jen(z)lev>y, [ is for some conditional sequence (Y) jen(z) With limjenr) ¥y =Y
and Yy <Y for all J € N (F), thus, conditionally closed, or if Y; > Y for all J € N (F)
then the level set levsy f =] JEN(F) lev>y, f, nevertheless, is conditionally closed.

We show that (iii) implies (i). Fix X € L% (F) and let Y := esslimsup % f (X). We
show that f (Y) > Y. By Lemma 2.8, there is is a conditional sequence (X ) Jen(F) With
lim jen(r) Xy = X and lim jenr) f(Xy) =Y. If thereis Y <Y (if Y > Y on A, we are
done on this A) then there is M € N (F)* such that f(X;) > Y for all J € M. That
is, X € lev>y f which is conditionally closed by assumption. Since limjcpm Xy = X it
holds that X € levsy f. Hence, f (Y) >Y forall Y <Y, thus, f (Y) >Y. O

For any conditional function f: L (F) — LY (F), we can defined cl (hypo f). This is a
hypograph of some upper semicontinuous conditional function, denoted by cl f for which
holds that f < clf. It is the lowest of all upper semicontinuous conditional functions

larger than f.

Definition 2.11. The domain of a conditional function f: LY (F) — L° (F) is defined by
dom f :={X € L°(F) | f(X) < oo}. The conditional function f is called proper if there
is some X € L (F) such that f(X) € LY (F) and f (X) < oo for all X € L (F). Tt is
level-bounded if the conditional sets levsq f := {X € L° (F) | f (X) > a} are bounded
for all a € L? (F).

Theorem 2.12. Let f: L°(F) — L°(F) be an upper semicontinuous, level-bounded
and proper conditional function. Then esssup f € L° (F) and argmin f lives on Q and

1s conditionally compact.

Proof. Define @ := esssup f > —oo since f is proper. For a < @, the level sets levs,
are nonempty, conditionally closed by Theorem 2.10 and bounded, thus conditionally
compact. Their conditional intersection lives on Q by [FKV09], or [DJKK16, Proposition
3.25], and is equal to argmax f which is nonempty, conditionally compact and nowhere

oo since f is proper. O
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2 Variational analysis in a conditional setting
2.3 Set convergence

The most general concept in variational analysis is the convergence of sets. Its applica-
tion to hypographs or epigraphs of functions is useful to find their optimal points. These
approximations of optimal points sometimes fail if the problem is considered pointwisely,
namely continuity is not preserved for the limit of a sequence of continuous functions,

however, semicontinuity has this property.

In this section we characterize set convergence. The main result is a condition for the

existence of a limit of a conditional sequence of sets in Theorem 2.20.

Definition 2.13 (limit set, inner limit set, outer limit set). Let (C) ;e () be a condi-
tional sequence of conditional subsets of L (F) where each C; lives on A for J € N (F).

Then, the outer limit is

limsupCy := {X e L°(F) | 3N eN(F)*,3X,€Cy, lim X, :X} (2.5)
JEN(F) JeN

which lives on
A, i=esssup{A € F|INCN(F)L,VJeN: AC A;} (2.6)
whereas the inner limit is

.. L 0 : _
‘ljlélnlql(r‘%ct] = {XGL (.F)’HNEJN(]:)OO, d1X;€Cy, }IEHJ%/XJ_X} (2.7)

which lives on
A :=esssup{A e F|INCN(F)_,VJeN: A;CA}. (2.8)
If outer limit and inner limit are equal on some A € F the limit exists

lim Cy:=limsupC; = liminf Cyon A.
JEN(F) JEN(F) JEN(F)

In general, it holds that A; C A,. The definition may be generelized to arbitrary index
families M T N (F)*. Then, the sets of conditional subsequences in 2.5 and 2.7 are
conditional subsets of M, additionally.

We observe that the outer and inner limit are in L° (F) and defined almost surely, thus,
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2 Variational analysis in a conditional setting

it may be convenient to write essential outer and inner limit. Clearly, since there is
no need to consider a pointwise outer and inner limit, we simply write limes superior
and inferior for conditional sets. When we consider random variables, we write essential
limes, explicitely.

For the next characterization, we will use the conditional distance of an element X €
LY (F) to a conditional subset C = L° (F). We define || X — C|| := essinfyec||X — Y.

Lemma 2.14 (Equivalent characterizations of outer and inner limit). Let (Cy) jen(r)

be a conditional sequence of subsets of L° (F). Then, on A,, given by (2.6),

limsupCy = {X € L°(F) |[VV e (X)) IN e N(F)%:, VJ e N:VNCs #0} (2.9
JEN(F)
={XeL'(F) |V e L’ (F), ., INeN(F):,VJeN: | X -Cy| <5}

(2.10)

++

={ X € L°(F) | essliminf|| X —Cs|| =0 (2.11)
JEN(F)

= [] al]e (2.12)

NEeN(F) JeN

[e'<]

and, on A;, given by (2.8),

liminf C; = {X € L°(F) | YV € 4(X) AN e N(F)_,VJ e N: VNCs A0} (2.13)
JEN(F)

={X el (F)|Ve L' (F),,,INeEN(F)_,VJEN: X -Cy| <5}
(2.14)

= {X € LO(F) | esslimsup|| X — Cy|| = 0} (2.15)
JEN(F)

= [] da|]c¢ (2.16)

NeN(F)#  JeN

Proof. We observe that, on A;, (2.13) is just a reformulation of convergence of (2.7) in
terms of conditional neighborhoods instead of conditional sequences, equivalently, (2.14)
by the use of the conditional distance. Moreover, (2.15) is a reformulation of conditional
subsequences, and (2.16) by means of the limes superior. The same holds for the outer
limit. O

In the sequel, we assume that A; = € since it is not important where the objects live.
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2 Variational analysis in a conditional setting

Proposition 2.15. For conditional sequences (Cr) jen(ry: (D) jenr) i LY (F), the
outer and inner limits are conditionally closed. Further, if c1Cy = c1Dy for all J € N (F)
then liminf jen(7) Cy = liminf jen(7) Dy and limsup jen(r) €y = limsup jen(r) Dy-

Proof. We apply the equivalent characterizations of outer and inner limit in (2.12) and
(2.16). 0

Example 2.16. Let (CJ) JEN(F) (c%) JEN(F) and (Cy) jen(r) be conditional sequences
in LY (F). It holds that limjen(r) €y = el jenr) €y i € T Cpyy and limjenr) € =
Mrenr) clCrif Cppy EC

If Ct © C, C C2 for all J € N(F) then lim jenr) ch=c= lim ye ) C2 implies
lim jen(r) C;=C.

Example 2.17. A conditional sequence (C;) jep ) in L° (F) with Cy = 14,D1414¢ Dy
for Ay :=esssup{A € F|1aJ =14 (2k+ 1) for somek € N} has the inner limit D; M

Dy and the outer limit D; U Ds, hence, does not necessariliy setconverge.

Example 2.18. In L°(F), a conditional sequence of balls (8% (XJ))JGN(]_-
verges to the conditionally closed ball ¢l B° (X) if for all ¢ € LY (F) 4 there exists some
J € N (F) such that || X; — X|| < e and ||0; — || < € for all J > J. The constant condi-
tional sequence C; = @ (F) setconverges to LY (F). Further, we recall from [DJKK16]
that a conditional subset M C L% (F) is conditionally dense if cl M = L% (F) and it is
conditionally countable if there is an bijective conditional function g: M — N (F). It

) setcon-

is conditionally seperable if it is conditionally dense and conditionally countable. Thus,
Q (F) c L°(F) is conditionally separable since it is conditionally dense in L° (F) and
Q (F) is conditionally countable.

In the next theorem, we describe set convergence in LY (F) in terms of a conditionally

separable conditional subset.

Theorem 2.19 (Hit-and-miss-criteria). Let C,C; be conditional subsets of LY (F) for all
J € N (F) with C being conditionally closed. Let D = L° (F) be conditionally separable.
Then, it holds that
(i). C C liminf ;enr) Cy if and only if for every conditionally open set O C LY (F)
with C M O liing on Q there exists N' € N (F)_ such that C; 1 O lives on Q for
all J e N.
(ii). It suffices in (i) to consider the collection of conditional balls B? (Y) with Y € D
and € Dy,.
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2 Variational analysis in a conditional setting

(it). limsup jen(r) Cs T C if and only if for every conditionally compact set B C LY (F)
with CT1 B = LO(F) |} there exists N € N (F)_ such that C; B = L°(F) |0 for
all J e N.

(iv). It suffices in (iii) to consider the collection of conditional closures of conditional
balls B? (Y) with Y € D and § € Dy 4.

oo

Proof. (i) and (ii). Let X € C and § € D;. We show that X € liminf ;e (7) Cy. Since
D C L° (F) is conditionally dense, there is X' € D with X’ € B3 (X). By assumption,
there exists N' € N (F)_ such that C; B> (X) lives on Q for all J € N. Thus,
X' —Cyll < Sand | X —Cy| < | X' —Cy| +[|[X =X < $+ 5 =6forall J e N
which by Lemma 2.14 yields that X € liminf jen(7)Cy. The other direction is clear by
definition.

(iii) and (iv). Let X € C-. We show that X € <limsupJ6]N(f) CJ)E. That implies
directly limsup jen(7) Cy T C. Since C is conditionally closed, there exists § € D4 such
that C M B¥(X) = LO(F)|0. We find X’ € B (X) N D. Then X € B (X') and CN
B (X') = L°(F) |0. By assumption, there exists N' € N (F)_ such that C; N B° (X') =
L% (F)|0 for all J € N. Since X € int B° (X'), it holds that {X} Mlimsup jen(r) Cr =
LY (F)|0. The other direction is clear by definition. O

Theorem 2.20 (Setconvergent conditional subsequences). Let D T L°(F) be condi-
tionally separable. A conditional sequence (Cj) jen(r) of subsets of LY (F) has an outer
limit that lives on A € F. Then there is some index set N' € N (F)* such that the
sequence (Cj) jcp s setconverging to a set C C L° (F) that lives on A € F.

Proof. We suppose that A = €. If not, we may consider the proof in LY (F) and all sets
living on A € F. Since there is X € LY (F) in the outer limit, there exists N € N (F)*
such that

lim X; =X € limsupCy.
JENO JEN(F)

Next, consider the conditionally countable collection of conditionally open balls B° (Y)
for Y € D and 6 € D44 in Theorem 2.19 (ii) writing it as a conditional sequence

with N

(BI ) [eN(F)" We construct a conditional sequence of index sets (N 1 ) [eN(F)
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2 Variational analysis in a conditional setting
NI if I' < I by defining

A:=esssup{A e F|{Je N |c;mnB liveson A} € N(F)*} (2.17)
NI .= lz{J e NI7t | Cs M B! lives OHZ} + 1ze {J eN'"tc,nB =10 (F) WJ}
(2.18)

for I > 1. We observe that, on A°, the conditional set {JeN"t|c,nB =L°(F)|0}
is in N (F)_, that is if the definition for A does not hold.

Let I’ < I. We show that N/ = N''. Since I, I’ € N (F), we write I — I' = Y oken Lak
where Ay = esssup{A € F|1a (I —I') = 14k} for all k € N. Restricting (2.18) on
each Ay, yields N' = N by definition.

Next, define the conditional set N/ = (WK)K@N(?) such that inf N € M and Ng :=

ess inf {W €(N) o IN>MVM e Ny, K' < K} By construction, N' € N (F)*.
For each K € N (F), we observe that

15 {J | CyBXlives on A} + 154 {J | Cy + BX = L°(F) [0} € N(F) (2.19)

with A :=esssup{A € F | {J|C; B liveson A} € N (F)* }.

Let C := limsup e Cy. Clearly, X € C. Suppose, for a ball BX where K € N (F), it
holds that C 1 BX lives on Q. By the definition of the outer limit, it cannot hold that
C;nBl = LO(F)|) for all J € N. Thus, by (2.19), C; M B! lives on § for all J € N and,
by Theorem 2.19(ii), it holds that C C liminf jepn Cy. O

2.4 Outer and inner semicontinuity

An application of the outer and inner limits in Section 2.3 is the definition of outer und
inner semicontinuity, where a conditional function has subsets of L% (F) as values. We

write (X)jen(r) — X for some converging conditional sequence with limit X. For a
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2 Variational analysis in a conditional setting
conditional function f: L (F) — L° (F), we define

limsup f (X) := |_| limsup f (X )

XX X, X JEN(F)

= {Y € LY(F) [ 3 (Xg)jenr) = X, 3D jenr) = ¥, Y € f(XJ)},

liminf f (X) := |_| liminf f (X)
X—=X X, X% JEN(F)

—{Y € L%(F) |¥ (X0 jenr) = KN €N (P,
(Y7)jen =Y, Yy € f(X) } :

Definition 2.21. A conditional function f: L% (F) — LY (F) is

outer semicontinuous if limsup f (X) C f (X) ,
X=X
inner semicontinuous if f (X) C liminf f (X).
X—X
It is called continuous if it is outer and inner semicontinuous.

We note that inner semicontinuity of f at X € dom f means that X € intdom f.

2.5 Hypoconvergence

In this section, we examine the consequences of setconvergence applied to hypographs
of conditional functions. We see that the set limit of hypographs itself is a hypograph
and give characterizations of hypoconvergence by essential limes inferior and superior of

their respective conditional functions.

First, we consider a conditional sequence (Cy) Jen(F) of hypographs in LY (F) and show
that their outer and inner limit set are again hypographs. To that end, let (X,Y) €
limsup e () Cy- We show that (X, Y”) € limsup je () Cy for all Y’ < Y. By definition,
there are N € N (F)%, (X;) ;cp and (V) jep such that limjen X = X, limjepn Yy =
Y and (X;,Y;) € C;forall J € N. Define Y := Y;AY". By the definition of hypograph,
(X7,Y)) € Cj. Now, esslimsupjep (Y)) = esslimsupjepn (Yy) AY = limjcp (Yr) A
Y' =Y AY’ and essliminf ;¢\ (Y)) = essliminf ;o p (Y7) AY! = limjep (Y7)AY =Y A
Y’ Thus, lim;cp (Y7) =Y AY' =Y, or, (X,Y’) € limsup jen () Cs. The same holds
for the inner limit, where N is chosen in N (F)_. By Proposition 2.15, outer and inner

limit of (C) jen () are conditionally closed. Finally, ({X} x L°(F)) Nlim sup jen () Cr
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2 Variational analysis in a conditional setting

and ({X} x LY (F)) Nliminf Jen(r) Cs are conditional intervals that are left-unbounded
right-conditionally-closed, thus, hypographs.

Thus, hypoconvergence and semicontinuity is closed under the limits of conditional se-
quences, a fact that does not hold for continuity, see the example given in [RW09].

Therefore, many optimization problems are given only for semicontinuity.

Definition 2.22 (Lower and upper hypolimit). Let (hypo fJ)JeN(f) be a conditional
sequence of hypographs of conditional functions f;: LY — L9 (F), J € N(F). The
upper hypolimit h-limsup jen ) £ is the conditional function f: L° (F) — L° (F) with
hypograph which is the outer limit of the conditional sequence (hypo f) JEN(F) OF

hypo | h-limsup f; | := limsup (hypo f).
JEN(F) JEN(F)

The lower hypolimit h-liminf ;e ) f; is the conditional function f: LO (F) — L° (F)
with hypograph which is the inner limit of the conditional sequence (hypo f) JEN(F)» OF

hypo [ h-liminf f; | := liminf (hypo f;).
JEN(F) JEN(F)

If lower and upper hypolimit are equal the hypolimit exists and is

h-lim f; := h-limsup f; = h-liminf f;.
JEN(F) JEN(F) JEN(F)

Indeed, the upper hypolimit conditional function f: LY (F) — L% (F) is a conditional

function since

f <Z ]lAka> = h-limsup f; <Z ]lAkX,;]>

JEN(F)

keN keN
= Z ]lAk h—limsup fJ (X];]) - Z ]lAkf (Xk)
kEN JEN(F) kEN

for all partitions (Ay),cn of Q in F and X, Xj/ € L (F) for all J € N(F) and k € N.
The same holds for the lower hypolimit function.

We remark here, in advantage to the setting in [RW09], that the conditional definition of
setconvergence and conditional functions that the definitions yield directly A € F where
the objects may live. So, there is no need to define a pointwise hypolimit by upper and

lower hypolimit values as done there. In the sequel we assume that all sets live on €.
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2 Variational analysis in a conditional setting

Lemma 2.23 (Characterizations of hypolimits). Let (hypo fJ)JeN(]_-) be a conditional
sequence of hypographs of conditional functions f;: L°(F) — L°(F), J € N(F) and
X € LO(F). Then

h-limsup f; (X) = max< Y € L° (F) | F(Xg) jen(r) — X1 esslimsup f; (Xy) =Y ¢,
JEN(F) JEN(F)

(2.20)

h-liminf f; (X) = max{Y € L° (F) | 3(XJ) jen(r) — X essliminf f; (X;) =Y ».
JEN(F) JEN(F)

(2.21)

Proof. By Definition 2.22, Y < h-limsupjen(r) f7 (X) if and only if for some N €
N (F)Z there are conditional sequences (Xj) e — X, (Vi) e — Y with Y; <
f7(Xy) for all J € M. The conditional set

M = {Y eI’ | 3(X) jen(r) — X esslimsup f (X)) :Y}

JEN(F)
is upwards directed since for Y, Y’ € M there are (X7)jen(r) — X and (XZI)JGN(F) —- X
such that esslimsup jen(r) f7 (Xs) =Y and esslimsup jen(r) f7 (X)) = Y’ for which
hold that (]l{yzy/}XJ + 1{Y<Y/}X/)J€1N(]:) — X with

esslimsup fs (]]_{YZY/}XJ + Il{y<y/}X’) =Y AY/,
JEN(F)
thus, Y AY’ € M. Then, there exists a nondecreasing conditional sequence (Y ) KeN(F)
such that limgen(r) Y = esssup M. Let ¢ € LO(F),,. For each k € N there is
Y € LY (F) such that ||Y —esssup M|| < 755 and X}, € L (F) such that || X — X3 <
sorr and [|fx (Xx) — Y|l < 557. Now, for the corresponding conditional sequences
(YK)K@N(}‘) and (?K)KE]N(]:)’ it holds that limgen(r) Xg = X and |lesssup M —
Jr (X)) < llesssup M=Y g || +]Y k= fx (X&) || < 5557+ 5577~ Hence, the maximum
in (2.20) is justified, also for L° (F). The same holds for N’ € N (F)_ and the lower
hypolimit. O

Lemma 2.24 (Characterization of hypoconvergence). Let (fs) jen(r) be a conditional
sequence of conditional functions fy: L°(F) — LY (F), J € N(F). Let f: L°(F) —
LY (F) be a conditional function. Then, h-lim yew(r) f7 = f if and only if for all X €
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2 Variational analysis in a conditional setting

LY (F) it holds that

H(XJ)JeN(]_—) — X: essliminf f; (X;) > f(X),

JEN(F)
and
V(X7)jener) — X+ esslimsup f; (Xy) < f(X).
JEN(F)
Proof. That is a consequence of Lemma 2.23. O

Proposition 2.25 (Properties of hypolimits). Let (f) jen(r) be a conditional sequence
of conditional functions fj: L° (F) — L° (F), J € N(F). Then the following properties
hold.

(i). The conditional functions h-imsup jen(r) [, b-liminf jen(r) f; are upper semi-
continuous, and h-lim jenF) f1, too, if it exists.

(it). Let (9.1) jen(r) be a conditional sequence of conditional functions g;: LY (F) —
LO(F), J € N(F). Ifclf; = clgy for all J € N(F) then h-liminf jen(r) f7 =
h-lim inf jew(7) 97 and h-limsup jen(F) f; = b-limsup jen(r) 9,-

(i4i). If f; > fp for J < J" then h-limjen(r) f7 = cl (essian@N(]:) fr)-

(w). If f; < fy for J < J' then h-lim jen(z) f; = esssup jen(r) (clfy).

(). If f} < f; < f3 for all J € N(F), it holds that if h-lim yen ) 3 =1r=

h-lim ;e 7 f% then h-limyener) f7 = f-

Proof. The inner and outer limit of conditional subsets is conditionally closed by Propo-
sition 2.15, this is equivalent to lower semicontinuity of the conditional function by
Theorem 2.10. This implies (i). Directly, Proposition 2.15 yields (ii), and (iii), (iv) and

(v) are consequences of Example 2.16. O

Theorem 2.26 (Hypoconvergent conditional subsequences). Let (f) jen(r) be a condi-
tional sequence of conditional functions fy: L° (F) — LY (F), J € N(F). Let the outer
limit of (hypo f7) jen(F) live on A € F. Then, there is some N € N(F)% such that
(f1) jenr is hypoconverging to a conditional function f: LY (F) = LY (F) on Ac F.

Proof. The upper and lower limit of conditional sequences of hypographs are hypographs.
Thus, the claim follows by Theorem 2.20. 0
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2 Variational analysis in a conditional setting
2.6 Hypoconvergence and maximization

The main benefit of the theory of hypoconvergence is that upper semicontinuity of the
conditional functions is maintained under to closure with respect to limits. In this
section, we give the details connected with the maximization problem and focus on

conditionally compact domains.

Theorem 2.27 (Characterization of hypoconvergence via maximization). Let
(f7) jen(r) be a conditional sequence of conditional functions f;: LY (F) — LY(F),
J € N(F). Let f: L°(F) — L°(F) be an upper semicontinuous conditional function.
Then it holds that

(i). h-limsup jew(r) f7 < f if and only if esslimsup jen(r) (esssupe fr) < esssupe f
for all conditionally compact conditional subsets C C L° (F), and

(i4). h-liminf ;en(r) f7 > f if and only if essliminf jen(r) (esssupp f7) > esssupg f
for all conditionally open conditional subsets O C L° (F).

Proof. The proof relies on the hit-and-miss-criteria in Theorem 2.19. We may use cylin-
ders C (X,Y,8) :==clB° (X)x[Y —4,Y + 6] for X,V € L°(F) and 6 € L° (F) .,
of balls to fulfill the hit-and-miss-creteria. Then, B° (X,Y) C C (X,Y,§) C v2B° (X,Y).
We assume that hypo f lives on €.

instead

In (i), by definition, h-limsupjen(r) f; < f if and only if limsup jen(r hypo f; T
hypo f. Assuming this, we show that limsup jen(r) (esssupe fr) < esssupe f for con-
ditionally compact C = L% (F). Let C C LY (F) be conditionally compact and Y’ such
that esssupe f < Y’. By construction, (C,Y”) Mhypo f = L° (F) |0 in LY (F) x L° (F).
By Thereom 2.19 (iii), there is N' € N (F)_ such that hypo f; 1 (C,Y’) = L° (F)|0 for
all J € N. Then, esssupe f < Y'. Thus, esslimsup jen(r) (esssupe f7) < Y for all
Y’ > esssupe f, hence, finally, esslimsup jen(r) (esssupe f.7) < esssupe f.

For the reverse implication in (i), let esslimsup jcn(r) (esssupe f7) < esssupe f for
conditionally compact C = LY (F). We show that limsup Jen(F) hypo f; T hypo f.
Suppose a cylinder C (X, Y, §) such that C (X,Y,d)Mhypo f = LY (F) |0. By assumption,
the conditional function f is upper semicontinuous, hence, hypo f is conditionally closed.

This implies esssupgs(xy [ < Y — ¢ by the definition of the cylinder. By assumption,
essliminf ;o7 (ess supgs(x) Jf J) <Y — ¢ for the conditionally compact ball cl B° (X).
That means, there exists N € N (F)_, such that esssupgsx) f7 <Y —d for all J € N.
Then, C (X,Y,6) Mhypo f; = L°(F) |0 for all J € N. Hence, limsup ;e r) hypo f7 C
hypo f by Theorem 2.19 (iv).
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In (i), by definition, h-liminf jex(F) f; > f if and only if hypo f C liminf ;o) hypo f;.
Assuming this, we show that essliminf ;o) (ess sup fJ) > esssupy, f for condition-
ally open O C L°(F). Let O = L°(F) be conditionally open and Y’ such that
esssupp f > Y'. Now, Ox{Y | Y < Y’} is conditionally open and (O x {Y | Y <Y’}
hypo f lives on Q. By Theorem 2.19 (i), there is N' € N (F)_ such that the conditional
set hypo f; MO x {Y |Y <Y’} lives on Q for all J € N. Then, esssup, f; > Y.
Thus, essliminf jen(F) (ess supe f J) > Y’ for all Y’ > esssup,, f, hence, we have that
ess liminf jen(F) (ess sup fJ) > esssupy f.

For the reverse implication in (ii), let essliminf jen(z) (ess supgy f J) > esssupy f for
conditionally open O = LY (F). We show that hypo f C lim inf yen(F) hypo f7. Suppose
a conditionally open cylinder int C (X, Y, d) such that int C (X, Y, ) Mhypo f lives on .
This yields esssupgs(x) f > Y — 9. By assumption, essliminf jen(z) (ess Supgs (x) fj) >
Y — ¢ for the conditionally open ball B° (X). That means, there exists ' € N (F)_
such that esssupgs(x) f7 > Y — 0 for all J € N. Then, C(X,Y,d) Mhypo f; lives on Q
for all J € V. Hence, hypo f C liminf ;e () hypo f; by Theorem 2.19 (ii). O

Definition 2.28 (e-optimality). Let f: LY (F) — LY (F) be a conditional function. We
define

e-argmin f := {X € L (F) | f(X) < essinf f + ¢},
e-argmax f := {X € L°(F) | f(X) > esssup f —¢},

the e-minimizer and e-maximizer of f for all ¢ € L? (F) o

Proposition 2.29 (Outer limit of maxima is maximum). Let (f) jenr) be a conditio-
nal sequence of conditional functions fy: LY (F) — L°(F), J € N(F). Let f: LY (F) —
LY (F) be an upper semicontinuous conditional function. If h-lim inf jew(F) f7 > [ then
essliminf ;e 7 (ess sup fJ) > esssup f. Furthermore, if (E])JE]N(]:) is a conditional

sequence in LY (F) 4y with lim jen(r) €7 = 0, then

lim sup (ej-argmax f;) C argmax f
JEN(F)

if, for N € N (F)% and every conditional sequence (X j) ;s in LO (F) withlimjen Xy =
X and X j € ej-argmax f it holds that limjen f7 (X ) = f(X).

Proof. By Theorem 2.27 (i), essliminf jon(r) (esssup f;) > esssup f since LO(F) is

conditionally open. Now, assume a conditional sequence (e) JeN(F) 1D LY (F) 44 with
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lim jen(7) €7 = 0 and for N € N (F)¥ and every conditional sequence (X ) jr in L (F)
with limjen Xy = X and X; € gy-argmax f; it holds that limjen f7(Xy) = f(X).
Then,

f(X) = lim f(Xy) 2 lim (esssup f7 —es) > ess Elﬁqrr(l;?f (esssup f;) > esssup f.

Hence, X maximizes f. O

Proposition 2.30. Let f: L°(F) — L°(F) be a conditional function. Let (f7) sen(m)
be a conditional sequence of conditional functions f;: X — LY(F), J € N(F). Let
h-lim jen () f7 = f and esssup f € LY (F).
(i). lim sen(F) (esssup fy) = esssup f if and only if for every e € LY (F),, there is
a conditionally compact C T L°(F) and N € N (F)_ such that esssupe f; >
esssup fj —e for all J € N.

(i). limsup e () (e-argmax f;) C e-argmax f for all ¢ € LY (F), and if (1) jen(m)
is a conditional sequence in L (F), . with limjen(r) ey =0 then

lim sup (ej-argmax f) C argmax f.

JEN(F)
Proof. To show (i), let ¢ € LY(F),,, C C L°(F) conditionally compact and N €
N (F)_, such that esssupe f; > esssup fy —e for all J € N. Then, by Theorem 2.27 (i),
it holds that

esslimsup (esssup f; — €) < esslim sup (ess sup f J) < esssup f < esssup f.
JeN JeN C C

Since e € LY (F),, has been chosen arbitrarily, we have esslimsup jcp (esssup f7) <

esssup f. Further, it holds that essliminf ;e (7 (ess sup f J) > esssup f by assumption

that h-lim ;e () f; = f and Proposition 2.29, hence, lim jen(r) (esssup fy) = esssup f.

To continue with (i), let lim jen(r) (esssup f7) = esssup f. Further, let ¢ € L (F) .
Fix X € LY (F) such that f(X) > esssup f — ¢. Since h-lim jen(F) f7 = f, by Lemma
2.23, there exists a conditional sequence (X) JEN(F) that converges to X such that
essliminf ;e F) f7 (Xs) > f (X). By the convergence, there is a conditionally compact
C C L° (F) containing all X, J € N (F). Then, it holds that esssupy f; > fs (X ) for
all J € N(F). By essliminf jen(r) f; (X;) > f(X), there is N' € N (F)_ such that
f7(Xy) > f(X) for all J € N. Hence, for all J € N, esssupe f; > esssup f — e.

Next, we show (ii). Let e € L (F), and X; € e-argmax f;. If X € L°(F) is a cluster
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point of the conditional sequence (X;) jen (7). that is, there is N € N (F )% such that
limjen X7 = X, then, by h-lim jenr f7 = f and Theorem 2.27 (i), it holds that f (Y) >
esslimsup jepr f7 (X ). Directly, essliminfjeps f; (XJ) < esslimsupjcp f (XJ). By
the assumption that X; € e-argmax f;, it further holds that essliminf ;.\, f; (X J) >
essliminf ;5 (ess sup f; — 6). Furthermore, by Proposition 2.30 (i), it also holds that
essliminf ;. (ess sup f; — 5) > esssup f —e. Thus, f (Y) > esssupf —e, X €
e-argmin f and limsup jen(r) (5—argmax fJ) C e-argmax f. Since g1 < g9 for 1,69 €
LY (F) o implies e1-argmax f; C ez-argmax f; for all J € N (F) it holds for a conditional
sequence (£7) jen(r) in LO (F) . with lim jen(z) e = 0 that

lim sup (5J—argmax fJ) C |_| gr-argmax f = argmax f
JEN(F) JEN(F)

which yields the claim. O

Corollary 2.31. Let f: L°(F) — L°(F) be a conditional function. Let (f1) en(F)
be a conditional sequence of conditional functions f;: LY (F) — L°(F), J € N(F).
Let h-limjen(r) f7 = f and esssup f € LY (F). If there is C © L°(F) condition-
ally compact and N € N (F) such that esssupe f; = esssup f; for all J > N then

lim ;e () (esssup fr) = esssup f.

Proof. That is Proposition 2.30 (ii). O

2.7 Lopsided convergence

For the characterization of saddle points, we introduce the concept of lopsided conver-
gence. The optimal points here are maxinf- or minsup-points. We characterize lopsided
convergence by hypoconvergence in one variable and the values of the optimal points.
A bivariate conditional function F: LY (F) x L°(F) — L°(F) maps each (X,Y) €
LY (F) x L°(F) to an element in L°(F) and is a conditional function, that is, if
F(Yierla (X3,Y)) = Yic; 14, F (X, ;) for every partition (4;);c; of Q in F and
all families (X;),.; and (Y;),c; in LY (F).

Definition 2.32 (Max/essinf-, min/esssup-points). Let F': L° (F) x LY (F) — L°(F)
be a conditional function. If X € argmax ¢ ro(r) (ess infycpom F (X, Y)) we call X €
LY (F) a max/inf-point. Furthermore, we call X € L°(F) a min/sup-point if X €

argmin y ¢ ro(r) (ess supy ero(r) £ (X, Y)> :
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Definition 2.33 (Lopsided convergence). A conditional sequence (F) JEN(F) of bivari-
ate conditional functions Fy: L° (F) x L° (F) — L° (F), J € N (F), converges lopsided
to an LY (F)-valued bivariate conditional function F': L (F) x L% (F) — LY (F) if for
all (X,Y) € L°(F) x L° (F) holds that

V(X7 jenr =X I jenr = Y esiliﬂzglp Fy(X,,Yy) S F(X)Y), (222
eN

(X)) jenr) = X V(Y0 jenr) = Y essliminf Fy (X, Y)) > F(X,Y).  (2.23)
JEN(F)

Theorem 2.34. Let C T L°(F) be conditionally compact. A conditional sequence
(F1) jen(r) of bivariate conditional functions Fy: LY (F) xC — L°(F), J € N(F),
converges lopsided to a bivariate conditional function F': L° (F) x C — L° (F) such that
essinfyec F(X,Y) < oo for all X € L° (F). Then, h-lim jen() (essinfyec Fy (Y)) =
essinfyce F (+,Y).

Proof. We define g (X) := essinfyec F7 (X,Y) and g (X) := essinfycc F (X,Y). As
given in Lemma 2.24, we show ess limsup jen(r) 95 (X,) <g(X)if lim jenm) Xy = X.
We define Ay := esssup {4 € F | 1ag (X) = —oo}. Thus, for T4¢ g (X) € L°(F), € €
L°(F),, and Y. € e-argmax F'(X,-), by assumption of lopsided convergence (2.22),
there exists a conditional sequence (Y}) JEN(F) that converges to Y. with the property
finally 1ac esslimsup jen(r) Fy (X7, X;) < Lag F(X,Yz). Then

Lag, esslimsup g (Xy) < Lag esslimsup Fy (X7, Yy) < 1ag F (X, Y:) < Lag (9(X) +¢)
JEN(F) JEN(F)

hence, since ¢ has been chosen arbitrarily, it holds that 1 4¢ esslimsup jen(r) 9, (X J) <
145, g (X). Now, on Ay, for any N € N(F) there is Yy such that 14, F (X,Yy) <
—14,N. Then, by the same assumption on lopsided convergence (2.22), there ex-
ists a conditional sequence (Y;) jen(z) — Y with 14, esslimsup jen(r) Fy (X,,Y,) <
14, F (X,Yy). Then

Lay esslimsup g (Xy) < 1ay esslimsup Fy (X;,Yy) <14, F (X,Yy) < —1a N,
JEN(F) JEN(F)
which holds for any N € N (F), thus, 14, esslimsup jen(r) g (X,) =—1a,00.

To prove (2.23), we show that there exists a conditional sequence (Xy) ez — X
such that liminf ;en(r) 97 (X7) > g(X). On Ay, there is nothing to show. Thus, we
assume ¢ (X) € LY (F). By the assumption of lopsided convergence (2.23), there ex-
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ists a conditional sequence (X ) Jen(F) — X such that for all conditional sequences
(Y7) jew(r — Y holds that essliminf jen(r) Fy (X, Yy) = F(X,Y) implying that
essliminf jen(r) Fy (X, -) > F' (X, ). Again, esslimsup jen(r) £y (X,,X,) <F(X,)Y)
by lopsided convergence (2.22). Thus, the conditional sequence (Fy (X,")) jen(r) of
conditional functions F; (Xy,-) : L% (F) — L°(F), J € N (F) hypoconverges to F (X, )
by Lemma 2.24. By Proposition 2.30 it holds that lim jen(r)essinfyec Fy (X, Y) =
essinfyec F (X,Y), and since C = L° (F) is conditionally compact, we finally conclude
that essliminf ;e r) 97 (X7) > g (X). Hence, the theorem holds. O

Theorem 2.35. Let B © L°(F) and C © L°(F) be conditionally compact. A con-
ditional sequence of bivariate conditional functions Fy: B x C — LY (F), J € N (F),
converges lopsided to a bivariate conditional function F: B x C — L°(F) such that
essinfycc F(X,Y) < oo for all X € B. If for all J € N(F), X is a max/essinf-point
of Fy and there is N' € N (F)% such that limjen X7 = X then X is a maz/essinf-point

of F. Moreover, there is convergence of the values of the maz/essinf-points

}1611]\1/ <es_),§€1ngJ (XJ,Y)) = e@selng (X,Y) )

Proof. Defining g; (X) := essinfycpoz) Fy (X,Y) and g (X) := essinfycpor) F' (X, Y),
we observe that h-lim ;e () g7 = g by Theorem 2.34. Max /essinf-points of F; and F
are maximizers of gy and g. It holds that limjcar Xy = X, X; € argmax gy, thus, by
Proposition 2.30, limjepnr g7 (Xy) =g (Y) That shows the claim. O

2.8 Convexity

Definition 2.36 (Conditionally convex sets, adapted from [DJKK16]). Let C = L° (F)

be a conditional set. The conditional convex hull of C is
conv (C) :={AX+(1-NX|X,XeC, Ae LY (F), 0<A<1}.

If C = conv (C) then C is called conditionally convex.

Definition 2.37 (Conditional convex conditional functions, adapted from [CKV15]).
Let C © L°(F) be a conditionally convex conditional subset. A conditional function
f:C — LY (F) is conditionally convex if

FOX+1-NX) <A (X)+(1-N)f(X) (2.24)
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for A € L° (F) with 0 < A < 1. The conditional function f: C — LY (F) is conditionally

strict convex if
FOX+(1=XNX) <A (X)+(1-N)f(X) (2.25)

for A\ € L (F) with 0 < A < 1. The conditional function is conditionally concave if — f

is conditionally convex.

In [FKV09], it is shown that any conditionally convex function f: C — L°(F) is a

conditional function.

In the definition of conditional strict convexity we only consider strict inequality for
A € (0,1) since a stable combination of X and X leads to equality for a conditional

function f, thus, a strict inequality is never fullfilled.

Proposition 2.38. Let C = L°(F) be a conditionally convex conditional subset. A
conditional function f: C — L° (F) is conditionally concave if and only if its hypograph
hypo f is conditionally convex in L° (F) x LY (F).

Proof. Clearly, hypo f is conditionally convex if and only if (X,Y), (X,Y) € hypo fNnC
and A € [0,1] implies (X*,Y?) := A(X,Y) + (1 —-A)(X,Y) € hypo f 1 C. That is
f(X)>Y and f (Y) > Y implies f (X )‘) > Y which is the definition of conditional
concavity of f on C. O

Theorem 2.39. Let f: LY (F) — L°(F) be a conditionally concave conditional func-
tion. Then, the set argmax f is conditionally convex. Additionally, if f is conditionally
strict concave and there exists X € LY (F) such that f(X) < oo, the set argmax f

consists of at maximum one point.

Proof. If esssup f > —oo we consider X,X € L°(F) such that f(X) = f(X) =
esssup f. With X € [0,1], we define X* := AX 4 (1 — \) X and by conditional concavity,
it holds that f (X)‘) > Xesssup f + (1 — M) esssup f = esssup f. Thus, X* € argmax f

and argmax f is conditionally convex.

If f is conditionally strict concave assume that X € argmax f. Then, for any X € LY (F),
f(XY) >Af(X)+(1 =) f(X) > f(X). Thus, X is not a maximum, hence, argmax f

is at maximum a singleton. O

Proposition 2.40. Let (CJ)JeN(f) be a conditional sequence of conditionally convex
sets in L0 (F). The inner limit set lim inf jen(F) Cy is conditionally convez, and, too,

the limit set if it exists.
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Proof. Let X, X € lim inf yew(r) Cs. Then, there exists N € N (F)_ with limjen X =
X and limjey Xy = X. For A € [0,1], we define X* := AX + (1 - \) X and X} :=
AXj+(1—=X) X for J € N. Then, limjep X7 = X*, hence, X* € liminf jen(z) Cy. O

Theorem 2.41. Let (f])JeN(]_-) be a conditional sequence conditionally convex condi-
tional functions fy: L° (F) — LY (F), J € N(F). Then, the function h-liminf jen(7) f

is conditionally concave, and, too, h-limjen () fr if it exists.

Proof. That is the definition 2.22 of the lower hypo limit and Proposition 2.40 for the

inner limit of a conditional sequence of conditional sets. O

2.9 Equilibrium

In [AE06], an approach to deriving a K'Y FAN-inequality is presented. Here, we extend
it to conditional theory. We examine conditions on bivariate condtional functions which
yield to max/essinf-points and approximate max/essinf-points by continuous conditional

functions.

Lemma 2.42. Let F': L°(F) x L° (F) — L° (F) be a conditional function. Then,

essinf esssup F'(X,Y) > esssup essinf F (X,Y).
YeLO(F) XeLO(F) XeLO(F)YeLO(F)

Proof. Let D C LY (F) be a conditionally finite conditional subset of L° (F). Let S :=
{Dc L°(F)| Dis conditionally finite}. Then, by definition,

essinf esssup F'(X,Y) = essinf esssup essinf F' (X,Y)
YeLO(F) XeLO(F) Y'eLO(F) XeLO(F)Ye{Y'}

> essinf esssup essinf F' (X,Y).
DeS XeLO(F) YeD

By essinfycp F'(X,Y) > essinfy o) F'(X,Y) for conditionally finite D C LY (F), it
holds that

esssup essinf F'(X,Y) > esssup essinf F (X,Y)
XeLO(F) YeD XeLO(F)YeLO(F)

and thus,

essinf esssup essinf F' (X,Y) > esssup essinf F'(X,Y).
DeS Xel9(F) YeD XeLO9(F)YeLo(F)
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Hence, essinfy ¢ oz esssupyeror) I (X,Y) > esssupyepocr) essinfycpor) F (X, Y).
g

Definition 2.43 (Conditionally inf-compact). Let f: L° (F) — L° (F) be a conditional
function. It is conditionally inf-compact if the sets cl{X € L°(F) | f(X) > a} are
conditionally compact for all a € LO (F).

That is the usual setting, for example as in Theorem 2.12.

Theorem 2.44. Let F': L°(F) x L (F) — L° (F) be a bivariate conditional function.

Assume that

(i). 3Yy € L° (F) such that X — F (X,Yy) is conditionally inf-compact,
(ii). VY € LY (F) the mapping X — F (X,Y) is upper semicontinuous.
Then, again with S := {D C L°(F) | D is conditionally ﬁnite}, it holds that

essinf esssup essinf F' (X,Y) = esssup essinf F (X,Y) (2.26)
DeS XeLO(F) YeD X€eLO(F)YEeLO(F)

and there ezists X' € L° (F) living on Q, such that

essinf F (X',Y) = essinf esssup essinf F (X,Y). (2.27)
YeLO(F) DeS XeLO(F) YeD

Proof. We introduce level sets depending on Y € L° (F). Thus, we define

Cy =S X € L°(F) | F(X,Y) > essinf esssup essinf F' (X,Y”) 5.
DeS XeLO(F) Y'eD

We first show a conditional finite intersection property. Let D C L°(F) be condi-
tionally finite with Yy € D living on Q. We will show that []y.pCy lives on Q. To
see that, consider the conditional function gp: LY (F) — L°(F) defined by gp (X) :=
minyep F (X,Y). The minimum is attained since D is conditionally finite. By assump-
tion (ii) for the attained minimum, gp is upper semicontinuous. By Theorem 2.10, the
level sets levs, gp for a € LY (F) are conditionally closed. Since cllevs, F (X,Y)) C
lev>q gp by definition of g and by assumption (i), the set levs, gp is conditionally
compact. For o < esssupgp that both live on €2, the level sets lev>, gp live on
Q, and if &/ < « then levs, gp T levsy gp. The conditional intersection of condi-
tionally compact nested sets is nonempty and lives on , cf. [DJKK16, Proposition
3.25]. Thus, |_|oz§esssup gp 16V>a gD = levess sup,, gD = Argmaxgp lives on Q. For any
X € argmax gp, it holds that X € Cy, hence, [ ]y-cp Cy lives on Q.

67



2 Variational analysis in a conditional setting

Next, we show that [ |y LO(F) Cy lives on . For the proof, we follow an approach ap-
plied in [DJKK16]. Assume the contrary, [ycpoz) Cy = LY(F)|0 on A € F. Then,
we observe that 14| |y LO(F) (Cy MCy,) = 14Cy,. Since Cy, is conditionally compact
from the first part of the proof, there exists a conditionally finite set D’ such that
1allyep (Cy MCyy) = 14Cy,, and further, 14 HYe(D’u{Yo}) Cy = L°(F)|0 in contra-
diction to the conditionally finite intersection property. For any X' € [y LO(F) Cy, it
further holds that

essinf F (X',Y) > essinf esssup essinf F (X,Y).

YeLO(F) DeS XeL9(F) YeD
by definition of Cy. Finally, we observe that esssupxcro(zessinfycpor) F(X,Y) >
essinfycpom F (X', Y) > esssupxepo(r) essinfycpoz) F (X,Y) by Lemma 2.42. That

shows the claim. O

Definition 2.45. We define the set ¢ (L° (F), L (F)) to the set of continuous condi-
tional functions f: LY (F) — LY (F). The set f (L° (F), L% (F)) is the set of conditional
functions f: L (F) — L° (F).

Lemma 2.46. Let F: LY (F) x LY(F) — L°(F) be a bivariate conditional function.
Then,

essinf esssup F (X, g (X)) = esssup essinf F (X,Y).
gEf(LO(F),LO(F)) X€LO(F) XeLO(F)YELO(F)

Proof. For all e € L°(F),, and X' € LY(F) there exists a conditional function
g: L°(F) — L° (F) such that
esssup essinf F(X,Y) > esssup F(X’,Y) > F(X’,g(X’)) —¢
XeLO(F)YeLO(F) YeLO(F)
> essinf esssup F (X', g (X)) —e.

gEF(LO(F),LO(F)) X'€LO(F)

Furthermore, it also holds that essinf e f(zo(r) Lo(F)) esssupxrepor) £ (X', g (X)) >
esssup xeo(r essinfy o) F(X,Y) by Lemma 2.42. Since ¢ € L% (F),, has been

chosen arbitrarily, the claim is proven. O

Theorem 2.47. Let F': L°(F) x L (F) — L° (F) be a bivariate conditional function.

Assume that

(i). 3Yy € L° (F) such that X — F (X,Yy) is conditionally inf-compact,
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(ii). VY € LY (F): X — F (X,Y) is upper semicontinuous,
(iii). VX € LO(F): Y — F(X,Y) is conditionally conver.
Then,

essinf esssup F (X, h (X)) = esssup essinf F(X,Y).
hec(LO(F),LO(F))) Xe€LO(F) XeLO(F) YELO(F)

Proof. We begin with the observation that

essinf esssup F (X,Y) > essinf esssup F (X, h (X))
YELO(F) XeLO(F) h€c(LO(F),LO(F)) XeLO(F)

> esssup essinf F'(X,Y).
XeLO(F)YeLO(F)

Indeed, the left hand inequality follows from the fact that esssupycpor) F (X,Y) >
esssupxero(r) F/(X, (X)) for h € ¢ (LY (F),LO(F)), thus, esssupxeror) F(X,Y) >
essinfyecro(7),00(F)) esssupyepor) F (X, h (X)) and the application of the supremum
of Y € LY (F) on the left hand side since the right hand side is independent of Y. The
right hand inequality follows by F'(X,h (X)) > essinfycpor) F'(X,Y) and applying
first the infimum of X € L% (F), then the supremum of h € ¢ (L° (F), L% (F)), where
again the right hand side is independent of h.

To show the inequality

esssup essinf F (X,Y) > ess inf esssup F (X, h (X)),
XELO(F) YELO(F) hee(LO(F),LO(F)) XELO(F)

let e € L°(F),, . Then, by Lemma 2.46, there exists a conditional function g: L (F) —
LY (F) with ess supxero(r) I (X, 9 (X)) < esssupxepor essinfycpor) F (X, Y)+e. By
(ii) and the definition of upper semicontinuity, there exist conditionally open neighbour-
hoods (U (X)) xepo() such that I (X, g (X)) < F'(X',g(X)) + ¢ for all X' € U (X).

We consider Cy := {X e LV(F)| F(X,Yy) > esssupx o) essinfyepo ) F (X, Y)}
which is a conditional subset of L° (F). It is conditionally compact by the same reasoning
as in the proof of Theorem 2.44. Since X — F (X,Y’) is upper semicontinuous, the level
JF(XY) F (-,Yp) is conditionally closed (Theorem 2.10),

set lev ;
>ess SUD y ¢ 1,0 () €58 laneLQ(]_—

and thus conditionally compact since Y +— F (X,Y) is condionally inf-compact. Thus,
from the conditional open covering (U (X)) yero(x) of Co, that is, each U (X) is condi-
tionally open and Cp C | |x¢ LO(F) Ux we can choose a conditionally finite conditional
open covering (Uy),<j<n = (U (X)) < <y of Co for some N € N (F). With Uy := Cy,

we have a conditional finite conditional open covering (Uy)o< ;< of LY (F).
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Now, we consider a continuous partition of unity (ps)y< <x (cf. Section 1.3) subordinate
to this conditional finite covering which exists by Lemma 1.78. The conditional function
g: LY (F) — LO(F) defined by g (X) := po (X) Yo+ 1< jen s (X) g (X ) is continuous
since we have a continuous partition of unity and F' (X,_g (_X)) < F (X', g(X))+e for all
X' € U (X) for a neighbourhood U (X) of X € LY (F) as already shown. By ps (X) > 0,
> 0<j<nPs(X) = 1 and since Y — F(X,Y) is conditionally convex it holds that
F(X,5(X)) < po(X)F(X,Y0) + ey ps (X) F(X,g (X)), If we define Ao i=
esssup{A € F |po(X)|A > 0} it holds that 14,X € 14,Up = 14,C5 and therefore

1a,F (X,Yy) <14, esssup essinf F (X,Y) < 14, esssup essinf F(X,Y)+e.
XeLO(F)YeLO(F) XeLO(F)YeLO(F)

(2.28)

On the other hand, for Ay := esssup{A € F | ps(X)|A > 0}, it holds that 14,X €
1a,U; and

1a4,F(X,9(Xy) <14,F(Xs,9(Xy))+e>14, esssup essinf F(X,Y) +e.
XeLO(F)YeLO(F)

By these inequalities and since ) . ;- y P (X) =1, it holds that

1<JLN

< Z py(X) | esssup essinf F(X,Y)+e
0<J<N XeLO9(F)YeLO(F)

= esssup essinf F(X,Y)+e.
XeLO(F)YeLO(F)

Consequently,

ess inf F(X,9(X)) <F(X,3(X)) < esssup essinf F(X,Y)+e,
g€c(LO(F),LO(F)) XEeLO(F)YeLO(F)

which shows the claim by letting € converge to zero. O

2.10 Ky Fan inequality in a conditional setting

Theorem 2.48 (Conditional version of Brouwer Fixed Point Theorem). A continuous

conditional function f: K — K such that K is a conditionally compact and L° (F)-convex
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subset of LY (f)d has a fized point, that is there exists X € KC such that f (X) = X.

Proof. The proof will be given in Section 2.11. O

Theorem 2.49. Let C C L° (f)d be a conditionally convez, conditionally compact con-
ditional subset and ®: C x C — L°(F) be a conditional function with ®(X,X) > 0
and

(i). X — ®(X,Y) is upper semicontinuous for all’Y € C,

(ii). Y — ®(X,Y) is conditionally concave.
Then, there exists some X € C such that essinfycc ® (Y, Y) > essinfycc @ (V,Y).

Proof. We apply Theorem 2.44 and Theorem 2.47. Then, there exists X € C such that

esssupessinf @ (X,Y) = essinf ® (X,Y) = essinf esssup ® (X, g (X)),
XeC vec vec gec(C,C) XeC
Since C is conditionally compact and g: C — C is a continuous conditional function there
exists a fixed point X’ € C of g by Chapter 2.11, hence,

ess sup (X,9(X)) 2 @ (X',9 (X)) =@ (X', X) > essinf @ (YY),

which shows the claim. O

The Ky FAN inequality 2.49 also implies the BROUWER Fixed Point Theorem 2.69. Let
: C — C be a continuous conditional function for a conditionally compact C C L% (F )d.
Then, define ® (X,Y) := (¢ (X) — X,Y — X) and observe that ® satisfies the conditions
of Theorem 2.49. Hence, there exists X € C such that esssupy ¢ (¢ (Y) ~-X,Y-X) <0.
Putting Y = ¢ (X) € C, we obtain that [ (X) — X||* <0 and ¢ (X) = X.

Theorem 2.50 (Nash equilibrium in L° (F)). There are n € N agents. For all i € N,
let there are conditional functions f;: C; X H#i Cj — LY (F) for conditionally compact
conditional conditionally convez set C; € L° (F)? such that

(i). (Xi,Y:) — f(X;,Y;) is continuous

(ir). Xi > f(Xi,Y;) is conditionally convex for all Y; € [];;C;.
Then, there exists X € Hz‘gn C; such that ess SUDy- ¢ o(Fydxn P (Y, Y) = 0 and, further-

more,

fi (X, (X1, X1, Xy, -, X)) = mélé fi (X, (X1, X1, Xig1, .-, X))
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for alli <n.

Proof. The conditional set Hz‘gn C; is conditionally compact and conditionally convex
by (i). Let ®: [[;<, Ci X [I;<,, Ci = L° (F) defined by ® ((X1,...,X,),(Y1,...,Ys)) :=
Doien (i (X, (X1, X1, X -, X)) — fi (Y, (X, o0, X—1, X .., X)), For
a conditional sequence (X7,... XJ)JG]N( 7 in [[;<,, Ci with lim jen(r) (x{,....x;) =
(X1,...,Xp) and for all Y € [, C;, it holds that

essliminf @ ((X{,....X/),(Y1,...,Ys))
JEN(F)

—esshmlnfz fZ Xl,-- X{] 17X{{s-1 XJ))
JEN(F) i<n

_fz( za(le" XJ17X1+1 XJ)))

>Zesshm1nff@( (Xl,-- XJ 17X@+1 X,‘{))
<o JeN(F)

—Zesshmsupfz( z,(Xl,.. X‘] 1,XZ+1 Xh]))
i<n JEN(F)

=3 Fi(Xi (X1, X, X Xn) = ) fi (Ve (X, Xy, X, X))

i<n i<n

=0 ((X1,..., Xn), (Y1,...,Y2))
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by (i), that is, the conditional mapping (X1,...,X,) — @ ((X1,..., X)), (Y1,...,Yy))

is lower semicontinuous for all (Y1,...,Y},) € [],-,, Ci, and

D ((X1,..., Xn) , A(Y1,....Yo) + (1= X) (Y{,...,Y}))
=> fi(Xi (X1, Xic1, Xigr -, X))

i<n
- Zfi (A 4+ (1 =N Y (X1, Xic1, X1 ..., Xp))

i<n

<A fi(X (X1 X, X, X))

i<n
= M (Ve (X1 X, X, X))
i<n
F A=Y (X (X, X, X -, X))

i<n

- Z(l =N (Y (X, X, X, X))

i<n

=MD (X1, ., X)), Vi, V) + (1= N @ (X, X)), (Y-, Y),

by (ii), that is, the conditional mapping (Y1,...,Y,) — @ ((X1,..., X)), (Y1,...,Yy)) is
conditionally concave. By Theorem 2.49, there exists X € HiSn C; such that

esssup P (Y, Y) < esssup @ (Y,Y)=0
YeLo(F)m YeLo(F)

by definition of ®. Furthermore, for fixed i < n, we have that

fi (X, (X1, Xic, X, X)) — fi (X (X, X1, X, -, X))
= (Y) (yl)' .. ,Yi_l,Xi,ny_l,. .. 7yn)) <0

if we choose X = (Yl, o X, Xy Xig, . ,Yn). That is the last part of the claim.
O

2.11 Conditional Brouwer fixed point theorem

The following chapter is from [DKKS13]. It is given in in classical notation of random
variables. It states a conditional version of BROUWERs Fixed Point Theorem. The
application we have in mind will be presented in Chapter 2.10. In view of Lemma 2.5,

here, we state all results in almost-sure convergence of sequences.
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2 Variational analysis in a conditional setting

2.11.1 Conditional simplex

We give the introduction from [DKKS13].

In the theory of real vector spaces the Brouwer fixed point theorem and corollaries are
very useful tools in analysis. A continuous function from a simplex, or a compact and

convex set in R?, to itself has a fixed point which is a point = such that f(z) = x.

Cheridito, Filipovié¢, Kupper and Vogelpoth ([CKV15], [FKV09]) examined properties
of (L°)? discussing concepts like linear independence, convex hull and sequential conti-
nuity of functions on L°-modules. Consequently, given affine independence a conditional
simplex can be defined in (L°)?. We obtain a fixed point for functions on conditional
simplexes using a result analogue to Sperner’s Lemma. To maintain a lot of nice uni-
form properties a simplex is subdivided barycentrically. Labeled in a measurable way
we ensure that there exists a completely labeled simplex contained in the original one.
Thus, we can construct a sequence of simplexes and we show that this converges to a
point which has to be a fixed point. Working with a measurable labeling function the
fixed point is measurable by construction. Hence, despite mainly following ideas and

techniques from R? (cf. [Bor99]) we do not need any measurable selection argument.

The fixed point theorem for conditional simplexes by hand we prove a fixed point result
for LO-convex, bounded and sequentially closed sets in (L°)?. At the end we present the
implication of nice topological results, which are known from the real-valued case; the

incontractibility of a ball to a sphere in (L°)¢ and an intermediate value theorem in L°.

In Probabilistic Analysis the problem of finding random fixed points of random operators
is an important issue. Let C be a compact, convex set of a Banach space and R: Q2xC — C

be a function such that
o R(.,z): 1 — C is a random variable for any fixed z € C,
e R(w,.): C — C is a continuous function for any fixed w € €2, !

which is denoted by saying R is a continuous random operator. Then there exists
a random fixed point of R which is a random variable {: Q@ — C such that (w) =
R(w,{(w)) for any w (cf. [BR76], [Sha0l], [FMMO09]). Our approach is completely
within the theory of L° and hence all objects are defined in that language and proofs
are done with LY methods. Therefore, conditional simplexes or sequentially bounded
and closed sets are defined using elements of L°-theory and not via fixing w. Moreover,
although it is clear that a conditional function is a continuous random operator it is not

clear that the opposite holds true. Also it is not certain that a conditional simplex S

IThere exist versions in which C depends on w with the property w — C (w) is measurable.
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2 Variational analysis in a conditional setting

can always be represented via normal simplexes S(w).

We introduce some terminology. The convex hull of Xi,..., Xy € L° (]—")d, N e N, is
defined as

N N
conv (X1,...,Xy) = {Z)‘iXiMiGLO(}")JF, Z)\izl}-

i=1 i=1

An element Y € conv (Xi,...,Xx) such that \; > 0 for all i € I C {1,...,N} is
called a strict convex combination of (X;);.;. The diameter of C C L° (F )% is defined as

diam (C) = esssupy yec [|[X — Y|

Definition 2.51. Elements Xi,..., Xy of L° (]:)d, N € N, are said to be affinely
independent, if either N =1 or N > 1 and {X; — X N}fi _11 are linearly independent,
that is

N—-1
> Xi(Xi—Xy)=0 implies A\ =---=Ay1=0, (2.29)
=1

where Aq,...,Ay_1 € Lo (f)
The definition of affine independence is equivalent to

N N
> AXi=0 and Y A\ =0 implies A\ =---=Ay=0. (2.30)
i=1 =1

Indeed, first, we show that (2.29) implies (2.30). Let SN A X, = 0 and N A =
0. Then, NP0 (X — Xn) = AvXy + V7P AX; = 0. By assumption (2.29),

Al = -+ = Ay—1 = 0, thus also Ay = 0. To see that (2.30) implies (2.29), let
ZN—1A (X; — Xn) = 0. With Ay = =S M0\ it holds SN N Xi = AnvXy +
SVTINX = SN\ (X — Xyv) = 0. By assumption (2.30), \; = --- = Ay = 0.

Remark 2.52. We observe that if (Xl)fi , C LO(F )¢ are affinely independent then
()\Xi)i]\il, for A€ LY (F) ., and (X; + Y)i]\il, for Y e L (F)?, are affinely independent.
Moreover, if a family X, ..., X is affinely independent then also 15X1,...,1p XN are
affinely independent on B € F,, which means from Zfil 1\ X; =0 and Zf\il 1A =
0 always follows 1pA; =0 foralli=1,..., N.

Definition 2.53. A conditional simplex in L (F)? is a set of the form

S =conv (Xy,...,Xn)
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such that X1,..., Xy € LY (F )d are affinely independent. We call N € N the dimension
of S.

Remark 2.54. The coefficients of convex combinations in a conditional simplex & =

conv (Xi,...,Xn) are unique in the sense that

N N N N
Z)\iXi = Z,uiXiand Z)\i = Z'U“i =1 implies \j=p; foralli=1,..., N.
i=1 i=1 i=1 i=1

(2.31)

Indeed, assume the given convex combinations. Then Zf\i 1 (N — i) Xy = 0 with
Zi]\il (A — ;) = 0, and hence, by (2.30), A; — p; = 0 for all i since Xy,..., Xy are

affinely independent.

Since a conditional simplex is a convex hull it is in particular o-stable. In contrast to a
simplex in R? the representation of S as a convex hull of affinely independent elements

is unique but up to o-stability.

Proposition 2.55. Let (Xi)i]\il and (Yl)fil be families in L° (F)* with o (X1,...,Xy) =
o(Y1,...,Yn). Then conv(Xi,...,Xn) = conv (Y1,...,Yn). Moreover, (Xi)f\;l are
affinely independent if and only if (Yl)f\il are affinely independent.

If § is a conditional simplex such that S = conv (X1,...,Xn) = conv (Y1,...,Yn), then
it holds o (X1,...,Xn) =0 (Y1,...,YN).

Proof. Suppose o (X1,...,Xn) =0 (Y1,...,Yn). For i =1,..., N, it holds that
X, EO’(Xl,...,XN) :U(Yi,...,YN) CCOHV(YI,...,YN).

Therefore, conv (X1, ..., Xy) C conv (Y7,...,Yyn) and the reverse inclusion holds anal-
ogously.

Now, let (X;)X| be affinely independent and o (X1, ..., Xn) = o (Yi,...,Yy). We want
to show that (Y%)i\il are affinely independent. To that end, we define the affine hull

N N
aﬁ(Xh-'-aXN): {Z)VXZ|/\ZGLO(]:), Z)\izl}.
=1

i=1

First, let Z1,...,Zy € L°(F)?, M € N, such that o (X1,...,Xy) = 0 (Z1,..., Zy).
We will show that if X;,..., Xy are affinely independent and 14 aff (Xi,...,Xy) C
1aaff (Z1,...,Zy) for A € Fy then M > N.
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Since X; € o(X1,...,XN) = 0(Z1,...,Zy) C aff (Zy,...,Zy), we conclude that
aff (Xy,...,Xy) Caff (Z1,...,Zy). Further, it holds that X; = sz\i1 ]].BilZi for a par-
tition (B})?il and hence there exists at least one B,]Cl1 such that A,]il = B,]Cl1 NAeFy,
and 11A£1X1 = ]lA}iler Therefore,

]lAljil aH(X17"'7XN) - lA,]il aﬂ(Zla"-sz) = ]lA,]il aﬁ({X17zlv'"aZM}\{Zkl})'

For Xy = 22 M, 1,2Z; we find a set A7, such that A} = AZN AL € Fy, JLA%2X2 =
]lAi Zy, and k1 # ko. Assume to the contrary ko = ki, then there exists a set B € F,
2

such that 15X; = 15X> which is a contradiction to the affine independence of (XZ)Z]\L1

Hence, we can again substitute Zj, by X2 on Aé. Inductively, we find ki, ..., ky such
that

lAkN aff(Xl,...,XN) - ]lAkN aff({Xl,...,XN,Zl,...,ZM}\{Zkl,...ZkN})

which shows M > N. Now suppose Y1, ..., Yy are not affinely independent. This means,
there exist (Al)f\; 1 such that ZZ]\L LAY = Zf\; 1 Ai = 0 but not all coefficients \; are zero,
without loss of generality, A1 > 0on A € F,. Thus, 14Y; = —14 Zf\;2 f\‘—;Yl and it holds
Taaff (Yr,...,Yy) = 1yaff (Yo,...,Yn). To see this, consider 147 = 14 Zf\il HiY; €
L14aff (Y1,...,Yy) which means 14 Zf\il 1; = 1 4. Thus, inserting for Y7,

N )\
=1 § i —— | Y;
A [ </~L Nl)\l>

N N \
14Z = 14 [Zum —mY Y
1=2 =2 =2

Moreover,

Hence, 147 € 14aff (Ya,...,Yn). It follows that
IlAaff(Xl,...,XN) = ]lAaff(Yl,...,YN) = lAaﬂ(Yg,...,YN).

This is a contradiction to the former part of the proof (because N —1 %2 N).

Next, we characterize extremal points in & = conv (Xi,...,Xy). We show X €
o (X1,...,Xn) if and only if there do not exist Y and Z in S\ {X} and X € (0, 1) such
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that \Y + (1 —\)Z = X. Consider X € o (Xy,...,Xy) which is X = S5 14, X},
for a partition (Ag),cn. Now assume to the contrary that we find ¥V = Zévzl e Xk
and Z = SN Xy, in S\ {X} such that X = AY + (1—\)Z. This means that
X = Z,ivzl (A + (1 — A) i) Xg. Due to uniqueness of the coefficients (cf. (2.31)) in a
conditional simplex we have A\ + (1 — X))y = 14, for all k = 1..., N. By means of
0 < A < 1, it holds that A\ + (1 — X) g, = 14, if and only Ay = pp = 14,. Since the
last equality holds for all k it follows that Y = Z = X. Therefore, we cannot find Y and
Z in S\ {X} such that X is a strict convex combination of them. On the other hand,
consider X € S such that X ¢ o (X1,..., Xx). This means, X = S5, v}, X}, such that
there exist v, and v, and B € F; with 0 <1, <1on B and 0 < v, <1 on B. Define
e = essinf {vg,, Vk,, 1 — gy, 1 — vk, . Then define pp = A\ = v if k1 # k # ko and
Moy = Vky —€, Mgy = Vky + €, liky = Vg, +€ and pg, = v, —e. Thus, Y = Zivzl A Xy and
Z = Z]kvzl Xy fulfill 0.5Y + 0.5Z = X but both are not equal to X by construction.
Hence, X can be written as a strict convex combination of elements in S\ {X}. To
conclude, consider X € o (Xy,...,Xy) C S = conv (X1,...,Xn) = conv (Y1,...,Yn).
Since X € o (X1,...,Xy) it is not a strict convex combinations of elements in S\ {X}, in
particular, of elements in conv (Y1, ...,Yx)\{X}. Therefore, X is also in o (Y1,...,Yn).
Hence, 0 (X1,...,Xy) Co(Y1,...,Yy). With the same argumentation the other inclu-

sion follows. O

As an example consider [0,1]. For an arbitrary A € F, it holds that 14 and 14e
are affinely independent and conv (14,14c) = {A1a+ (1 —A)L4e: 0 <A< 1} =10,1].
Thus, the simplex [0,1] can be written as a convex combination of different affinely
independent elements of LY (F). This is due to the fact that ¢ (0,1) = {lp | B € F} =
o (14, 14c) for any A € F.

Remark 2.56. In L° (F)%, let ¢; be the random variable which is 1 in the i-th com-
ponent and 0 in any other. Then the family 0,eq,...,eq is affinely independent and
LO(F)* = aff (0,eq,...,eq). Hence, the maximal number of affinely independent ele-
ments in L (F)% is d + 1.

The characterization of X € o (Xy,...,Xx) leads to the following definition.

Definition 2.57. Let S = conv (X1,...,Xx) be a conditional simplex. We define the
set ext (S) = o (X1,...,Xn) of extremal points. For an index set I and a collection
S = (Si);¢; of simplexes we denote ext (&) = o (ext(S;) | i € I).

Remark 2.58. Let S/ = conv <Xf, . ,X%,), j € N, be conditional simplexes of the

same dimension N and (4;), . a partition. Then 7, 1 4,87 is again a simplex.
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To that end, we define Y, = >
Indeed,

jeN ]lAjX]z. Then ZjelN IlAij = conv (Y1,...,Yn).

N N N
DY =) N D> TaXi= 1a > MX] €D 14,8, (2.32)
k=1 k=1 k=1

= JEN jeN JEN

shows conv (Y1,...,Yn) C D cn 14,87, Consider Zivzl )\iX,Z in 87 and define )\, =
> jen L4, yields the other inclusion.

To show that Y7,...,Yn are affinely independent consider Zszl MY =0= Zgzl Ak
Then by (2.32), it holds 14, Zivzl )\kXi = 0 and since &7 is a simplex, T\ = 0 for
all j e Nand £k =1,...,N. From the fact that (Aj)j€1N is a partition, it follows that
A =0forall k=1,...,N.

We will prove the Brouwer fixed point theorem in our setting using an analogue version
of Sperner’s Lemma. As in the unconditional case we have to subdivide a simplex in
smaller ones. For our argumentation we cannot use arbitrary subdivisions and need very
special properties of the simplexes in which we subdivide. This leads to the following

definition.

Definition 2.59. Let S = conv (X7, ..., Xy) be a conditional simplex and Sy the group
of permutations of {1,..., N}. Then for 7 € Sy we define

X7r +X7r X7T ++X7r X7r ++X7r
C. — conv < Xy, 22 £ 2r@) W (k) M (N))

5 e . e N
We call (Cr),cg, the barycentric subdivision of S, and denote YT = % Zle Xr(i)-

Lemma 2.60. The barycentric subdivision is a collection of finitely many conditionally

simplexes satisfying the following properties
(i). o <U7reSN c,r) =
(ii). Cx has dimension N, m € SxN.
(iii). Cx N Cx is a conditional simplex of dimension r € N and r < N for 7,7 € Sn,
T #T.
(iv). For s=1,...,N —1, let Bs := conv (X1,...,Xy). All simplexes C; N Bs, ™ € SN,

of dimension s subdivide Bs barycentrically.
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Proof. We show the affine independence of Y7", ..., Yy in Cr. It holds

X,y +X S
(1) w(2) ko= 1
Ar()Xr(1) + )‘77(2)# +o T Z wiXi,

. N Ar
with pi; =301 3
Since Z = Zf\i 1 Ai, the affine independence of Y7", ..., Y} is obtained by the affine

independence of X7,..., Xy. Therefore all C; are conditional simplexes.

The intersection of two simplexes C; and Cz can be expressed in the following manner.
Let J={j|{r(1),....,7(J))} ={7(1),...,7(j)}} be the set of indexes up to which

both m and 7 have the same set of images. Then,

¢
Cr N Cr = cony (’“:1]”(’“) |je J) . (2.33)
To show C; N Cz D conv M |jeJ),let j € J. It holds that M is in

both Cr and Cz because {7 (1),...,7(5)} ={7(1),...,7(j)}. Since the intersection of

convex sets is convex, we get this implication.

For the reverse inclusion, let X € C; N Cs Since X € Cy, it is of the form X =
SN N <Zf€:1 X";“) and for X € Cx, it can be written as X = SNy (22:1 XF.““))

1

Consider j ¢ J. By definition of .J, there exist p,q < j with 7! (7 (p)), 7~ (7 (q)) &
{1,...,j}. By (2.31), the coefficients of X, are equal' YA = Y H(m(p) T

1=p 7 1=
The same holds for X, : Zi]\iq B = ZZNW 1(7r(q)) . Put together
N N N N Yo N i N
DTS X T sy X 72X
=i+l i=q i=n~1(7(q)) i=j+1 i=p i=7—1(m(p)) i=j+1

which is only possible if p; = A; = 0 since p,q < j.

Furthermore, if C; N C5 is of dimension N by (2.33) follows that © = 7. This shows (iii).
As for Condition (i), it clearly holds o (UzesyCr) C S. On the other hand, let X =
SN AiX; € S. Then, cf. [Dral0], we find a partition (An),en such that on every A,
the indexes are completely ordered which is )\Z-;L > )\z‘g > > )\iT]{, on A,. This means,
that X € 14,Crn with 7" (j) = i Indeed, we can rewrite X on A, as

N—-1 N

_ Xin > 11 X

k=1 % k=1
X:()\liz—)\z;)Xl?—l——i—(N )<)\Z%1_)\i%>7N—1k+N>\i%7N ,
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which shows that X € C;» on A,,.

Further, for By = conv (Xi,...,Xs) the elements C,» N B, of dimension s are exactly
the ones with {7 () |i=1,...,s} = {1,...,s}. Therefore, (C,» N Bs)
barycentric subdivision of B, which has been shown to fulfill the properties (i)-(iii). O

o~ 1s exactly the

Remark 2.61. If we subdivide the conditional simplex & = conv (X7, ..., Xy ) barycen-

trically, we can consider an arbitrary Cr = conv (Y{",...,YJ), m € Sx. Then
1 al -
diam (Cr) < esssup ||Y;" — Y| < — esssup (X=X < diam (S) .
i=1,..,.N Ni=1,..N
EARRS] [ARRS] k‘:1

If we now subdivide C, barycentrically and continue in that way, we obtain a chain
of simplexes 8", with S = S. For the diameter of S”, it holds that diam (S") <
(%)ndiam (8). Since diam (S) < oo and (%)n — 0, for n — oo, it follows that

diam (8™) — 0, n — oo.

2.11.2 Brouwer fixed point theorem

Definition 2.62. Let S = conv (X1,...,Xx) be a conditional simplex, barycentrically
subdivided in & = (Cr),cg,- A stable function ¢: ext (&) — {1,..., N} is called a
labeling function of S. For fixed Xi,..., Xn € ext (S), the labeling function is called
proper, if for any Y € ext (&) it holds that

P ({6 (Y) =i} C {h > 0}) =1,

fori=1,...,N, where Y = Zf\il AiX;. A conditional simplex C = conv(Y7,...,Yy) C
S, with Y; € ext(6),j = 1,..., N, is said to be completely labeled by ¢ if this is a

proper labeling function of S and

foralli € {1,...,N}.

Lemma 2.63. Let S = conv (Xy,...,Xn) be a conditional simplex and f: S — S a
stable function. Let ¢: ext (&) — {0,..., N} be a stable function such that

(). P ((6(X) =i} C D >0} (A > ) = 1, foralli=1,....N,

(ii). P (U (0> 030 {2 i) < UK {0 (X) =) =1,
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where X = Zfil ANiX; and f(X) = Zf\;l 1; X;. Then, ¢ is a proper labeling function.

Moreover, the set of functions fulfilling these properties is non-empty.

Proof. First we show that ¢ is a labeling function. Since ¢ is stable we just have
to prove that ¢ actually maps to {1,...,N}. Due to (ii), we have to show that
P (vazl N> i N > 0}) = 1. Assume to the contrary, u; > \; on A € Fy, for
all A; with A; > 0 on A. Then it holds that 1 = 37| \iLpys0) < Soiq sl gm0y = 1
on A which yields a contradiction. Thus, ¢ is a labeling function. Moreover, due to (i)
it holds that P ({¢ (X) =i} C {\; > 0}) = 1 which shows that ¢ is proper.

To prove the existence, for X € ext (&) with X = Zf\il XX, f(X) = Zf\il 1i X
let B; == {X\ >0}N{\i >ui}, i =1,...,N. Then we define the function ¢ at X as
{¢(X)=1i} =B\ (Uz_:ll Bk>, i=1,...,N. By the former part of the proof it follows
that ¢ maps to {1,..., N} and is proper. It remains to show that ¢ is stable. To this
end, consider X =" 14, X7 where X7 = 3>V X X; and f (X9) = Y| 4/ X;. Due
to uniqueness of the coefficients in a simplex it holds that A; = > jen La, Al and due to
stableity of f it follows that u; = > jen La; ). Therefore it holds that

JE

Bi={\>0}N{\ >} = U ({AZ>0}H{A§ZM§}ﬂAj) = UBfﬂAJ‘-
JeEN

Hence, ¢ (X) =i on B; \ ( il Bk) = (UjelN (Bg' N Aj)) \ ( il (U].QN Bln Aj)) -
Ujen <(Bf \ UZ,_:II Bi) ﬂAj). On the other hand, we see that > . 14;¢ (X7) is i
on any A; N {¢(X?) =i}, hence it is ¢ on Ujen (Bf \UIZL Bi) N Aj. Thus, finally,
Zje]N La,0 (Xj) =¢ (Z]EN IlAij> which shows that ¢ is stable. O

The reason to demand stableity of a labeling function is exactly because we want to label

by the rule explained in the last lemma and hence keep stable information with it. For

example consider a conditional simplex S = conv (X1, X2, X3, X4) and Q = {w1,wa}.

Let Y € ext (&) be given by Y = %Z?:l X;. Now consider a function f on S such that
3

FO)(r) = X0 (on) + 3K (1), S (¥) (2) = 3 X0 (2) + 3 X (wn) + 5 X (wn).

If we label Y by the rule explained in Lemma 2.63, ¢ takes the values ¢ (w1) € {1,2}
and ¢ (w2) = 3. Therefore, we can really express on which set A\; > p; and on which
not. Using a deterministic labeling of Y, we would loose this information. For example

bearing the label 3 would not mean anything on w; for Y. Moreover, it would be
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2 Variational analysis in a conditional setting

impossible to label properly by a deterministic labeling function following the rule of the

last lemma since there is no ¢ such that A\; > p;.

Theorem 2.64. Let S = conv (X1,...,Xy) be a conditional simplex in L° (F)*. Let
f: 8 = S be a stable, sequentially continuous function. Then there exists Y € S such
that f(Y) =Y.

Proof. We consider the barycentric subdivision (C;) of § and a proper labeling

TES

function ¢ on ext (&). First, we show that we can find a I(V:ompletely labeled conditional
simplex in §. By induction on the dimension of & = conv (X1,..., Xy), we show that
there exists a partition (Ag),_; _j such that on any Aj there is an odd number of
completely labeled C;. The case N = 1 is clear, since a point can be labeled with the

constant index 1, only.

Suppose the case N —1 is proven. Since the number of Y;™ of the barycentric subdivision
is finite and ¢ can only take finitely many values, it holds for all V' € (Y"),_; n sy
o K < oo, where ¢ (V) is constant on any A .

5> such that ¢ (V) on Ay, is constant for all V'

there exists a partition (Akv)k:1

Therefore, we find a partition (Ay),_,

-----

and Ag. Fix Ay now.
In the following, we denote by C.» these simplexes for which C,» N By_1 are N — 1-
dimensional (cf. Lemma 2.60 (iv)), therefore 7° (N) = N. Further we denote by Cye
these simplexes which are not of the type C,s, that is 7¢ (N) # N. If we use C; we mean
a simplex of arbitrary type. We define
(1). € C (Cr)yes, to be the set of Cr which are completely labeled on Ay.
(ii). A C (Cr)resy to be the set of the almost completely labeled C, which is the
property {¢ (Y,") |k=1,...,N} ={1,...,N — 1} on A.
(iii). € to be the set of the intersections (Cx N Cr,), ¢, Which are N — 1-dimensional
and completely labeled on Ay.
(iv). B, to be the set of the intersections C» N By_1 which are completely labeled on
Ap.
We know that Cr N Cy, is N — 1-dimensional on A; if and only this holds on whole 2
(cf. Lemma 2.60 (ii)) and C,.o N By_1 # 0 on Ay if and only if this also holds on whole
Q (cf. Lemma 2.60 (iv)). So it does not play any role if we look at these sets which are
intersections on Ay or on 2 since they are exactly the same sets.
If Cre € € then |€re| =1 and if C» € € then |€ » UB o] = 1. If Cre € A then |Ere| =2
and if Cr» € ™ then €, UB | = 2. Therefore it holds }° g [€r UB;| = ¢+ 2[A].
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2 Variational analysis in a conditional setting

If we pick an E; € &; we know there always exists another m; such that E; € &
(Lemma 2.60(ii)). Therefore _ .o
By_1 barycentrically? and hence we can apply the hypothesis (on ext (C,» N By_1)).

|&x| is even. Moreover (C.» N By_1),s subdivides

This means that the number of completely labeled simplexes is odd on a partition of €2
but since ¢ is constant on Ay it also has to be odd there. This means that ) _, [B
has to be odd. Hence, we also have that ) |€; UB| is the sum of an even and an odd
number and thus odd. So we conclude |€| + 2 |2(| is odd and hence also |€|. Thus, we
find for any Ay a completely labeled Cr, .

ﬂb’

By o-stability of S and stableity of ¢ we can paste completely labeled simplexes. If we
do so, we obtain S' := Zle 14, Cr,, which by Remark 2.58 is indeed a simplex and by
Remark 2.61 has a diameter which is less then % diam (S). So we finally got a simplex
S' C S which is completely labeled on whole €.

This holds for any proper labeling function hence also for a ¢ of the type as in Lemma
2.63.

Now, we extract a sequence (S"), . of completely labeled simplexes contained in
S, fulfilling the diameter property diam (S™) — 0 as in Remark 2.61. By [CKV15,
Theorem 3.8]) it holds that (,cS™ # 0. The intersection consists of one element
Y = Zl]\il o X; by the diameter property. Let f (V) = Z{i1 41 X;. Thus, all ext (S™)
of the sequence of simplexes 8™ also converge P-almost surely to Y, which then pre-
serves the properties of the index function. That is, for each ¢ = 1,..., N, there exist
Vi€ ext (C7) of 8", k = 1,...,N, r € Sy, with P ({¢(V,§) —ilc {)\?’k > u?”“}) =
1 (cf. Lemma 2.63), where V' = Zf;l )\?’kXi and f (V') = Zf\;l u?’kX,'. Then
P (nn@N {)\?’k > M;”“} c {o; > @}) —1forallk =1,..., N by stableity of f, V" — Y
P-almost surely, and f (V") — f(Y) P-almost surely. But,

(U erem) e (QUree)) -

by the complete labeling of S™. Hence, a; > 3; for all ¢ = 1,..., N. This is possible only
if j =p; foralli=1,..., N which is the condition of a fixed point. ]

Corollary 2.65. Let (S"),cn be conditional simplezes, (Ayn),cn a partition and S :=
Y nen 14, 8" Then a stable, sequentially continuous function f: S — S has a fived

point.

2The boundary of S is a o-stable set so if it is partitioned by the labeling function into A;, we know that
By-1(S) = Z,ﬁil 14,Bn-1(14,8) and by Lemma 2.60 (iv) we can apply the induction hypothesis
also on Ay.
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2 Variational analysis in a conditional setting

Proof. Since f is stable, we have f(S) = >, cn 14,f (S") and f restricted on 8™ is still
sequentially continuous. Therefore we find Y,, € 8™ with 14 f(Y,,) = 14,Y,,. Defining
Y =3 en 14,Y, we have

fY) =171 (Z IlAnYn> =) 1a, f (Vo) =) 14V, =Y.

neN neN neN

Thus, f has a fixed point. O

Remark 2.66. The 8™ can be of different dimension. If §” = conv (Yln,...,Y](}n)
is of dimension N, the object S can be considered as to be of conditional dimension
> nen 14, Nn. This conditional dimension is hence in {N, | n € N}, in particular a

measurable object.

2.11.3 Fixed point theorem for sequentially closed and bounded sets in
Lo (F)"

Proposition 2.67. Let K be a conditionally convex, sequentially closed and bounded
conditional subset of L° (.F)d and f: K — K a sequentially continuous conditional func-
tion. Then f has a fized point.

Proof. Since K is bounded, there exists a conditional simplex & such that X C §. Now
define the function h: § — K by

14X, 14X € 14K,

h(X) =
argmin {|| X — Y| | Y € £}, else.

This means, that h is the identity on K and a projection towards I for the elements in
S\ K. Due to [CKV15, Corollary 4.5] this minmium exists and is unique. Therefore h
is well-defined.

We can characterize h by

Y=h(X)e (X-Y,Z-Y) <0, forall Z € K. (2.34)

Indeed, let (X —Y,Z —-Y) <0 for all Z € K. Then

IX = 2P = (X -Y) + (Y = 2)|
=X Y|P +2(X V.Y =Z) + Y = Z|* 2 | X - Y|,
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2 Variational analysis in a conditional setting

which shows the minimizing property of h. On the other hand, let Y = h (X). Since K
is conditionally convex, AZ + (1 —\)Y € K for any A € (0,1] and Z € K. By standard

calculation,
X =2+ (1 =N > X V|’

yields 0 > =2\ (X, -Y) + (2)\ — )\2) (YY) +2XM (X, Z) — \? ||Z||2 — 20 (1 =X (Z,Y).
Any term can be divided by A > 0. We do so and let A | 0 afterwards. We obtain

0> —2(X,-V)+2(Y,Y)+2(X,Z)—2(Z,Y)=2(X-Y,Z-Y),

which is the claim.

Furthermore, for any X,Y € S holds
[h(X) = hY)[ < [[ X =Y.

Indeed, X - Y = (h(X)—h(Y)+ X —h(X)+h(Y)-Y =: (h(X) —h(Y))+ c which

IX = YI* = [R(X) = h()I* + [lell* +2 (e, A(X) = h(Y)). (2.35)

Since (¢, h (X)—=h(Y)) = —(X —h(X),h(Y)—=h(X)) = (Y —h(Y),h(X)—h(Y)),
by (2.34), it follows that (c,h(X)—h(Y)) > 0. Then (2.35) yields || X — YH2 >
||h(X) — h(Y)||>. Using this we see that h is a sequentially continuous conditional func-
tion, for if || X, — X|| — 0 then also ||k (X,) — h (X)|| — 0.

The function f o h is a sequentially continuous function mapping from S to S, more
precisely to K. Hence, there exists a fixed point f o h(Z) = Z. But since f o h maps
to IC, this Z has to be in K. Therefore we know h (Z) = Z and hence f (Z) = Z which
ends the proof. 0

Remark 2.68. In [DJKK16] a concept of conditional compactness is introduced and it
is shown that there is an equivalence between conditional compactness and conditional
closed- and boundedness in L° (F )d. In this concept we can formulate the conditional

Brouwer fixed point theorem as follows.

Theorem 2.69. A sequentially continuous conditional function f: K — K such that K
is a conditionally compact and L° (F)-conver subset of L° (]:)d has a fixed point.
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2 Variational analysis in a conditional setting

2.11.4 Applications in analysis on L° (F)*

Working in R? the Brouwer fixed point theorem can be used to prove several topological
properties and is even equivalent to some of them. In the theory of L° (F )d we will show

that the conditional Brouwer fixed point theorem has several implications as well.

Define the conditional unit ball in L9 (F)* by B (d) = {X e LO(F)]|1X| < 1}. Then
by the former theorem any sequentially continuous conditional function f: B (d) — B (d)
has a fixed point. The unit sphere is defined as S (d — 1) = {X e L°(FA)*| x| = 1}.

Definition 2.70. Let C and D be conditional subsets of L (F)?. A conditional ho-
motopy of two stable, sequentially continuous conditional functions f,g: C — D is
a sequentially continuous bivariate conditional function H: C x [0,1] — D such that
H(C,0)=f(C)and H (C,1) =g (C).

Lemma 2.71. The identity function of the sphere is not conditionally homotop to a

constant function.

The proof is a consequence of the following lemma.

Lemma 2.72. A sequentially continuous conditional function f: B(d) — S(d—1)
which is the identity on S (d — 1) does not exist.

Proof. Suppose there is a sequentially continuous conditional function f as assumed in
the lemma. We define g: S(d—1) =+ S(d—1) by g(X) = —X. Then the composition
go f: B(d) — B(d), which actually maps to S(d— 1), is a sequentially continuous
conditional function. Therefore, this has a fixed point Y which has to be in S(d — 1),
since this is the image of g o f. But we know f(Y) =Y and g (Y) = —Y and hence
go f(Y) = —Y. Therefore, Y cannot be a fixed point (since 0 € S (d — 1)-) which is a

contradiction. O

Directly follows that the identity on the sphere is not conditionally homotop to a constant
function. In the case d = 1 we get the following result which is the conditional version

of a intermediate value theorem.

Lemma 2.73. Let X, X € L°(F) with X < X. Let f: [X,X] — L°(F) be a se-
quentially continuous conditional function. Define A := {f(X) <f (Y)} Then for
every Y € []lAf (X)+ 1acf (Y),ILAf (Y) + IlAcf(X)] there exists Y € [X,m with
@) =Y.
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2 Variational analysis in a conditional setting

Proof. Tt is sufficient to prove the case for f(X) < f (Y) that is A = Q. In the general
case we consider A and A€ separately, obtain 1 4 f (?1) =14Y, Lacf (?2) = 1 4cY and,
by stableity, f (14Y1 + 14cY3) =Y. Suppose, now Y € [f(X), f (X)].

Let first f (X) <Y < f (X). Define the conditional function g: [X,X]| — [X, X] by

g(V)=p(V-f(V)+Y) with p(Z)= ]l{ng}X + ]l{XngY}Z + R{YSZ}Y'

Therefore g has a fixed point Y by Proposition 2.67. If Y = X, it holds X — f(X)+Y
which means Y < f (X) which is a contradiction. If Y = X, it follows that f (X)
which is also a contradiction. Hence, Y =Y — f (7) + Y which means f (7) =Y.
IfY =f(X)onBandY = f (X) on C, it holds f (X) <Y < f (X) on (BUC)°=: D.
Then we find Y such that f (?) =Y on D. In total f (HBX + HC\BY—i— HD?)
Ipf(X)+1c\pf (Y) +1pf (?) =Y. This is the claim for arbitrary Y € [f (X), f(X)

<X
<Y,

—

(I
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3 Walras equilibrium

Motivated by the work of JOFRE AND WETS [JW02] we enlarge their setting in the con-
text of conditional sets. We describe the market setting, agents’ preferences dependent
on the price in the market, and the Walrasian as a price-dependent conditional function
whose max/essinf-points describe a Walras equilibrium price. Furthermore, we discuss

stability properties of the Walras equilibrium and converging economies.

3.1 Market setting

The market setting is introduced as follows. The set 2 of agents who trade in the market
is assumed to be finite. There are d goods which can be exchanged. At the beginning,
an agent a € A has the endowment E® € L° (}")‘i.
for allocations X € L°(F )d of goods. Their utility is described by a conditional utility

The endowment can be exchanged

function u®: L (F)? — [—o0; 0o[. It is upper semicontinuous and conditionally concave
on the nonempty domain domu® = L°(F )d of the conditional utility function. The
assumption of concavity is discussed in remark 3.5. For the domain we further suppose
that it is conditionally closed and its interior int domu® is nonempty. Then, a natural
consistency assumption is that E® € intdomu®. In the sequel, we reduce the problem

to the case that int dom u® lives on 2, the rest is of no futher interest mathematically.

Further, we impose criteria when utility functions are disturbed. In detail, we assume a

conditional sequence (u%) ) of conditional utility functions uj: LO(F)* = [—o0; 00

JEN(F
disturbing u® in a hypoconverging sense, that is h-lim ;e () v = u®. This implies that

u® is upper semicontinuous, cf. Proposition 2.25.

For the optimization problem we consider the exchange of goods at prices P € L% (F )i

The exchange is limited by (P, X) < (P, E®), thus, the feasible good allocations are
C* (P) := domu® M {X e LO(F)? | (P, X) < (P, Ea>}. Clearly, C* (P) is a conditional
set, since if X!, X2 € C*(P) and A € F, it holds that 14X + 14X? € domu® and
<P, IaXt + 14X 2> < (P, E%). Now, as a utility maximizer, each agent acquires

argmax ycc {u” (X) | X € C*(P)} (3.1)
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3 Walras equilibrium

for some conditionally compact conditional subset C = LY (F )d which lives on 2 and
describes trading constraints. Conditions for a conditionally compact C = L° (]:)d
are discussed in Section 3.2. We define the conditional set of maximizers D (P) :=
{X € LO(F)? | X € argmaxy e {u® (X) | X € C° (P)}}. Since if X!, X2 € D (P) and
A € F, it holds that 14X + 14:X? € C%(P) since C*(P) is a conditional set and
ut (1aX!+14cX?) = Lau® (X)) + Laew® (X2) = u® (X1), thus, 1aX! + 14 X2 €
D° (P). The mapping P — D®(P) is a conditional function since for P, P, € L° (F )i
and A € F it holds that

DO (L4P; + Lac Py)
- {X e LO(F)? | X € argmaxy e {u® (X) | X € C* (14P; + nACPQ)}}
=14 {X e LY (F)*| X € argmaxyce {u® (X) | X € 1,4C° (Pl)}}

+ g {X e L°(F)? | X € argmaxyee {u® (X) | X € 14:C° (PQ)}}

= 14D (Py) + 14 D" (Ps).

A solution to the maximization problem in (3.1) exists since u® is conditionally concave

on a conditionally compact conditional set, and u® < oo, cf. Theorem 2.39.

We continue with the definition of Walras prices. Since D®(P) = D®(AP) for all
D®(P) € D*(P) and A € LY (F),, we assume that P € X :={P € L (F)} | ;.4 P =

1}. Now, we can define the excess supply

S(P):=)_(E*—D*(P)) for D*(P) € D*(P),
acA
S(P):={S(P)e L°(F)|D*(P)eD*(P)}.

By definition, S: X — L° (F) is a conditional function, and, thus, S (P) is a conditional
set for each P € ¥. The price vector P is a Walras equilibrium price if S (P) > 0.
If there exists some S’ € S (P) such that S” > 0, then S > 0 for all S € S(P). To
see that, assume S € S(P) and A € F; such that S|A < 0. By definition, there
exist (D®(P)),ecq in (D (P))geq such that S =3 o (E* — D%(P)). Then, on A, 0 >
(P, Y qeq B* — D) = 3" cq (P, E* — D*) > 0 since D*(P) € C*(P). This contradicts
Ae F.i.
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3 Walras equilibrium
Finally, the Walrasian is a conditional function W: ¥ x ¥ — L° (F) which is defined by

W (P,Q) :=esssup (Q, S) .
SeS(P)

The max/inf-point of the Walrasian will be our equilibrium price. Therefore, we sum up

some useful properties of the described setting.

Lemma 3.1. The following properties hold for the Walrasian.

ForallQ eX: Pw— W (P,Q) is upper semicontinuous. (3.2)
ForallPeX: Qw— W (P,Q) is conditionally conver. (3.3)
ForallQeX: W(Q,Q)>0. (3.4)

Proof. To show (3.2), first, we consider the conditional set C*(P) = L°(F). For all
P € ¥, it holds that C* (P) is conditionally closed and conditionally convex by definition.
Further, int C* (P) lives on 2 since the conditional set {X e LO(F)? | (P, X) < (P, E“>}
is a half plane whose interior lives on  and E® € intdomu®. We will show that
lim sup jen(r) C° (P;) © C"(P) for a conditional sequence (P) sen(r) of prices with
limjen(r) Py = P, that is, the mapping P — C® (P) is outer semicontinuous. Clearly,
for conditional sequences (Py) jen(r) — P in L (F)* and (X7) jenir = X in LO(F)?
it holds that (Py; (Xy; — Bf)) jenr — Fi(Xi — Bf), thus, limsup e C* (P)) T
C® (P) since domu® is conditionally closed. Next, we show that the conditional function
P +— C%(P) is inner semicontinuous, that is, by Definition 2.21, whenever (PJ)J@N(]_-) —
P there exists M € N (F)_, such that there exists a conditional subsequence (X ) ;c \ —
X with X; € C*(Py). For the proof consider X € intC®(P). That is, there exist
§ € LO(F), . and a conditional ball B (X) C C*(P) on Q. For all X’ € B° (X) it holds
that (P, X’) < (P, E®) by definition of C*(P). Now, there exist ¢ € LV (F)
conditional ball B” (P) C ¥ on Q such that (P, X') < (P, E®) for all P € B” (P) and
X' € B’ (X). To continue, consider the conditional subsequence (P;) ;. of (Py) JEN(F)
that is in B (P). We observe that M € N (F)_, since (Ps) jen(r) — P. By construc-
tion, we find a conditional subsequence (X ;) .., with X; € B° (X) C C*(Py), that is

and a

inner semicontinuity of P — C® (P), and thus, P — C® (P) is continuous.

Second, we continue with the properties of P — D% (P). As in (3.1), we define
D} (Py) := argmaxycc {uj (X) | X € C* (P;)}

and we claim that limsup jenr) DY (P;) © D (P) whenever (Ps) jen(F) — P
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3 Walras equilibrium
To that end, for all A € F, we define

Lo (X) ]l/];lu(X) ifl (P,X) < (P,E%, 53
-1 00 else,

lauy (X) if (P, X) < (P,E%),

Tavg (X) := (3.6)
—1 400 else.

and show that h-lim jen(7) vy = v. By Lemma 2.24, we have to show that

3 (XJ)J@N(}-) — X: essliminfvy (X) > v (X), (3.7)
JEN(F)

N (XJ)JeN(]_-) — X: esslimsupvy (Xy) <v(X). (3.8)
JEN(F)

for all X € LY (F)?. Inequality (3.8) is obvious if 1 4 ess lim SUp seN(F) Vg (X;) = —1aoo.
In turn, if esslimsup jen(r) v (X,)|A > —oc for some A € F there exists M € N (F)_,
such that 14Xy € 14D*(Py) for all J € M. Then, since (PJ)JGN(]_-) — P and, by
hypoconvergence of the utility functions u5, J € M, it follows that 14X € 1,D° (P).
To proof inequality (3.7), we consider A; := esssup {A EF|1aX € 1u4(D(P E}
Ay :=esssup{A € F | 14X € 14int D* (P)} and the complement Az := (A; U As)° =
esssup {A € F | 14X € 14 (cID*(P) M (int D* (P))7)} for X € LO(F)%. On A; we
choose 14,X; = 14, X for all J € N(F). Then, 14, essliminf enr vy (Xy) =
L1a,v(X) by (3.5) and the characterization of hypoconvergence in Lemma 2.23. On
Aj, there exists M € N(F)_ such that 14,X € 14,D%(Py) by definition of D*
and (Pj);cpq — P. Again, choosing 14,X; = 14,X for all J € M yields that
14, essliminfjepvy (Xy) = 14,0 (X). On Az, we apply the inner semicontinuity of
the conditional mapping P +— D®(P) which yields the existence of a conditional se-
quence (X) jenr) — X with X € int D* (P).

Thus, h-limjen(r) vy = v. Since, by definition, D (P;) = argmaxyccv, (X) and
D% (P) = argmaxxcc v (X), it holds that limsup jen(r) Dy (P;) © D°(P) by Proposi-
tion 2.30 (ii).

Third, we investigate the conditional mapping P +— S (P). For the definition Sy (Py) :=
Y aca (B =D (Py)), it holds that

limsup S; (Py) ZE“ thsupDJ Py) ZE“ ZD“ =S(P) (3.9

JEN(F) a2 aea JEN(F ae a2
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showing that P +— S (P) is outer semicontinuous.

To finally prove (3.2), we observe that by (3.9)

limsup W (Py, @) = limsup esssup (Q, Sy) (3.10)
JEN(F) JEN(F) S;e8(Py)
= ess sup (@,S) <esssup(Q,S) =W (P,Q) (3.11)
SElimSupJ@N(f) S(PJ) SGS(P)

for all Q € ¥ which shows that P+ W (P,Q) : ¥ — L° (F) is upper semicontinuous.
To conclude with (3.3), or that Q — W (P, Q) is conditionally convex, we observe that

W (P,AQ+(1-XN) Q') =esssup(AQ + (1 -\ Q',S)

SeS(P)
< Xesssup (@, S) + (1 — M) esssup (Q', S)
Ses(P) SeS(P)

=AW (P,Q)+(1-\NW (P,Q)

for all A € L (F)? with 0 < A < 1, hence, Q — W (P, Q) is conditionally convex.
Finally, (3.4) holds since (Q, D" (Q)) < (Q, E®) for all D*(P) € D" (P) implies that
(@,5(Q)) >0 for all S(Q) € S(Q). O

Theorem 3.2 (Existence of an Equilibrium Price). The Walrasian has a max/essinf
point P € ¥ such that 0 < essinfges, W (P, Q) = esssuppey essinfgoes W (P, Q). More-

over, this point P is an equilibrium price.

Proof. Since the Walrasian is a Ky Fan function, by Theorem 2.49, the existence of
the max/essinf-point follows. By (3.4), it follows that 0 < essinfoey W (Q,Q) <
essinfoey, W (F, Q). Thus, 0 < essinfgey; ess supSGS(ﬁ)<Q, S).

Next, we show that there exists S € L° (f)d such that ess SUPges(P) @Q,S) = <Q,§>
for each @@ € 3. Since ess SUPgcs(P) (Q,S) € L°(F), there exists a conditional se-
quence (SJ)JGN(f) in§ (F) with ess SUPges(P) (Q,S) = ess lim sup yen(r) <Q,SJ> by
the definition of an essential supremum.

Since S (P) C E® — C lives on 2, the conditional set lim sup je(r) S lives on 2. Thus,
there exists M T N (F)* such that limjea Sy exists and is denoted by S € S(P).
Since S; = E® — X for X; € argmaxycc {u® (X) | (P,X) < (P,E®)} by definition
we now consider the conditional family (X;),c,, in C © L° (F)? which contains a

converging conditional subsequence (Xj) ;cnp — X since C is conditionally compact.
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We observe that <?, Y> = lim je aqr <F, X J> < <F, E“>. Also, by upper semicontinu-
ity uf u, u (Y) =u (limJeM/ XJ) > esslimsup ey u(X;) = u (XJ) for all J € M/,
thus X is a maximizer. That means, S = E® — X is such that ess supSeS(p)<Q, S) =
esslimsup jen (7 <Q,SJ> = (Q,S). For fixed Q € ¥, we denote Sg (F) = S as just
defined.

Hence, <Q,§Q (?)> > 0 for all @ € X. In particular, this holds for the j-th unit vector
on A€ F, that is 14Q; = (0,...,0,14,0,...,0) € X. If ?ijk denotes the k-th compo-

_ _ PS5, .
nent of Sg,, it holds that Sg, > 0. Now, we define \; == 715 (1 —~ ZJ;P‘?S;H)
and observe that ngd Aj = land 0 < \; < 1 for all j € N. Furthermore, let
gx,k = ngd )\ng].,k. Since Sy € S (ﬁ) by conditional convexity of S (P), it holds

that ?ngj,k > = E#k ?ngj,i‘ Then,

g,\k = Z Aj?ijk

Jj<d

PiSo. _ 1 P.S _
(1 S s fQLJ > SQj,k + -1 (1 T RPQwk ) SOk
> i<d PS¢, -1 > i<a PiSq;.
1 21 PiS0ii \ = 1 P.S _
_ oy (M> St (1 _ k@k) S0
- ngd PjSQj,j - ngdeSQj,j

~P;Sq,; = 1 PrSo, .k -
Zi-1 (2 ﬁ-éj ) Sewt g (1 ﬁ% — | Sawk
j#k j<d 3P Qj4sd ngd JRQj.1

Thus, Sy (P) > 0, hence, P is an equilibrium price. O

In general, these equilibrium prices are not unique, mainly because of Proposition 2.30
if the maximizer is not unique by some given external information. Here we have only
established that if e-optimal prices always converge to the same price for € — 0, this limit
price is the only optimal solution. Another approach to ensure this is the translation-
invariance of the utilities, as for example in [CHKP16]. How this can be applied here is

subject to further research.
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3.2 Compactness of allocations

The assumption that the conditional set of allocations of goods is conditionally compact
is rather technical and motivated mathematically. Its reasoning although might be done

in an economic way.

According to [JWO02], JOFRE AND WETS’ assumption is translated into the condi-
tional setting by assuming that u® is conditionally sup-compact, that is, levs, u® =
{X e L°(F)* | ut(X) > a} is conditionally compact for all o € L°(F). Since u® is
assumed to be upper semicontinuous, this assumption means that only a boundedness
restriction is added to attainable good allocations. Since there exits X € LO (F )d with
X € intdomu®, the conditional set C := levy,a(x)u® fulfills the model assumptions.

This is also convenient with the standard optimization problem as in Theorem 2.12.

Another approach is a slight generalization of sensivity to large losses suggested by
[DLVMO7], also used in [CHKP16] or [FS04].

Definition 3.3. A conditional utility function u: L° (F)¢ — L° (F) is sensitive to large
losses if limy 00 u (AX) = —o0 for all X € L (F)? with 14X € —14L° (]_-)i+ for some
Ae Fi.

Lemma 3.4. The level sets of a conditionally concave, upper semicontinuous, proper
utility function are conditionally closed if the conditional utility function is sensitive to

large losses.

Proof. We assume that u (E®) > —oo for some E® € L° (.F)d as in the model and remark
that if limy_ee u (AX) = —00 then limy_ s u (AX + E%) = —oco for E* € LO (F)%. We
observe that {X e LO(F )i | (P, X) < (P, E“)} is conditionally bounded, thus condi-
tionally compact. Suppose that thereis A € LY (F) such that {X e LO(F)* |u(X) > )\}
is not conditionally compact. Then, there exists a conditional sequence (X ) NeN(F) i
L0 (F)* with (P, Xy) < (P,E%), u(Xy) > A such that limyenr) || Xn|| = 0o on Q,
if only on A, on A° we are done. Then, the conditional sequence (Xy — E?) /|| Xn]||

converges to Y € LO(F )d, if necessary, we pass to a conditional subsequence. By con-
struction, |Y| = 1, thus, 14Y € —14L° (]—")i+ for some A € F; due to the price

95



3 Walras equilibrium

restriction. Hence, for any A > 0 it holds that
Xy —E° A A
u (AY) > esslimsupu <)\> ess lim sup u ( XN+ (1 - > Ea>
NEN(F) [ Xl NeN(F) [ Xn]l [ Xn]|
A A
> esslim sup ( u(Xn)+ (1 — ) u (E“))
ven(r) . XN [ X

A A
> esslim sup < A+ (1 - > u (E“)) =u(E%) > -0
Nen(F)  \Xnll [ Xnll

in contradiction to that w is sensitive to large losses. O

Remark 3.5. We provide criteria for D* (P) to consist of exactly one point for fixed
P € X, and consequences of this. Among other, we consider strict conditional concavity
of the condtitional utility functions.

To that end, let u®: L? (]-")d — [—00; 00[ be conditionally strict concave. Let X,Y €
D*(P)and0 < A< 1. Then,u* AX +(1 =N Y) > (X)+(1 - N)u*(Y) € D*(P) in
contradiction to the maximality in the definition of D® (P). Thus, X =Y. By the proof
of Lemma 3.1, it holds that limsup jen(r) D (P;) € D*(P) whenever (P1) jenir = P
Thus, with D*(P) = {D"(P)}, we have continuity, that is, (PJ)J@N(}-) — P implies
D (P;) — D" (P).

3.3 Converging economies

We now consider continuity properties of the Walras equilibrium prices. Therefore, we
consider a lopsidedly disturbed Ky FAN inequality and its application to a converging

economy.

Theorem 3.6. Let C — L° (f)d be a conditionally convex, conditionally compact condi-
tional subset. Let Fy: LY (F) x L (F)* = I°(F), J € N(F), be conditional functions
with 0 < Fy (X, X) < oo for X € C and

(I). X — F;(X,Y) is lower semicontinuous for all Y € L° (F)?,
(II). Y — F; (X,Y) is conditionally concave for all X € L° (F)?,

for all J € N(F). Assume the conditional sequence (Fy) ey to converge lopsided to
a conditional function F. Then, it holds that F (X, X) > 0 for X € C and

(i). X — F(X,Y) is lower semicontinuous for all Y € L° (F),
(ii). Y — F(X,Y) is conditionally concave for all Y € L° (F)%.
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If X € limsup jen(r) AIGMAX y ¢ o (r)d (essianeLo(]_.)d F; (X,Y)) is a cluster point of

mazx/essinf-points of Fy then X € ArgMax y o rd (ess ianeLO(]_-)d F (X, Y)) also is a
mazx/essinf-point of F.

Proof. First, we observe that max/essinf-points of Fy are in C x C by Theorem 2.49

and Proposition 2.30. Since the conditional sequence (Fy) jen(z) of conditional func-

tions Fy: L0 (F)? x L0 (F)? — I°(F) converges lopsided to the conditional function
.70 (1 « 7O (Y _y TO " L (x/

F: LO(F)® x L (F)* — LY (F) for all conditional sequences (X;) KeN(F)

— Y in L (}")d with the property that

— X ; there

exists a conditional sequence (YK) KeN(F)
esslimsup ey r Fie (Xi: Y) < F (X,,Y).

Then, we observe that by lopsided convergence and (I),

essliminf F (X;,Y) > esslimsup essliminf Fy (X7, V)
JEN(F) KeN(F) JEN(F)

> essliminf essliminf Fy (X A Yi)
KeN(F) JEN(F)

> essliminf F (XK, YK) .
KeN(F)
Thus, there exists a conditional sequence (Xf) KenF) 7 X such that for all conditional
sequences (Yi)genr — Y it holds that essliminf oy z) Fr (Xk,Yk) = F(X,Y).
Hence, finally, essliminf ;o7 F (X, Y) > F (X,Y), thus (i) holds.
Further, for A € [0, 1] and conditional sequences (X ) jen(z) = X, (YJ) jen(z) — Y and
(Yj)JE]N(]:) — Y in L% (F)%, we observe that, by (II),

F(X,AY + (1= X\)Y’') <essliminf Fy (X;,AY; + (1= \)Y7)

JEN(F)
<esslimsup AFy (Xj,Yy) 4+ (1 — A) esslimsup Fy (XJ, Yj)
JEN(F) JEN(F)

<AF (X,Y)+ (1= \)F (X,Y)

which shows (ii).
For the last claim, observe that essinfy, LO(F)" F(X,Y) > 0 for a cluster point X of
max/essinf-points X ; of F; by Theorem 2.35. O

Theorem 3.7. Let ECO = (u®, %),y be an economy satisfying e* € int (domwu®). Let
(ECOJ) jen(r) be a conditional sequence of economics ECO7 = (u, ) geqr J € N(F),
that disturb the economy ECO. Assume that domuy = domu® for all J € N (F) and
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a € 2. Assume further that h-lim ;e ry uly = u® for all a € A. Then, all the economies
ECO,ECO,, J € N(F) have an equilibrium price P, P in %, lim sup jen(r) P lives

on  and P € lim SUP 7eN(F) P is market equilibrium of the economy ECO.

Proof. We introduce Walrasians for each economy and prove their lopsided convergence.
By S§,S87, we denote the excess supply conditional sets of the economies ECO, ECO;
and by W, W their Walrasians. We show that the conditional sequence (W) JEN(F)
converges lopsided to W, that is, for all (P,Q) € ¥ x X, it holds that

v (PJ)JelN(f) — P (QJ)J@N(]—') — Q: esslirrzsglp Wy (PJyQJ) < W(Pa Q)> (3-12)
JEN(F

3 (Pr) jenr) = PY Q1) jenr) — Q- ess liﬂ?glf Wi (Pr,Qy) 2W(P,Q)  (3.13)
eN

for P;,Q; € ¥ and J € N (F). To show (3.12), consider Q; = @ for all J € N (F) and

esslimsup Wy (Q g, Py) = esslimsup W; (Q, Py) < W (P, Q)
JEN(F) JEN(F)

as in the proof of Lemma 3.1. To show (3.13), choose Py = P for all J € N (F). Then,
for all conditional sequences (Q ) JeN(F) Q in X, it holds that

essliminf Wy (Py, Q) = essliminf W; (P, Q)
JEN(F) JEN(F)

= esssup <ess liminf Q 5, S> =W (P,Q)

SeS(P) JEN(F)

which shows (3.13). Now, the claim follows as a consequence of Theorem 3.6. O
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4 Path-dependent conditional optimization

In this chapter, we introduce an approach to optimization in a conditional setting depen-
dent on the observed path. The utility function may depend on history, for example, de-
pendent on the recent change of a stock market index oder changes in budget constraints
which will be our main example derived from the setting in Chapter 3. Conceivably, it

may be applicated to increasing risk aversion over time.

First, we give an introduction to conditional functions between different underlying o-
algebras. Then, we discuss the Euclidean conditional topologies with respect to these
different o-algebras. This is applied to convergence properties of conditional sequences
and their images under conditional function with respect to different o-algebras. To
concentrate on the methodology, we present the setting of the path-dependent condi-
tional optimization in discrete time in the continuous case. This will be generalized to

the common porperties of utility functions, semicontinuity and convexity.

4.1 Conditional functions with respect to different o-algebras

We consider mappings f: LY (G) — L° (F), first for G C F.

Definition 4.1. A mapping f: L°(G) — L° (F) is called G-stable if
JAAX +14Y) = Taf (X) + Lacf(Y)
for all X,Y € L° (G) and A € G. We call f a G-stable conditional function.

We observe that L° (F) is a G-conditional set, and thus, endowed with a G-conditional

topology, a conditional topological space.

Definition 4.2. A G-stable mapping f: LY (G) — L°(F) is called G-continuous if for
any conditional sequence (X ) NeN(G) that converges to X with respect to the Euclidean
G-conditional topology the conditional sequence (f (X)) Nen(g) converges to f (X) with
respect to the Euclidean G-conditional topology.
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Remark 4.3. We observe that the Euclidean F-conditional topology is finer than the
Euclidean G-conditional topology on the conditional set LY (F).

Example 4.4. An example of such a conditional function is motivated by the utility
function from Chapter 3. This example is discussed in detail in Section 4.4. Ordinarily,
let Am e LO(F)? be differences of prices and 9 € L° (G)? be trading strategies. Then,
the value V' (9) := JAm is a G-conditional function. If the prices are bounded, then V (+)

is a G-continuous conditional function.

Next, we consider mappings g: L° (F) — L°(G) for G C F.

Definition 4.5. A mapping g: L% (F) — L°(G) is called G-stable if
g(1aX + 14Y) = 1ag(X) + Lacg (Y)

for all X,Y € LY (G) and A € G. We call g a G-stable conditional function.

Definition 4.6. A G-stable mapping g: L (F) — L°(G) is called continuous if for any
conditional sequence (X ) Nen(g) that converges to X with respect to the Euclidean G-
conditional topology the conditional sequence (f (Xy)) NeN(g) converges to f(X) with
respect to the Euclidean G-conditional topology.

Example 4.7. The conditional expectation E[- | G] : L° (F) — L°(G) is G-stable and

G-continuous.

In Definition 4.2 and 4.5, we write lim,en f (X,,) or lim,en ¢ (X,,) if the limit exists for
the G-stable conditional function f or g, respectively, and for the G-conditional sequence
(Xn)pen and do not name the conditional topology explicitely. It is indicated by the
stability property.

In Section 4.6, we examine G-conditional functions with respect to arbitrary conditional
topologies. For the model the properties of the conditional Euclidean topology on L°
presented in Section 4.1 are sufficient. To construct the conditional expectation with
respect to arbitrary conditional measures and arbitrary sub-c-algebras and to present

general ideas of the time-shifts we will give an overview in Section 4.6.

4.2 Introduction to the setting

The time steps are 0,...,t,...,T. Information is given by a filtration (‘Ft)te{o,...,T}7

where the initial o-algebra Fy is trivial. Additionally, history gives information by
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observed values g, ...,2;—1 in R up to time ¢ — 1, denoted by = = (x¢,...,2-1). In
the future, these values are random, X, € L° (F,) for t < s < T. Dependent on this
history, the agent has trading constraints, given by a conditionally compact conditional
set C C L° (}'t,l)d. The trading strategies are denoted by ¥;_1 € C. We remark that
this conditionally compact set may also depend on the history, for simplicity, we assume
that it is constant. We want to optimize the utilities (us),. . Where each utility is
defined by o

ug: RO x LY (Fy) x LY (Feu1)® — LY (Fy)

(4.1)
(CC, X87195—1) = Ut (:1:7X87195—1) .

Example 4.8. This is a dynamic version of the utility in Chapter 3 where history is

given by real endowments. We give the details in Section 4.4.

4.2.1 General construction idea

For the continuous case, we often apply the following lemma. To formalize, we introduce

the conditional set

E(F):={ X € LY (F) |3a finite representation X = Z 14,2k,
1<k<k

rp € R, (Ak)lgkgk/ is a finite partition of Qin F, k € N

as a conditional subset of LY (F) of elementary conditional real numbers, and we call
X=>, <k<k LAy Tk for x;, € R and k € N a normal representation, always for a finite
partition (Ag), .z of Qin F.

In the sequel, we assume every function to be nonnegative. If this is not the case, we do

the proof for the positive and negative part seperately as in standard measure theory.

For the following lemma, we recall that L°(F) as a conditional topological space is
regarded as an R-module and that R is the measurable functions with respect to the

trivial o-algebra Fjy.

Lemma 4.9. Let f: RxRx L% (F) — L° (F) be a mapping with the following properties.

f (13,% :H-Aﬁ + ]]-Acﬂl) = :H-Af (CU, y719) + :H-Acf (‘Ta Y, ﬁl)

(4.2)
for all (z,y) € R, 9,9 € L°(F) andA € F,
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that is, 9 — f (x,y,0) is F-stable for fized (x,y) € R x R, and
lir%f (z", y", 9") = f (x,y,9) in LY (F)
ne
for all lim 2™ = zin R, lim y"™ = y in R and lim 9" = 9 in L° (F)
neN nelN neN

that is, (z,y,9) — f(x,y,1) is jointly Fo x Fo X F-continuous.
Further, let F: R x L° (F) x L° (F) — LY (F) be defined by

F (‘Tu ]]-Ay + ]]-Acy/a ]lAT9 + ]]-Acﬁ/) = ]lAF (.T, Y, 19) + ]]-ACF (x7 y/7 19/)

(4.4)
forallr € R, y,y' € L°(F), 9,9 € L°(F) andA € F

that is, (y,9) — F (z,y,9) is jointly F-stable for fivred x € R,
F(z,c-1q,9) = f(x,¢,9) force R (4.5)
that is, F and f are identical on R x R x L°(F), and

F (z,Y,9) :=esslimsup esslimsup F (z,Y"ANKV —-K,¥). (4.6)
KEN — (Y™), .NCE(F)
limpen Y=Y

It is the unique mapping with (4.4), (4.5) and

lim F (2", Y™, 0") = F (x,Y,9) in Lo (F)
ne

for all lim 2" = zin R, lim Y™ = Y in L° (F) and lim 9" = 9 in L° (F),
neN nelN neN

(4.7)

thus, the unique mapping with (4.4), (4.5) and such that (x,Y,9) — F (z,Y,9) is jointly

Fo X F X F-continuous.

The proof will be given in section 4.5 and we recall that all limits are with respect to

the Euclidean conditional topology on L° (F) or in R.

4.2.2 Utility’s and generator’s dependence on the path

We continue with the model and give the properties of the utilities and generator depen-
dent on the observed history with the notation = = (xg,...,z;—1) as before. We assume

that up = 0 and that we have already an optimal utility at time ¢ that is as follows. The
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utility
u: R x L0 (Fi_1)* — LO(F) 48)
(7, 24, 01-1) = g (2, 04,0 -1)
is a mapping that has the following properties,
im (x, Ty, La0i1 + IlAcﬂ’) = laus (x, e, 0—1) + Lgeuy (a:, Ty, 19271) (4.9)
for all (z,2;) € R x R, ¥y_1,9_, € L° (Fi_1)* and A € Fy_y, '
that is, ¥ +— ug (z,x¢,9) is Fy_1-stable for all (z,2;) € RI~! x R, and
iier%ut (2™, 2}, 07 1) = w (@, ¢, ¢ 1)
(4.10)

for iler% " =zinR!, TlLIGI% xy = z¢inRand %16% o7 =9,_1in L° (F_1)?,
that is, (z,z¢,9) — w (z, 2, 9) is jointly Fy x Fy x Fy—i-continuous. We recall that the
equation lim,cn us (m”,x?,ﬁ?fl) = uy (2, 24,94_1) in (4.10) is in the L° (F;_1)-module
LY (F).

We remark here that for an optimal utility at time ¢ the history is known up to time
t. We know want to derive an optimal utility u;—; at time ¢ — 1, there, the history
is not known, thus, X; is random. That means, in view of Lemma 4.9, regarded from
time ¢ — 1 the utility at time ¢ depends on the path x up to time ¢ — 1, a random path
step X; € L° (F;) and the trading strategies ¥ € L° (F;—1)?. The generator is then to
eliminate the random path step to derive the optimal utility w;—; and its properties. An
example for that is conditional expectation in Example 4.23. The generator plays the

role of an aggregator in the theory of recursive utilities, see for example [Ski98].

Thus, with Lemma 4.9 and the assumptions (4.8), (4.9) and (4.10) on the utility u; we

construct

s RV x LY (F) x LY (F_)® — LY (F)
(x, X,0) — 1y (z, X,0),
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such that

Uy (2, 2 lq, V1) = ug (2, 2, Ve—1)
for allz € R, 2y € Rand 9y_; € L° (F_1)?,

Uy (2, 14Xy + Dac Xy, La¥1 + Lacdy) = Laty (z, Xy, 01) + Lacty (v, Xy, 0-1)
for allz € R, Xy, Xy € LY (F), 9—1, 0,1 € L (Fi_1)? and A € Fy_1, and

(4.11)

(4.12)
lim 4 (2", X', 97 () = @ X, 0
nlel%ut (l’ y Nt t,l) g (2, X¢, V1)
for all lim 2" = zin R, lim X{'=X;in L°(F), lim 9, =% 1in L (]-"t,l)d.
neN nelN nelN
(4.13)
Finally, the generator is defined as follows. The mapping
Gio1: LY (F) x R < LO(F) — LO (Fiy)
(u,z, X) — Gi—1 (u, 2, X)
is jointly F;_1-stable in the sense that
Gi—1 (Lau+ Laer/, 2, 14X + 14eX') = 1aGi— (u, 2, X) + 1aeGyq (v, 2, X) (4.14)
for allu,u’ € L° (F), z € R, X, X' € L°(F,) and A € Fy_; '
and it is jointly Fy_1 X Fgy X JF_1-continuous, that is,
lim Gy—q (u™, 2", X") = G4—1 (u, 2, X)
nelN (415)
for all lim «" = win L° (F;_1), lim 2" = z, and lim X" = X in L° (F;_,).
nelN neN neN

We remark here that the generator is not defined first for known history up to time ¢ and
then enlarged as proposed in Lemma 4.9. First, Lemma 4.9 cannot be applied technically
because of nonmatching spaces. Second, a pointwise definition of the generator does not

match known and random time steps.

Now, we discuss how the next random path step is dependent on the observed path.

Here, we assume that

X R = L0 (F)

x— X¢ () (4.16)
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is continuous, that is,

lim X; (z") = Xy (x) for all lim z" = x. (4.17)
neN neN

This is mainly motivated by the example in Section 4.4 and its mathematical applica-

tions. An enhancement of the model here would be appreciated.

We sum up some properties of utilities and generator. To that end, we define the

following auxiliary functions. The mapping

r: R 5 L0 (Fip)® — L0 (Ry)
(.%',19) = ’&t (.’L‘, 19)

defined by
Ut (z,0) == Uy (z, X¢ () ,0) (4.18)
is jointly Fgy x JF;_1-continuous, that is,
TlllgliI ay (2,9} 1) = G (z,9) for all %161%:1: = zand Ylller% U =0 (4.19)

by (4.17) and (4.13). Futher, define the mapping

Gi1: RV x L0 (-thl)d — L° (Fe-1)
(.’E,I?tfl) — thl (x>19t*1)

by
Gio1 (2,94-1) = Gy (g (2,9¢-1) , 2, X (2)) .

We examine the properties of the mapping Gt_l, the generator that provides the recur-

siveness of the utilities, thus,

w1 (z) = esssup Gy_1 (,0) .
Ise

We want to show that (é?_l) with G7_, (z,9;_1) = G¢_1 (¢™,9;_1) is a conditional

sequence of conditional functions that hypoconverges. Now, let lim,en ¥} | = ¥;—1. In

view of Corollary 2.31 we want to show that (ﬁt_l — G?_l (, 191:—1)) N hypoconverges.
ne
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4 Path-dependent conditional optimization

By definition, we observe that

Gi1 (UU, 101 + HACT%_1)
= Gt—l (’llt (I’, ]lAﬂt_l + ﬂAcﬁ;_l) , Ly X (x))

=G (ﬂt ($ X (1') Ta¥1 + I[ACﬁ;t—l) ( ))
= G—1 (Laty (z, X (x),0-1) + Lacty (z, X( ) 9_1) .2, X (2))
= Gi—1 (Laty (z,9—1) + Lacty (z,9)_1) ,z, X (z))

= 14G—1 (g (z,94-1) 2, X () + Lac Gy (ut (z,91_1) 2, X (z))
= 14Gi—1 (2,04-1) + LacGy_1 (z,9)

for all A € Fi_1 by (4.12) and (4.14). Thus, ¥—1 — Giq (z,94—1) is a conditional

function.

Further, let lim,en 2" = 2 and lim,en 9} ; = ¥. Then, with the definition (A}'?_l (z,9) =
Gi_1 (z™,9) it holds that

lim G , (z,971)

neN
-l (02
= rl]{lel'%I Gt—l (ﬁt (.an,X (xn) s ?;1) ,l’n, X (l'n))

= thl 'rlLEH]Il\T Ut ( X ('In) 719?—1) "rlllen& ﬂfn,}llen&X ('In)>

lim z™ hm X ("), 111%19?1> ,x, X <lim x”))
ne

(i (e (17) 02) o 0)
= G (U (2, X (2) ,011) 2, X (2))

by (4.15), (4.13), (4.17), limpen 2" = x and lim,en 9} ; = ¢J. Hence, in particu-
lar, esslim sup,,cn @?_1 (ac,ﬂ?’_l) < Gy-1 (g (x, X () ,94—1),2,X (z)). Since the con-
ditional set C C L° (ft,l)d is conditionally compact we can apply Corollary 2.31 and

obtain

lim w1 (2") = lim esssup G7 ; (9) = esssup Gy_1 (¥) = w1 (). (4.20)
n€N neN  9eC veC

Lemma 4.10. Let u; be a utility mapping given by (4.8), (4.9) and (4.10). Then,
for a conditionally compact C = L° (ft_l)d, the mapping x +— w1 () defined by
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4 Path-dependent conditional optimization

ur_1 () := esssupyee Gi_1 (,9) is Fo-continuous, that is, limuen u—1 (27%) = ug_y ()

for lim,en 2™ = x.
Proof. These are the assumptions from Section 4.2.2 and it has been shown in (4.20). O

Example 4.11. A typical generator is conditional expectation with respect to a condi-
tional measure in its generalized form as in Example 4.23 by what has been discussed

in Section 4.6.

4.3 Hypoconvergent generators and semicontinuous and

conditionally concave utilities

In order to obtain (4.20) the assumptions on generator and utilities may be relaxed, and
thus, the model will be generalized. We replace them by a semicontinuous assumption on
the utility and a Fatou type assumption on the generator in order to propose a slightly
different approach to normal integrands, as or example in [RW09]. We recall that L°

denotes the random variables with values in R U {—o0}.

Again, we assume that X;: R~! — L9 (F;) is continuous, that is

%len& X (2") = Xy (x) for all 7%161151{130 =z, (4.21)

again, for the R-module L° (F).
The utility

U - Rtil X R % LO (.Ft_l)d — LO (.Ft)

(4.22)
(3U73?t7 Vi—1) — (x,xt,ﬁt—l)

is a mapping that has the following properties,

ug (@, ¢, La0s—1 + Dae?’) = Lawg (@, 24, 04—1) + Lacws (@, 24, 9]_)

(4.23)
for all (z,2;) € R x R, 91,9, , € Cand A € F;_1,

that is, ¥ — uy (z, 24, 1) is Fy_1-stable for all (x,z;), and

ess lim sup u; (x",:r?,ﬂ?_l) < ug (2, my, %—1)
nelN (4.24)

for lim 2" = zin R, lim 2 = 2;inRand lim 97 , = 9, in L° (F;_1)?,
neN neN neN
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4 Path-dependent conditional optimization

thus, F;_i-upper semicontinuous (that is, upper semicontinuous w.r.t. the conditional
Euclidean topology for the LY (F;_1)-module L°(F;)) for converging history and con-

verging trading strategies, and

Ut (JI,(L’t, )\19t_1 + (1 - )\) 19/) > /\ut ($,$t,19t_1) + (]. — )\) Ut (x,xt,ﬁ;/,l)

(4.25)
for all (z,z;) € R, ¥4_1,9,_; € Cand X € [0, 1],

thus, conditionally concave in the trading strategies for constant history. For recursive-

ness of the utilities the aim is to construct a mapping

w1 R = LO(F
=l L (Fi) (4.26)
x = up—q ()

which is upper semicontinuous and independent of trading strategies, the control vari-

ables, at time t.

The extension #; of u; will fullfill

at (.’E, T, 1915—1) = Ut (.’E, Tt, ﬁt—l) 5
for allz € R", X, € L° (F,) and9,_; € L° (Fi—1)?,

Gy (@, 1aXy + Lac Xy, Ladiq + Lac¥s) = Laty (2, X¢, 9—1) + Lacty (z, X, 94-1)
for allz € R, Xy, Xy € L0 (Fy) 94—1, 0,1 € L (Fi_1)? and A € Fi_1, and

(4.27)

(4.28)
ess lim sup (:U", X7, 29?_1) <ty (z, Xy, 0—1)
neN
for all lim " = zin R, lim X" = X;in L° (7)), lim 97 | = ¢,_y in L° (F;_1)?
neN neN neN
(4.29)
according to the construction in Lemma 4.13 at the end of this section.
Analaguously, the mapping
Up: ]Rt_l X LO (./_"tfl)d — LO (.7:15)
(z,79) — Gy (x,9)
defined by
U (x,9) == (z, X3 (x) , ) (4.30)
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4 Path-dependent conditional optimization

is jointly Fp x Fy_1-upper semicontinuous, that is,

esslimsup @, (2", 97 ;) < @ (z,9)
neN (431)

for all lim 2" = zin R ! and lim 97 1 =U1in L (ft_l)d
neN neN

by (4.21) and (4.29).
The generator mapping
Gi_1: LO (.Ft) X Rt_l X LO (ft) — LO (ft—l)
(u,z, X) — Gi—1 (u, 2, X)
is jointly F;_i-stable in the sense that

Gio1 (Lau+ Lact, 2, 14X + 14e X') = LaGy1 (u, 2, X) + 14e Gy (v, 2, X)

(4.32)
for allu, v’ € L°(F;), 2 € R"Y X, X' € LY (F) and A € F_y,

it is monotone for fixed history, that is,
Gt (u,2,X) < Gy (v, 2, X) foru < u'and fixedz € RTL X e LV (F)  (4.33)
and it has a Fatou property for converging history, that is,

esslimsup G;—; (u", 2", X") < Gy (ess limsupu”,:c,X>

neN neN (4.34)

for all lim 2" = zinR''and lim X" = Xin L° (F;_;).
neN nelN
We remark that the property (4.33) yields a time-consistency.
Again, finally, we define the mapping

Gt—li R x L0 (th_l)d — L0 (th_1>
(2,9 1) = Gi_1 (2,9 1)

ét—l (@, 0¢-1) == Gi—1 (U (2, 0¢-1) 2, X ().
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4 Path-dependent conditional optimization
All stable properties remain as in Section 4.2.2, thus,
Gt (2, 1401 + 1ac¥)_ ) = 1aGio1 (2,04-1) + LacGyq (2,0)

for all z € R, 0, 1,9, , € L(F_1)% and A € F_;.
Further,

ess limsup G7_, (z,971)

nelN
= esslimsup Gy (2™, 97 )
neN
= esslimsup Gy—1 (% (2", X (z"),97,) 2", X (2™))
neN
<G, li G (2, X (z"), 9™ ,) , lim 2", lim X (2" ,
< Gy (ess;érﬂlqsuput (z (z™),971) lim 2, lim (x )) (4.35)

< Gy (ﬂt <lim ", lim X (z"), lin% 19?1> ,x, X (hm x"))
ne

nelN neN neN

=G (ﬂt <:):,X (hm x”) ,19t_1> ,r, X (x))
neN

=G (U (z, X (x) ,04-1) , 2, X (x)) .

by (4.34), (4.33), 4.29, (4.17), lim,en 2" = x and lim,en 97| = 1.

The result is stated in the following lemma.

Lemma 4.12. Let w; be a utility mapping given by (4.22), (4.23) and (4.24). Then,
for a conditionally compact conditional set C = L° (ft_l)d, the mapping x — uz—1 (x)
defined by ui—1 (z) := esssupyec Gi1 (x,v) is upper semicontinuous for converging his-
tory, that is, similarly to the assumption (4.24), esslimsup,,cn ui—1 (2") < us—y (z) for

lim,en 2" = .

Proof. These are the assumptions presented in Section 4.3 where the result has been
proven in (4.35). O

Lemma 4.13. Let f: R x R x L°(F) — LY (F) be a mapping with the following prop-

erties.

f (.T, Y, ]lAﬁ + ]lAC'ﬁI) = ]lAf (xvyv 19) + ]lACf (1771/719/)

(4.36)
for all (z,y) € R?, 9,9 € L°(F) andA € F,
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4 Path-dependent conditional optimization
that is, 9 — f (x,y,0) is F-stable for fized (x,y) € R x R, and

esslimsup f (2", y",9") < f (z,y,9)
neN
for all lim z" = z in R, lim y" = yin R and lim 9" = ¢ in L° (F)
nelN neN neN

that is, (z,y,9) — f(x,y,9) is jointly Fo x Fo X F-upper semicontinuous.
Further, let F: R x L°(F) x L (F) — L° (F) be defined by

F (l‘, Tay + ]lACyla 149 + ]lAC'Lg/) =1aF (:L'ayv’lg) + 1y F (IL‘, y/a’lg,)
for allx € R, y,y € LY (F), 9,9 € L°(F) andA € F

that is, (y,9) — F (z,y,9) is jointly F-stable for fivred x € R,
F(z,c-1q,9) = f(x,¢,9) force R
that is, F and f are identical on R x R x LY (F), and

F (z,Y,9) :=esslimsup esslimsup F (z,Y"AKV —-K,9).
KeN  (Y"),enCE(F)
limpeyn Y=Y

It is the unique mapping with (4.38), (4.39) and

esslimsup F' (2", Y™, 9") < F (x,Y,9)
neN

for all lim 2™ = zin R, lim Y™ = Y in L° (F) and lim 9" = 9 in L° (F),
neN neN nelN

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

thus, the unique mapping with (4.38), (4.39) and such that (z,Y,9) — F(x,Y,0) is

jointly Fog X F X F-upper semicontinuous.

The proof is presented in Section 4.5.

4.4 Example

We return to the setting of Walras equilibrium prices from Section 3.1. In a multi-period

model, the equilibrium may be solved by considering a one period model from the initial

time to time 7" given the filtration (F;),_, , of o-algebras. Here, we propose a stepwise

maximization similar to the Dynamic Programming Principle making use of Chapter 4.

111



4 Path-dependent conditional optimization

The endowments Ef € L° (]-"t)i constitute the observed history. An additional endow-
ment may depend continuously on the history, for example, a constant production, that

is,

ES: LY (F) x . x LY (Fy)? — L0 (F)?

a a a a a (4-42)
(EY,...,E} ) — E} ((EY,...,ELY))
is continuous, that is,
lim E} (E%") = Ef (E®) for all lim %" = E* (4.43)
neN neN

for E* = (EY,...,E} ) and E*" = (E}",...,E""). The trading strategies are
¥y € LO(F,)? the ways, the endowment can be exchanged. For the notation ¥* =
(05,...,9¢ ) and 9*" = (97", ..., 9;"), the utility

up: L0 (F)? x . x DO (Fm)d < L0 (F)? x L0 (F)? x ... x L0 (F)?
— LY (F) (4.44)
(ES, ... ES 0%, ... 0%) = ug (ES, ... ES 09, ... 9%

is jointly Fi X ... X Fr_1 X Ft X F1 X ... x Fi-stable, upper semicontinuous for converging
history and converging trading strategies, cf. (4.24), and conditionally concave in the

trading strategies for constant history, cf. (4.25).

The generator may be jointly Fi X ... X Fy_1 X Fy x F1 X ... X Fy-stable in util-
ity and trading strategies, (4.14), monotone for fixed history, (4.33) and may have
the Fatou property for converging history, (4.34). These assumptions are fullfilled in
the economy described in Chapter 3, now, in multiple period. Further, the genera-
tor may be such that a bunch of goods if either useless or useful in all times, that is,
for any fixed path and trading strategies (Ei—1, By (Ei—1) ,%—1,7¢ (94-1)), it holds that
Gi—1(ug, By—1, By (Ey—1) ,94—1,% (04-1)) = —oc if and only if v, = —oo, that is if the
utility at ¢ is proper, then also the utility at £ — 1. This is, for example, the case if
Ef | +9f_, + E} is the bunch of goods that is traded at time ¢.

Now, our induction assumption is, that under all the given assumptions in Section 4.4,
there exists an equilibrium price P, € ¥, = {P el (Ft)i | Y i< Pi = 1}, that is, there

exists

g e;(P)={y e’ (F) Y cargmaxyee {u* (V) | Y €CF (P)}}
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4 Path-dependent conditional optimization

for Cf (P) = domw® N {Y e LO(F) | (PY) < (P, Ea)} and a conditionally compact
conditional set C; € LO (F,) with Y ae 9% > 0.
We will show that there is an equilibrium price ]5,5_1 € ¥4_1. As in Chapter 3, we define

vy and vi_1. Let

Tav (Eg—la Eg (El‘fl—l) aﬁ?—la 19? (19?—1))
Laug (Bf_y, Bf (Ef_y) 981, 0 (9_4)) if (P (P1), 9§ (05_1)) <0,

—T1 400 else,
and

]]. E'Cl ?0C17 f P— 71907 S 07
Lavey (Ef-y,07-,) = zut( 1 05-) 11< 1-1,98_1)
—LACO else.

(4.45)

All properties on utilities and generator that are applied in the sequel have been proved
in Chapters 3 and 4. In fact, the original properties that have been imposed on the

utilities directly are replaced by those of the generator.

Now, we try to find 19?_1 such that

(U (Eaaég—laptfl) = esssup vy (B0}, Pi-1) . (4.46)
19?_1663_1

In the sequel, we omit the agent in the terms, and to shorten notation, we write x¢ ()
which is 1 if ¥ € C and —oo else, and conclude that

esssup Vi1 (E“, 974, Pt—l)
99 €C 1

= esssup Xq(p,_,s_)<o0} (Vi_1) w—1 (B, 95_4)
9¢_1€Ct—1

_ a
= €8SSup X{(P,_,9¢ ,)<0} ( t—1)
9¢_1€Ct—1

ezs Sgp Gi—1 (Ut (Ea7E? (Ea) ) ;51—1719? (19?—1) yPro1, Py (Ptfl)) 7Eaa E)? (Ea))
2eCt
a

= esssup X{(Pt,l,ﬁ,‘},l)SO}( 1)
9¢_€Ci—1

e:ﬁgélp Gt—l(ut (Eu, -Ez‘;l (E'Cl) ) ;‘/1717 19;‘,1 (19;‘/171)) X{<Pt(Pt*1)’ﬂ?(19§,1)>§0}7 Ea’ Eg (Eﬂ))
t t
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4 Path-dependent conditional optimization

By assumption on the equilibrium price P, and 4.33,

_ a
= esssup X{(Pt,l,ﬁg,QSO}( t—l)
9¢_€Ct—1

Gror (e (B BF (B%) 050, 08 (95-0) ) Xqiapvy.an(or )y <oy B B2 (B9)

Since G¢_1 has the property that if it is —oo at time ¢, it is —oo at time ¢ — 1, this is

equal to

= esssup X{<Pt—1719g71>§0}x{<}5,«,(Pt,1),1§?(19?71)>§0}( ;‘_1)
98 _€Ct—1

G (ut (E B (B%), 01,9, (ﬂt,l))  E° P (E“))

Here, the optimization problem has the same properties as in the induction assumption,
with one exception. The half plane condition for the trading strategies and the structure
of the sets C* (P;—1) have changed. It is now, whatever prices are at time ¢ — 1 and ¢, the
trading restrictions are never violated, even if prices in previous periodes have changed.
But this assumption is the classical one, also imposed when considering a one step model

from initial time to final time. Thus, the claim is proven.

4.5 Proofs of the lemmas

We give now the proof of Lemma 4.9.

Proof. First, we consider the mapping F on the conditional set R x E (F) x L° (F). Let
Y = cher Lauk = D oo 1A, Uk be two normal representations of Y € F (F).
By the defining properties (4.4) and (4.5), 1a,na,, F (2,Y,9) = 1a,na,, f (2, 98,9) =
La,na,, f (2, yx,9) which is independent of the representation of Y since 1a,na,, yx =
Laynay, e = La,na,, Y. Next, we prove that F' defined on R x E (F) x LY (F) is con-
sistent with the definition in (4.6). To that end, let (z,Y,9) € R x E(F) x L°(F)
with Y = >,z layr and (Y"), o in E(F) with lim,en Y™ = Y and Y" =
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4 Path-dependent conditional optimization
21 <kn<F" 1 A, Y- Then, it holds that

Y = esslimsup (Ltimgen o> KK + Li— k>l e vy (—K)
c

+ﬂ{_K§1imnelN YnSK} 711161% Yn)

=esslimsup lim Y"AKV —K
KeN  neN

since Y is elementary. Now, for any choice of k, k" with 1 <k <k and 1 < k" < k", we
have that

HAkﬂﬂne]N Aln iler% F ('7;7 Y", 19) = ]lAkﬂﬂne]N Afn 71116% f (I, yznv 19)

= ]]-Akﬂﬂ"eN Apn f ([E, Y, 19)
= ]lAkmnne]N AEHF (337 Ya 19) .

by assumption (4.3). Put together, by stability,

lim F (z,Y"™,9)
meN

= lim esslimsup esslimsup F (z,Y"AKV —K,9)
meN  KeN  (Y™), .nCE(F)
limpen Y=Y™
= lim esslimsup esslimsup 1,xF (z, K,9)
meN  KeN  (Y"), . CEF) "
lim,en Y=Y™

+ 14y F (2, V" 0) + 1 ,-xF (2, - K, )

= lim esslimsup 1 4x F' (2, K,9) + 1ax F (2, Y™, 9) + 1, F (2, - K, 1)
meN  KeN " m

= F(z,Y,9)

with AK .= {y" > K}, A,K := {-K >Y"} and A} := (A,IfUAT_LK)C. Thus, F' on
R x E(F) x LY (F) fulfills (4.6).

For the general case, let § € L° (Ft) - Assume that limpen 2" = 2 in R, limpen Y" =
Y in L°(F) and lim,ex 9" = ¢ in L° (F). We want to show that here exists m € N
such that ||F (2", Y™, 9") — F (z,Y,9)|| < ¢ for all n > m. By definition of F', there
are sequences (Y;"), . and (Yi)pen in B (F) with limgen V' = Y7, limgen Yi = Y,
lim F' (2™, Y,;*,0") = F (2™, Y™, 9") and lim F' (z,Y},,9) = F (2,Y,9).
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4 Path-dependent conditional optimization

This implies that there exists k € N, such that, by triangle inequality,

| (2™, Y™, 9") — F (z,Y,9)|
<|F (2™, Y™, 90") — F (2", Y., 0") || + || F (=", Y, 9") — F (z, Yy, 9)||

+ || F (2, Y, 9) — F (2,Y,9)] (4.47)

) 0

for all k > k. Therefore, it is left to consider the term ||F (z",Y;",9") — F (x, Yy, 9)||.

Again, for all € € LO (F) there exists ¥ € N such that, by triangle inequality,

++

Ve = YVl < Ve = Y[+ [V =Y+ [Y" =Y <e (4.48)

for all k > k. In terms of normal representations, the remaining term in (4.47) and

inequality (4.48) are reformulated by

||F(x”7Yk",19”)_F(;L»’Yk,,ﬁ)n = Z ﬂAmﬂAm/Hf (xn’y;r:’zk,ﬂn> _f<$7yfn/7l9) H

meN
m’'eN
(4.49)
and
n,k k
> Lapnallvpt — vkl <e (4.50)
meN,m'eN

for ;' = > cn IlA%,ky;L{k and Y = > ien ]lAfn,yﬁz" Inequality (4.50) together with
the assumptions ||z — z|| < & and [|9" — V|| < £” of the general case and (4.3) yield
that there exists 7 € IN such that

17 (2 ) = £ () <

for all n > 7 by Lemma 4.14 on the compact interval [yfnk A y’;ﬂ,yfr{k \% yfjl,] Hence,
with inequality (4.47), we conclude that

|E (2™, YY", 9") — F (z,Y,9)]| <6

for all n > m. For the uniqueness, let F' fulfill properties (4.4), (4.5) and (4.7). Then,
there exist A € F, x € R, Y € L°(F) and ¥ € L°(F) such that F(z,Y,9) #
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F(z,Y,9) on A. Now, there exist Y, € E(F) such that F(z,Y,,0) = F(z,Yy,?)
on A and lim,en Y, = Y. Then, it holds that F (z,Y,¥) = limpenx F (2,Y,,9) =
limen E (2, Yy, ) = F (z,Y,9) by (4.7), in contradiction to F (x,Y,9) # F (z,Y,9) on
A. Thus, the lemma holds. O

The following lemma is a conditional version of a characterization of P-almost sure

uniformly continuity.

Lemma 4.14. Let f: R x R x LY (F) — LY (F) be a mapping with the following prop-

erties.

f (1’, Y, ]lAﬁ + ]lAC'ﬁ,) = ]lAf (l’,y,ﬁ) =+ ]lAcf ('1.73/719/)

(4.51)
for all (z,y) € R%, 9,9 € L°(F) andA € F,
that is, ¥ — f (z,y,9) is F-stable for fivred (x,y) € R x R, and
(4.52)

for all lim z" = z in R, lim y" = yin R and lim 9" = 9 in L° (F).
neN neN nelN

Then, for a compact interval I C R and a conditionally compact conditional interval
I LY(F), foralle € L° (F), , there exist 6 € Ry and § € L° (F),, such that

||f($1,y1,’l91) - f($27927192)” <e
if|x1 — 1;2‘ < (5, \yl — yg‘ < 6cde191 — 192” < g

for all xy,x2,y1,y2 € I, V1,92 € L.

We remark here that the stricter assumption || — ¥2|| < d1q for § € R4y is a uniform
assumption, thus, a convergence assumption in (L, ||-||oo). For our purpose, the latter

is too strong and not often fulfilled.

Proof. The proof is as in classical analysis. Assume to the contrary, that there exist
sequences ("), cn s (T") pen 0 L, (Y™)pen s (T )pen in L and (97), o <5n> N in Z such
that |07 =7 < L, ly? =77 < L, [0 =0"| < L and || (2", 5", 0") — £ (2", 5", 07| =
for all n € IN. On the compact subset I C IR, there is a cluster point x of the sequence
(2"),,ex and a converging subsequence (2"* ), .o With limit 2. Similarly, there is a cluster
point y of the sequence (y™* ), and a converging subsequence (y" ). With limit y.

On the conditionall compact conditional subset Z C LY (F), the sequence (J™),. has a
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converging conditional subsequence with limit ¢, in other words, there is a subsequence
(0"™) en With limy,en 9" = 9. By construction, also lim,enx 2" = z, limpen y"™ =
y and lim,,en 0™ = . By assumption (4.52), it holds that lim,cn f (2™m, y™m, 9" ) =
f(z,y,9) and lim,en f <E”m,§”m,5nm) = f(z,y,9). Therefore,

e < |[Tim f (@™, g™, 0") — Tim f (7,570 )|
meN meN

< [[lim f (2", y", 0") = f (2, 9)]]
meN
IS @y 9) = Tim f (@57, 97 )| =0,
meN
which is a contradiction. Thus, the lemma holds. O
We give the proof of Lemma 4.13.

Proof. How to deal with the limit for K — oo has been shown in the proof of Lemma 4.9.
Thus, we may assume that Y is conditionally bounded. Let lim,cn 2™ = x, lim,en Y" =
Y and lim,en ¢ = ¢. We want to show that

esslimsup F' (z",Y",9") < F (z,Y,9).
neN

By definition of the essential supremum, there exists a sequence <T”,?n,5n) N such
ne
that

esslimsup F (2, Y™, 9") = lim F (fn,?naﬁn) .
neN nelN

Further, by definition of F', there exists a sequence (?Zn) in E (F) such that

kn€N

esslimsup F (", Y™, 0") = lim F (z”,?”,@”) — lim lim F (zn?jj ,E”) .
neN neN neN k,eN "

We make use of the proof of Lemma 4.9. Therefore, we may choose a subsequence
<:i",5~/n,1§")ne]N of (in’ﬁ”’5n>new such that lim,cn Z" = z, lim,en Y™ =Y for
Y™ € E(F), limpen 9" = 9, F(i”,f’",&") < F(i”/,?nl,1§"/> for n < n’ and
esslimsup,cn F (2™, Y™, 9") = lim,n F (:Z‘",?”,@”). Since Y™ € E(F), we write

yn — Zmngmn ]lf%n Ur,,, for a partition (A%n) of @ and gy, € R, my < My,.

My, <M,

We consider the joint partition (ﬂneN fl%n | 1 € {1,..., T}, n € ]N) on  which is
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4 Path-dependent conditional optimization

countable by definition and therefore can be denoted by (Aﬁ) N Since by construction

ne
lim,en Y™ = Y we observe that the sequence (Eﬁ<ﬁ, ﬂj_gﬁ) N is in E'(F) and its
: n ﬁ/e
conditional limit is Y where the indexing for 7 and A are corresponding, thus, ¥z = ¥y,
whenever A, = flﬁ%.

On ﬂnelN Anﬁzn for fixed m,, < m,, we observe that

1 jn esslimsup F' (2", Y",9") =14, lim F (:in,?nﬂgn)
n ne]N mn, nEN
L, Tim f (&5, 5,.0")
" neN ) (4.53)
1, limsup f (5,5, 0")
mn neN

114" f (ZE, ygln) =F (':U’ ]]‘Aﬁln yzln)

mn

IN

since <£", yn, 15") has been chosen such that F (i’”, yn, 15”) <F (56”/, Y"/@”/> for

nelN

n < n/, by 4.37 and lim,,cy 2" = z and for lims <y (Zﬁgﬁ’ :H.Aﬁgﬁ) =Y and lim,cn 9" =

1. Thus, since (A;l) . is a partition of €2, in (4.53), we consider the conditional union
ne

on all As, i € N. Hence,

esslimsup F (2", Y™, 9") = Z 1; esslimsup F¥ (™, Y™, 9")

neN AEN nelN
<> 14 F (214, 90.0)
REN
< F(z,Y,0)
by the very definition of F' which shows the claim. O

4.6 Conditional topology conditioned to a sub-o-algebra

Finally, we give some results for conditional topological spaces with respect to different
sigma-algebras.

Let X be a conditional set with respect to the o-algebra F and ¥ a conditional topology
on X. Let G C F be a sub-c-algebra. We want to consider X as a conditional set
with respect to G. Then, the conditional topology ¥ on (X, F) restricted to G will be a

G-conditional topology as a direct consequence of the following definition.

Definition 4.15. Let C € T be conditionally open. It lives on A¢ € F. Define A} :=
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4 Path-dependent conditional optimization

esssup{A € G| A C Ac}. Then, C* := {X € C| X lives on A} and is G-measurable} is a
conditional subset of (X,G). Further, the family ¥|G := {C* | C € ¥} is a conditional
topology on (X, G) and called the conditional topology ¥ restricted to the sub-o-algebra
g.

Example 4.16. The conditional Euclidean topology on LY (F) restricted to G is the

G-conditional Euclidean topology by construction.

Now, let X be a conditional set with respect to the o-algebra F. Let G C F be a
sub-o-algebra. Let T be a conditional topology on the conditional set X with respect to
g.

Definition 4.17. The smallest conditional o-algebra with respect to F that contains
all o (C) for C € ¥ is a conditional topology on (X, F) and is called the F-conditional
topology generated by T and denoted by or (T).

Example 4.18. The G-conditional Euclidean topology on L°(F) generates the F-

conditional Euclidean topology on L% (F) by construction.

Remark 4.19. We remark that (or (%g))|G = Tg and or (T£|G) = T for a F-
conditional topology Tr on X and G C F. The latter property is the reason why we
do not consider conditional expectation instead of a conditional topology restricted to
a sub-o-algebra since it is not reversible. Indeed, let Y be F-measurable, but not G-
measurable. For simplicity, let G be trivial. The L° (F)-open conditional set {Y }~ is not
reproduced when considering the F-conditional Euclidean topology, since the o r-stable
hull of {E[X | G] | X € {V}"} = LO(G) is L°(F) # {Y}".

Next, we give an example of a convergence property of conditional sequences with respect

to these different o-algebras.

Example 4.20. Let Q = {wy,wz, w3}, F = 2% and G = {0, {w1, w2}, {w3},Q}. The
conditional balls B (1,,) for all ¢ € L? (F), , which lives on A with e < 1 for all A € F
form an F-conditional topology T on L°(F). Now, by definition, ¥|G consists of the
conditional balls (—&’, &) living on {ws3} for e € R4 4. If the restriction e < 1 is omitted,
we obtain the conditional topology T’ on LY (F), an enlargement of T, then T'|G consists
of the conditional balls (—¢’,&’) 1, living on A for ¢ € R4+ and A € .

Next, the consider an example how convergence with respect to the conditional topologies
is transmitted. The conditional sequence (Xn )y, ) defined by Xy := (1-+%) Lo, +

%]l {waws) converges to X =1, in T and %'. If we consider the G-measurable elements
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4 Path-dependent conditional optimization

of the conditional sequence Yy = %]lw?, we may examine convergence with respect to
the conditional topologies T|G with limit Y = 0 and ¥'|G with limit Y’ = 0 living only

on {ws}.

Remark 4.21. Let G C F be a sub-c-algebra and let (Xx)yen(z) Pe a conditional
sequence in L? (F) that converges to X € L? (F) with respect to the Euclidean topology
%. Then, the conditional sequence (X ) Nen(g) converges to X on A* with respect to TG
on A* € G where A* = esssup{A € G | X lives on Aand is G N A-measurable}. If Xy is
additionally G-measurable, the conditional sequence converges in LY (G) with respect to
the conditional topology ¥|G, and the limit is X if it is G-measurable, too. Indeed, since
the conditional sequence (Xn)yen(r) converges to X in T, for any € € LY(F)44+ there
is N € N(F) such that | Xy — X|| < ¢ for all N > N. Now, by definition of T|G, a
conditional ball B¢ (Y) for e € L°(F),, and Y € LY (F) is mapped to B° (Y) C L°(G)
and lives on A7 N Aj. Therefore, we show that (Xn)yen(g) converges to X on A%.
For any ¢ € L°(G)4., the conditional ball B (X) is mapped to the conditional ball
B (X) on A%, thus, it holds that Xy € B (X) on A% for all N > N since Xy is
G-measurable. That is the claim, and for the second part, we observe that X lives on
A% if X is G-measurable.

Conversely, let (Xn)yen(g) be a conditional sequence in L°(G) that converges to X
with respect to the Euclidean topology ¥. Then, the conditional sequence (X ) NeN(F)
in LY (F) converges to X with respect to the Euclidean topology oz (T) which is just
a finer stability property. Indeed, for any conditionally open O T L°(F) that is the
F-o-stable hull of some O' € T, all Xy € O with N € N(G) belong to O, thus, also
for N € N (F). Further, also by definition, for A € F, Xy € O on A as well as
Xy €cOnO foral N>NVN if Xy € O for N> N and Xy € O* for N > N'.
Thus, the conditional sequence (Xy) NeN(F) converges with respect to the generator of
or (%).

Summing up, it is important to consider the corresponding conditional topology when

considering the limit of a conditional sequence. Thus, we give the following notation.

Definition 4.22. Let f: L°(G) — L% (F) be a G-stable conditional function for G C F.
Let (Xn)yen(g) be a conditional sequence in L°(G). Then, the convergence of the
G-conditional sequence f (Xy) Nen(g) ist considered with respect to the conditional
euclidean topology %|G where T is the conditional topology on L°(F). We write
limpen f (X5,) if the limit exists for the G-conditional sequence (Xy), n and do not

name the conditional topology explicitely if it is clear.
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4 Path-dependent conditional optimization

Let g: LY (F) — LY (G) be a G-stable conditional function for G C F. Let (XN) ven(r)
be a conditional sequence in L (F). If we want to consider the convergence of the G-
conditional sequence f (Xx) NeN(g) We only may assume that the G-conditional sequence
(Xn) NeN(g) converges with respect to the conditional euclidean topology ¥|G where ¥
is the conditional topology on L° (F).

We remark here, that this definition will often be applied for the identity. Also, any
other property in terms of conditionally open conditional sets is handled the same way.
If stability in the conditional set is with respect to a different o-algebra we always

understand the property as given here.

Example 4.23. [Conditional expectation with respect to a conditional measure| From
Section 1.2, we can define integrals with respect to a conditional measure p: § — LY (F) "
where § is a conditional o-algebra in L° (F). We extend this definition to the space L° (G)
for G C F, thus, a conditional expectation is defined for an arbitrary sub-conditional-
o-algebra with respect to an underlying sub-o-algebra. For a conditional sub-c-algebra
with respect to the same o-algebra, we refer to Section 1.2. Thus, it suffices to consider
the setup as in Definition 4.22. So, let & be a conditional o-algebra in LY (G) defined
by §|G. Then, the conditional measure u is projected such that pg (C) = p(ox (C)) for
pg: & — L°(G),, but, ug is only G-stable, and hence, the conditional integral with
respect to ug.

Further, for the definition of the integral with respect to ug, let f: L° (F) — L% (F) be a
p-integrable conditional function. Then, the G-conditional function g: L° (G) — L% (G)
is called the conditional expectation of f with respect to & if [ gxcdug = ffng(c)du
for all C € & and it is denoted by E, [f | &]. To show that such a mapping g exists
remark that by definition of ug, for indicator functions, then step functions, and by
monotone convergence, the equality holds for fositive conditional functions. Considering

positive and negative part yields the claim.
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Concluding remarks and discussion

Conditional theory and namely conditional variational analysis provide a large toolkit
of methods for optimization problems. Compared to classical variational analysis with

random sets and measurable selection there are the following remarks.

If we fix an underlying probability space for the conditional sets there is no need of
topological assumptions such as closed-valued mappings or Polish spaces. Integrability

of the utility is also not presumed.

These rather technical assumptions are replaced by stability conditions which usually
can be verified easily. Furthermore, conditional variational analysis also works in infinite

dimensional spaces, further examples are given in [JKZ18].

Further, the optimization of the utility has mainly been driven by assumptions on the
utility coming from the Walras setting in an economy driven by offer and demand. We
may apply this methodology to risk averse agents, or, just simple examples such as
u(z,Y,t)=1— e~ ENVIFIIE where Y is some allocation as in [CHKP16] and a, is a
scalar depending on the history x.

The price dependencies in multiple periods in the Walras setting are not clear cut. Other
assumptions on the utility such as translation invariance may allow to control the prices.
At any case, the path-dependency allows for a wider class of utility functions that takes

history in count.
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