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Abstract

Optimization and variational problems are considered in a conditional setting. To enlarge

the classical deterministic case we optimize utilities conditioned on information given by

a σ-algebra. Naturally, these optimization problems can be described by conditional

analysis, formally using conditional sets or L0-modules. In L0-modules, P-almost sure

convergence can be induced by a conditional metric, thus, conditional sets give a different

approach to optimization in stochastics.

Assumptions on the utility in conditional analysis are weaker than in the theory of

random sets. Therefore, conditional variational analysis provides directly the existence

of optimizers. Based on conditional sets we derive conditional topological results and

give a conditional integral dependent on the information. Further, conditional versions

of standard theorems in measure theory are stated.

As in classical variational analysis, a conditional set convergence is derived and applied to

conditional hypographs which is used to control maximizers. Then, we give a conditional

version of a saddle point problem. A conditional version of Brouwers fixed point theorem

gives the existence and stability of a Walras equilibrium, an economy randomly driven

by offer and demand. Finally, the optimization problem is solved in multiple periods by

the Bellman principle where the utility function additionally may depend on observed

history.

With a fixed probability measure conditional variational analysis provides all results di-

rectly without a lot of technical assumptions known from variational analysis for random

sets an measurable selection. These are, for example, topological properties or integra-

bility conditions on the utility. The setting also works for infinite dimensional spaces.

Thus, conditional variational analysis contributes to stochastic optimization.
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Zusammenfassung

Optimierungs- und Variationsprobleme werden in einem bedingten Zusammenhang un-

tersucht. Den klassischen, deterministischen Fall erweitern wir, indem wir Nutzenfunk-

tionen auf durch eine σ-Algebra gegebene Information bedingt optimieren. Natürlicher-

weise können diese Optimierungsprobleme mittels bedingter Analysis beschrieben wer-

den, formell durch die Verwendung von bedingten Mengen oder L0-Modulen. In L0-

Modulen wird P-fast sichere Konvergenz durch eine bedingte Metrik induziert, daher

gibt bedingte Theorie einen alternativen Ansatz zur stochastischen Optimierung.

Die an die Nutzenfunktion gestellten Bedingungen sind schwächer als bei zufälligen men-

genwertigen Abbildungen. Deshalb liefert bedingte Variationsrechnung direkt die Ex-

istenz von Optima. Auf Grundlage bedingter Mengen leiten wir bedingte topologische

Resultate her und führen ein bedingtes informationsabhängiges Integral ein. Weiterhin

werden bedingte Versionen von wesentlichen Sätzen in der Maßtheorie ausgewiesen.

Wie in klassischer Variationsrechnung wird eine bedingte Mengenkonvergenz hergeleitet

und auf bedingte Hypographen angewendet, um Maximierer zu kontrollieren. Danach

geben wir eine bedingte Version eines Sattelpunktproblemes. Eine bedingte Version des

Brouwerschen Fixpunktsatzes liefert die Existenz und Stabilität eines Walras-Gleich-

gewichtes, ein zufällig durch Angebot und Nachfrage getriebener Markt. Schließlich wird

das Optimierungsproblem in mehreren Zeitschritten mittels des Bellman-Prinzips gelöst,

wobei die Nutzenfunktion zusätzlich von der beobachteten Vergangenheit abhängen

kann.

Mittels eines festgesetzten Wahrscheinlichkeitsmaßes liefert bedingte Variationsrechnung

alle Ergebnisse auf direkte Weise und ohne einige technische Prämissen der Variation-

srechnung für mengenwertige Funktionen. Zum Beispiel sind dies topologische Eigen-

schaften oder eine Integrabilitätsbedingung an die Nutzenfunktion. Dieses funktioniert

in endlich- und unendlich-dimensionalen Räumen. Auf diese Weise trägt bedingte Vari-

ationsrechnung zur stochastischen Optimierung bei.
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Introduction

The main subject of this thesis is the study of utility optimization in a conditional

setting. With information given by a σ-algebra, the utility is optimized with respect to

the information. In a natural way, conditional sets or L0-theory consider this class of

problems.

In stochastics, P-almost sure convergence on a probability space (Ω,F ,P) is not in-

duced by a metric. Convergence in probabilty is induced by a metric, but stronger. In

L0-theory, a conditional metric inducing P-almost sure convergence can be introduced

which allows for a different approach to optimization in stochastics. Thus, classical

optimization is done pointwisely, in a conditional setting we optimize with topological

methods in a measurable way.

In multiple time steps, conditional theory allows for measurable and not only expected

utilities when passing from one time step to another. Also, utilities may depend on the

observed history and not only to current information.

There are different ways to evaluate assets in stochastics: preferences, risk measures or

utility functions. For preference and risk measures, the conditional setting is natural and

has been applied to optimization. Risk measures have been introduced by Artzner et al.

[ADEH99] and put in a dynamically setting, for example in Cheridito et al. [CDK06] or

Detlefsen and Scandolo [DS05]. A conditional setting for risk measures has been given

by Filipović et al. [FKV12]. Preferences in a dynamic setting have been introduced

by Kreps and Porteus [KP78, KP79] and preferences in a conditional setting have been

studied by Bielecki et al. [BCDK13], Karliczek [Kar14] or Drapeau and Jamneshan

[DJ16].

To involve the information given by the σ-algebra, the optimization problems have been

regarded in L0-modules. Early applications of the theory of L0-modules can be found

in Cheridito et al. [CKV15], Filipović et al. [FKV09] and Guo [Guo10b], [Guo11].

The concept of σ-stability which is a local property is very important for L0-theory.

Therefore, conditional theory has been introduced as a generalization of L0-theory by

Drapeau et al. [DJKK16] and Jamneshan [Jam14]. For further references to conditional

analysis in L0-modules and applications, we refer to Bachhoff and Horst [BH16], Cerreira
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et al. [CVKM+16], Cheridito et al.[CKV15], Frittelli and Maggis [FM14], Guo [Guo10a],

Orihuela and Zapata [OZ16b, OZ16a, Zap], and for optimization in conditional analysis

we refer to Jamneshan et al. [JKZ18].

In variational analysis or stochastic control theory, measurable optimization problems

are regarded pointwisely as set-valued maps. In order to find an optimal solution, the

problem is optimized pointwisely for each ω ∈ Ω. The existence of a global solution

which is measurable is obtained by the application of a measurable selection theorem,

cf., for example, Kuratowski and Ryll-Nardzeski [KRN65] or Castaing [Cas67], with

applications provided in Rockafellar and Wets [RW09] and Pham [Pha09]. To avoid to

verify the assumptions of the measurable selection, or simply, the necessity to consider

measurablity additionally, we make use of the approach that is proposed by L0-modules,

namely, we make use of the conditional metric that induces P-almost sure convergence

and covers the classical pointwise results simultaneously.

In Chapter 1, based on the definition of conditional sets we sum up the main results

of conditional topologies from [DJKK16]. Then, a conditional integral is derived anal-

ogously to that in standard measure theory, cf. Elstrodt [Els96] as well as applications

like a conditional Radon-Nikodým or Fubini theorem. A discussion of conditional ex-

pectation in the context of conditional theory is posponed to Chapter 4.

In Chapter 2, a conditional variational analysis setting is introduced whose classical

equivalent can be found in Rockafellar and Wets [RW09]. The concept of set conver-

gence is transferred to conditional sets. It originally dates back to Painlevé, Hausdorff

[Hau27] and Kuratowski [Kur33], and for economic application see for example in Debreu

[Deb67]. Then, we introduce conditional versions of hypo- and lopsided convergence

in the context of conditional sets, classically, the former was introduced by Wijsman

[Wij64], [Wij66], the latter appears in Attouch [Att84], Attouch and Wets [AW83] and

Aubin and Frankowska [AF90]. Convex optimization problems and dual characteriza-

tions in L0-Theory can be found in Filipović et al. [FKV09].

The Brouwer fixed point theorem is a fundamental theorem in mathematics. We give the

introduction as in the paper by Drapeau et al. [DKKS13] in Chapter 2.11. Its application

in game theory suits to the intentions of L0-theory. Equivalent to the Brouwer fixed point

theorem is the Ky Fan inequality. The setting in Aubin and Ekeland [AE06] is put into

a conditional context and its equivalence to the Brouwer fixed point theorem is shown.

The conditional variational analysis setting is applied to solve a Walras equilibrium

problem in Chapter 3. Here, in the context of random variables, the measurable selection

theorem is crucial and its preconditions cannot be easily verified. The classical Walras
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problem is described in Jofré and Wets [JW02] where the Walrasian is introduced for

an economic, a set-valued bivariate function similar to the Hamiltonian in a Calculus

of Variations setting which we put it into a conditional setting. The stability of the

equilibrium is also described in terms of hypo- and lopsided convergence. Other authors

deal with slightly different assumptions, cf. Fl̊am [Fl̊a94] or Lucchetti and Patrone

[LP86], or with dependency on the endowment, cf. Mas-Colell [MC85], or Balasko

[Bal88], [Bal03].

Finally, in Chapter 4, we apply the Walras equilibrium in multiple periods in order

to optimize utilities. Conditional sets on a filtration of σ-algebras is a family of L0-

modules over different rings which are nested. For a first examination in a martingale

context, see [Hei14]. The effects on basic concepts in conditional theory are discussed,

such as conditional topology and conditional functions along with their continuity and

semicontinuity. Here, we also consider the conditional expectation in the context of

conditional theory. To solve the utility optimization problem in multiple periods, it

is decomposed in one-step models where utilities are connected by generators. This

procedure is as in dynamic programming principle, but the conditions on the generator

are somewhat different. Optimal utilities at time t− 1 are obtained by maximizing the

generator over trading strategies where the generator depends on the maximal utility at

time t and trading strategies from time t − 1 to time t. Together with the conditional

integral definition, the setting also gives an alternative approach to normal integrands,

cf. Rockafellar and Wets [RW09].

Basic Notation

In this section we sum up some notation which will be used in the sequel. By doing so

we generally follow Bauer [Bau92].

By N and R we denote the sets of natural numbers and of real numbers, respectively.

Extending the real line by ±∞ to make it compact we define R to be this extended

real line. Addition with ±∞ is defined as follows: a + (±∞) = ±∞ for all a ∈ R,

(+∞)+(+∞) = +∞ and (−∞)+(−∞) = −∞. Both, (−∞)+(+∞) and (+∞)+(−∞)

are not defined. Multiplication with ±∞ is defined as follows: a · (±∞) = ±∞ for a ∈ R
which are positive and a =∞, a·(±∞) = ∓∞ for a ∈ R which are negative and a = −∞.

Additionally, we define 0 · (±∞) = 0. The relation < extends to R via −∞ < a <∞ for

all a ∈ R, and −∞ <∞.

We write m ∈ M if m is an element of a set M . A set M
′

is a subset of M if for

any m ∈ M
′

it holds m ∈ M and we write M
′ ⊂ M . For operations on sets we use

10
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the symbol
⋃

for union, the symbol
⋂

for intersection and the symbol · c for the set

complement. Sets are called disjoint if their intersection is ∅.

A mapping of a set L into a set M is denoted by f : L → M . The mapping f is real-

valued if M = R. A sequence in a set M is a mapping f : N→M . For f(n) we usually

write an, and for the mapping f we write (an)n∈N. More generally, if we have a mapping

f : I →M for some index set I, we write (ai)i∈I for a family of elements in M .

Next we consider measurable spaces. A measurable space (Ω,F) is a pair consisting

of a set Ω and a σ-algebra F on Ω. A σ-algebra F on Ω is a family of subsets of Ω

such that ∅ ∈ F and for any elements of F their complements and countable unions

are also elements of F . For two σ-algebras F and G we say F is finer than G if any

element of G is an element of F and we write G ⊂ F . The trace of the σ-algebra F
on A ∈ F is denoted by FA, i. e. FA = {A ∩ F | F ∈ F}. If (Ω,F) and (M,M) are

measurable spaces then a mapping X : Ω → M is measurable if f−1(M∗) ∈ F for all

M∗ ∈ M, where f−1(M∗) denotes the pre-image of M∗. If M = R is endowed with

the Borel-σ-algebra, the σ-algebra generated by the open intervals in R, then X is a

real-valued F-measurable function, a random variable.

Next, we consider probability spaces. A probability space (Ω,F ,P) is a triplet consisting

of a set Ω, a σ-algebra F on Ω and a probability measure P on the measurable space

(Ω,F). The probability measure P is a function on F with values in [0, 1]. It holds that

P(∅) = 0 and P(
⋃
n∈N Fn) =

∑
n∈NP(Fn) for pairwise disjoint Fn ∈ F , n ∈ N. By F+

we denote all elements of F which have positive measure.

A partially ordered set P is a set endowed with a partial order ≤. A partial order ≤
is a binary relation which is reflexive, antisymmetric and transitive. That means, for

all a, b, c ∈ P , we have a ≤ a, if a ≤ b and b ≤ a then a = b, and if a ≤ b and b ≤ c

then a ≤ c, respectively. A lattice (P,≤) is a partially ordered set which in addition

fulfills the following condition: if a, b ∈ P then a∧ b, a∨ b ∈ P , where a∧ b denotes the

supremum or least upper bound of a and b and a ∨ b denotes the infimum or greatest

lower bound of a and b. For an introduction into rings, see Jacobson [Jac09] or Lang

[Lan02].

Basic Notation in L0-theory

We fix a probability space (Ω,F ,P). Let L0 := L0 (Ω,F ,P) and L0 be the space of

all F-measurable random variables with values in R and R, respectively, where P-

almost surely equal random variables are identified. In particular, we identify A,B ∈
F if P ((A\B) ∪ (B\A)) = 0 and we define F+ = {A ∈ F | P (A) > 0}. For X,Y ∈

11
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L0, the relations X ≥ Y and X > Y are understood P-almost surely. The set L0

with the almost everywhere order is a lattice ordered ring, and every nonempty subset

C ⊂ L0 has a least upper bound ess sup C and a greatest lower bound ess inf C (cf.

[FKV09],[FS04]). For a subset M ⊂ L0 we further denote M+ := {X ∈M | X ≥ 0}
and M++ := {X ∈M | X > 0} as well as L0 :=

{
X ∈ L0 | X <∞

}
. For m ∈ R, we

denote the constant random variable m · 1Ω by m. The L0-scalar product and L0-norm

on
(
L0
)d

:=
{

(X1, . . . , Xd) | Xi ∈ L0
}

are defined as

〈X,Y 〉 =

d∑
i=1

XiYi and ‖X‖ = 〈X,X〉
1
2 .

We call C ⊂
(
L0
)d

bounded if ess supX∈C ‖X‖ ∈ L0. We introduce the balls Bε (X) :={
Y ∈ L0 | ‖X − Y ‖ < ε

}
of random variables centered at X with radius ε > 0. We recall

that L0 is an L0-module.

A sequence (Xn)n∈N of random variables converges P-almost surely to a random variable

X ∈ L0 if P (ω ∈ Ω | limn→∞X
n (ω) = X (ω)) = 1. A function f : L0 → L0 is called

P-almost surely continuous if f (Xn) converges P-almost surely to f (X) whenever Xn

coverges P-almost surely to X.

In many optimization problems, continuity, in this case, P-almost sure continuity, is

relaxed to semicontinuity when considering the extended-valued reals. Thus, a function

f :
(
L0
)d → (

L0
)d

is called upper semicontinuous if ess lim supn→∞ f (Xn) ≤ f (X) for

every P-almost surely converging sequence Xn → X, where ess lim supn→∞ f (Xn) :=

ess infn→∞ ess supm>n f (Xm).

Classically, P-almost sure convergence is not induced by a metric. So, one can pass to

convergence in probability, induced by the metric d (X,Y ) := E [min (1, |X − Y |)] on

the space of random variables. If we consider L0-modules as in Filipović et al. [FKV09]

and Cheridito et al. [CKV15] the conditional distance has many properties of metrics,

but we do not need convergence in probability.

The concept of σ-stability introduced in Filipović et al. [FKV09] turns out to be crucial.

The σ-stable hull of a set C ⊂ L0 is defined as

σ (C) =

{∑
i∈N

1AiXi | Xi ∈ C, (Ai)i∈N is a partition

}
,

where a partition is a countable family (Ai)i∈N ⊂ F such that P (Ai ∩Aj) = 0 for i 6= j

and P
(⋃

i∈NAi
)

= 1. We call a nonempty set C σ-stable if it is equal to σ (C).

12



1 Conditional theory

1.1 Introduction to conditional sets

Stochastic optimal control problems will be solved by methods of conditional theory

which fundamentally has been introduced in [DJKK16] with some ideas already pre-

sented in L0-theory such as in [CKV15], [DKKS13] or [FKV09]. Classically, these opti-

mization problems are regarded pointwisely. In the end a measurable solution is obtained

by applying a measurable selection theorem. The measurable selection approach can be

found in [RW09, Chapter 14] or the preceeding work by [Cas67]. To present an alterna-

tive approach in conditional theory, we give an introduction to conditional sets for our

purpose.

1.1.1 Conditional sets

Let A := (A,∨,∧,c , 0, 1) be a complete Boolean Algebra. The probabilistic example

is the σ-algebra F = (F ,∪,∩,c , ∅,Ω), where A,B ∈ F are identified if P (A4B) = 0,

other examples with their pecularities can be found in [DJKK16]. With the relation

a ≤ b if and only if a ∧ b = a for a, b ∈ A, the pair (A,≤) is a complete complemented

distributive lattice, particularly this holds for the example (F ,⊂). A partition of a ∈ A
is a family (ai)i∈I in A such that ∨i∈Iai = a and ai ∧ aj = 0 if i 6= j. In F , a partition

of A ∈ Ω is a family (Ai)i∈N in F such that
⋃
i∈NAi = Ω and P (Ai ∩Aj) = 0 for i 6= j.

By the well-ordering theorem, for every family (ai)i∈I there exists a partition (bi)i∈I of

∨i∈Iai such that bi ≤ ai for all i ∈ I [DJKK16]. Thus, in the sequel, we assume all

families (ai)i∈I to be partitions of ∨i∈Iai. Now, we can define conditional sets.

Definition 1.1 (Conditional set, [DJKK16]). Let X be a nonempty set and let A :=

(A,∨,∧,c , 0, 1) a Boolean Algebra. The set X := (X,A) is a conditional set if it is a

nonempty collection of objects of the form X|a for X ∈ X and a ∈ A such that

(i). X|a = Y |b implies a = b for all X,Y ∈ X and a, b ∈ A,

(ii). X|a = Y |a implies X|b = Y |b for all X,Y ∈ X and a, b ∈ A with b ≤ a,

13



1 Conditional theory

(iii). there exists exactly one X ∈ X such that X|ai = Xi|ai for all Xi ∈ X, i ∈ I and

every partition (ai)i∈I of 1 ∈ A (and thus also for any partition of any element in

A, cf. [DJKK16]).

In (iii), the element X is denoted by
∑

i∈I Xi|ai.

We remark here that in (i), if we set b = 1, we have X = {X|1 | X ∈ X}. That is why we

also write X for the pair (X,A). Furthermore, by (iii), the set {X|0 | X ∈ X} consists

of exactly one element, denoted by X|0. There is no further meaning of this element.

Example 1.2. The main example in the sequel is the set of random variables. We

write L0
A := L0

(
Ω,FA,P|A

)
for P|A (B) := P (A ∩B) and consider the sets X|A ={

Y ∈ L0
A | P (ω ∈ A | X (ω) = Y (ω)) = P (A)

}
for any X ∈ L0 and A ∈ F+ which form

a conditional set.

Remark 1.3. The element X|0 plays the role of a random variable that is defined on

a P-nullset, or, equivalently, on the empty set. Thus, it may be identified with the

empty set, with the necessity to modify condition (iii). For simplicity of condition (iii)

we regard conditional sets as stated. This connection will be clear when defining the

conditional inclusion, where {X|0} is conditionally subset of any conditional subset of

X.

Definition 1.4 (Conditional inclusion, [DJKK16]). Let X be a conditional set. A subset

Y|a ⊂ X is called stable, if Y =
{∑

i∈I Yi|ai for a partition (ai)i∈I of a andYi ∈ Y
}

. Let

(X1,A1) and (X2,A2) be two stable conditional sets. We say that X2 @ X1 is a condi-

tional subset of X1 if there exists a ∈ A1 such that A2 = {a ∧ a1 | a1 ∈ A1} and X2|a ⊂
X1|a. The conditional power set is P (X1) = {X2 @ X1 | X2 is a conditional set}. Typ-

ically, we write X @ X for a conditional subset X of a given conditional set X.

By Definition 1.1, every conditional set X is stable. Thus, the conditional inclusion as

a relation between conditional sets inherits stability. There may be further subsets of a

conditional set X. In L0, any stable subset of L0 is a conditional subset of L0. Instead

of conditional subset or stable, we say σ-stable subset of L0 for the underlying algebra

is a σ-algebra.

Theorem 1.5. Let X be a conditional set. Then (P (X) ,@) is a complete complemented

distributive lattice.

Proof. The proof can be found in [DJKK16]. The main difficulty is to ensure that

there are the supremum and infimum of conditional subsets with respect to conditional

inclusion that also are conditional sets.

14



1 Conditional theory

Definition 1.6 (Conditional operations on conditional sets, [DJKK16]). Let (Xi, ai)i∈I
be conditional subsets of a conditional set X. Then, we define the conditional intersection
d
i∈I Xi := ({X ∈ X | X ∈ Xi for all i ∈ I} ,∧i∈Iai) which is a conditional set and the

largest conditional set with respect to conditional inclusion that is a conditional subset

of all Xi, i ∈ I. The conditional union Y =
⊔
i∈I Xi is the smallest conditional set

with respect to conditional inclusion such that Xi @ Y for all i ∈ I, or
⊔
i∈I Xi ={∑

i∈I Xi|bi for a partition (bi)i∈I of ∨i∈I ai andXi ∈ Xi
}

. The conditional complement

of a conditional subset X @ X is X@ :=
⊔
{Y @ X | X u Y = X|0}.

We say that some X @ X lives or is on a ∈ A if X ⊂ X|a for a ∈ A. For X ,Y ∈ X,

it holds that X ∩ Y 6= ∅ if and only if X u Y lives on 1 ∈ A. We remark that also∑
i∈I Xi|ai =

⊔
i∈I Xi|ai for all Xi ∈ X, i ∈ I and every partition (ai)i∈I of 1 ∈ A.

Theorem 1.7. Let X be a conditional set. Then P (X) = (P (X) ,t,u,@ ,X|0,X) is a

complete Boolean algebra.

Proof. The proof in all detail can be found in [DJKK16].

Definition 1.8 (Conditional partial order, [DJKK16]). Let (Xi)i∈I be a nonempty con-

ditionally countable family of conditional sets and their conditional product
∏
i∈I Xi :={(

(Xi)i∈I |a
)
a∈A , Xi ∈ Xi

}
which is a conditional set. A conditional relation E on

X1 ×X2 is a conditional subset of X1 ×X2 that lives on 1 ∈ A. A conditional partial

order on X×X is a conditional relation that is antisymmetric, reflexive, symmetric and

transitive. It is conditionally total if for all X,Y ∈ X there are a1, a2 ∈ A such that

a1 ∨ a2 = 1, X|a1 E Y |a1 and X|a2 D Y |a2. A conditional set is conditionally directed

if it is closed with respect to supremum or infimum of 2 elements.

For simplicity, for all conditional sets C @ X, we write C+ := {X ∈ C | X ≥ 0} and

C++ := {X ∈ C | X > 0}.

Having introduced conditional sets we discuss how to generate a conditional set E from

a given nonempty set E and a given Boolean algebra A. The elements e ∈ E are iso-

morphic to the elements e|1 ∈ E. Next, we consider the stable hull generated by e|1
for e ∈ E for all partitions of 1 ∈ A and identify elements

∑
i∈I ei|ai and

∑
i∈I e

′
i|a′i

if they are equal, that is, for all e ∈ E, it holds that ∨i∈I {ai ∈ A | ei|ai = e|ai} =

∨i∈I {a′i ∈ A | e′i|a′i = e|a′i}. Indeed, this is an equivalence relation. Now, the con-

structed conditional set E contains the objects
∑

i∈I (ei|ai) |a for all a ∈ A under the

identification of the equivalence classes. This conditionel set E is the conditional set on

the Boolean algebra A with values in E. Examples are the random variables with values
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1 Conditional theory

in N, denoted by N, or with values in Q, denoted by Q. A natural conditional partial

order on Q ×Q order is given by
∑

i∈I Xi|ai E
∑

j∈J YJ |bj if Xi ≤ Yj in Q whenever

ai ∧ bj > 0.

For the construction of R, the random variables with values in R, one usually introduces

conditional relation, Cauchy sequences and completeness. The proof is done as for the

construction of R, we do not give it explicitely and refer to [DJKK16] for the details.

This construction yields the same result as passing from R to L0 via equivalence classes

of P-almost sure equal random variables, as shown in [DJKK16]. In the sequel, we

only write R instead of L0 to stress the conditional point of view, not the pointwise

approach as classically for L0, although, as been shown in [DJKK16], the extension of

the natural conditional partial order from Q to R yields a conditional partial order that

coincides with almost-sure dominated order. In order to maintain this, we write essential

supremum, infimum and limit, and, as classically, X ≤ Y for random variables, elements

of R. The conditional set R is then the extended conditional set R which includes also

∞ and −∞ by the same construction starting from N ∪ {∞}.

Definition 1.9 (Conditional function). Let X and Y be conditional sets over the same

Boolean algebra A. Let f : X → Y be a function. It is a conditional function if

f
(∑

i∈I Xi|ai
)

=
∑

i∈I f (Xi) |ai.

Conditional functions appear naturally, for example, if a function from L0 to L0 is L0-

convex, it is a conditional function, cf. [FKV09]. Convexity is discussed in Section

2.8.

Remark 1.10. With the observation that any element X ∈ X that lives on 1 is up

to equivalence classes an element of X and vice versa, the property f
(∑

i∈I Xi|ai
)

=∑
i∈I f (Xi) |ai for a conditional function f : X → Y is induced by the same porperty

but for a stable function f : X→ Y. This identification allows for writing all the theorems

in the setting of conditional sets. We will do so in the sequel.

Since the most important example of conditional sets is R, to consider the space of

random variables covers already a large subclass of conditional sets. Then passing to

a Boolean algebra is barely an algebraic question. Thus, for the economic examples

considered here we put rather emphasis on the probability and measurable discussion.

Similarly, the R-valuedness as a restriction of general conditional sets is reasoned by

practicability and economic applicability. That is why in Chapter 1 we put the more

general case of arbitrary conditional sets to demonstrate generality, and in the preceeding

chapters we restrict ourselves to R. Additionally, semicontinuity which will be discussed
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1 Conditional theory

later is classically only defined in topological spaces or in the space of random variables.

The example of R is the main example for all the properties discussed in conditional

sets.

Definition 1.11 (Conditionally countable, [DJKK16]). Let X be a conditional set. It

is conditionally countable if there exists a injective conditional function f : X → N.

It is conditionally finite if there exists N ∈ N and a bijective conditional function

f : X→ {1, . . . , N}.

In a conditional set, conditional sequences are images of conditional functions of condi-

tionally countable index sets.

Definition 1.12 (Conditional family and sequence, [DJKK16]). Let X be a conditional

set. The set (XJ)J∈J is a conditional family if it is the image of a conditional function

ι : J → X. It is a conditional sequence if J @ N and ι is injective.

1.1.2 Conditional topology

Definition 1.13 (Conditional topology, [DJKK16]). Let X be a conditional set. A

family T = (OJ)J∈J of conditional subsets OJ of X is a conditional topology if

(i). X|0,X,O|a ∈ T for all a ∈ A and O ∈ T

(ii). O1 u O2 ∈ T for O1,O2 ∈ T

(iii).
⊔
J∈J ′ OJ ∈ T for OJ ∈ T for all J ∈ J ′ @ J .

Elements of T are conditionally open. The conditional complement of a conditional open

set is conditionally closed. A conditional topology generated by (T ′J)J∈J is the smallest

conditional topology with respect to conditional inclusion that contains (T ′J)J∈J . A

conditional topological space is the pair (X,T). Further, we denote the set of conditional

neighbourhoods of X by U (X) where a conditional set U @ X is called a neighbourhood

of X if there exists a conditionally open conditional set O such that X ∈ O and O @ U .

Definition 1.14 (Conditional closure, conditional interior). Let (X,T) be a condi-

tional topological space. The conditional set cl (C) :=
d
{D @ X | C @ D, D@ ∈ T} of

a conditional subset C @ X is called the conditional closure of C. The conditional set

int (C) :=
d
{D @ X | D @ C, D ∈ T} is called the conditional interior of C.

Remark 1.15. By definition, int (C@) = cl (C)@ and cl (C@) = int (C)@. A conditional

subset Y @ X is conditionally dense if cl (Y) = X.
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In the sequel, as in [DJKK16], we assume all conditional sets to be conditionally Haus-

dorff, that is, for X,Y ∈ X with X u Y = X|0, there a conditional neighbourhoods

UX ∈ U (X) and UY ∈ U (Y ) such that UX u UY = X|0. In the sequel, we assume

all sets to be conditionally Hausdorff and include it in every definition without further

mentioning. Since the conditional set is conditionally Hausdorff, all limit points will be

unique [DJKK16].

Definition 1.16 (Conditional compactness). Let (X,T) be a conditional topological

space. A cover of X is a family of conditional subsets (OJ)J∈J such that
⊔
J∈J OJ = X.

It is a conditionally open cover, if each OJ is conditionally open. The conditional set

X is conditionally compact, if for any conditionally open covering (OJ)J∈J of X there

exists a conditionally finite subcover (OJ ′)1≤J ′≤J @ (OJ)J∈J of X, J ∈ N.

Remark 1.17. In R, a conditional subset C @ R is conditionally compact if and only if is

is conditionally closed and bounded, that is, there exists X ∈ R such that −X ≤ Y ≤ X
for all Y ∈ C. The proof is the same as in R, we do not give it explicitely.

Conditional topologies can be induced by conditional distances.

Definition 1.18 (Conditional distance, [DJKK16]). Let X be a conditional set. A

conditional distance is a conditional function d: X×X→ R+ such that for all X,Y, Z ∈
X holds that d (X,Y ) = 0 if and only if X = Y , d (X,Y ) = d (Y,X) and d (X,Y ) ≤
d (X,Z) + d (Z, Y ). The pair (X, d) is a conditional metric space.

Example 1.19. Consider Rd. The balls Bε (X) :=
{
Y ∈ Rd | ‖Y −X‖ < ε

}
for X ∈ R

and ε ∈ R++ generate a conditional topology [DJKK16] and is called the conditional

Euclidean distance on R.

We now give the definition of continuity of a conditional sequence in terms of the con-

ditional Euclidean distance.

Definition 1.20 (Continuity in R). In R, a conditional sequence (XJ)J∈N converges

to X ∈ R if vor all ε ∈ R++ there exists N ∈ N such that XJ ∈ Bε (X) for all J ≥ N .

We also write X = limJ∈NXJ

1.2 Conditional-valued integration and applications

The following section (including Remark 2.3) is joint work with Asgar Jamneshan and

Michael Kupper [JKS18].
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1.2.1 Conditional measurable structures

Definition 1.21. Let X be a conditional set. A conditional σ-algebra on X is a condi-

tional family F of conditional subsets of X satisfying

(i). X ∈ F,

(ii). if C ∈ F, then C@ ∈ F,

(iii). if (CN )N∈N is a conditional sequence in F, then
⊔
N∈N CN ∈ F.

The pair (X,F) is a conditional measurable space. Given two conditional measurable

spaces (X,F) and (Y,H), a conditional function f : X→ Y is conditionally measurable

whenever f−1 (D) ∈ F for every D ∈ H.

A conditional σ-algebra F is a σ-complete Boolean subalgebra of the conditional power

set P (X). Thus the conditional version of those properties of a classical σ-algebra which

are due to Boolean arithmetic (see for the elementary arithmetic of Boolean algebras

Chapter 1 of [MKB89]) are automatically fulfilled by a conditional σ-algebra. For in-

stance, one can weaken Definition 1.21 by replacing the conditional sequence (CN )N∈N
by conditionally pairwise disjoint conditional sequences in (iii). Since X ∈ F, it follows

from (ii) that X|0 = X@ ∈ F. Thus by stability also C|a+ (X|0) |ac ∈ F for every C ∈ F

and a ∈ A.

The conditional intersection of any non-empty family
(
Fi
)
i∈I of conditional σ-algebras

on some fixed conditional set X coincides with their classical intersection since X ∈ Fi

for all i ∈ I, and thus it is a conditional σ-algebra on X. For a conditional set E of

subsets of some conditional set X let Σ (E) denote the conditional intersection of all

conditional σ-algebras F such that E @ F. Given a conditional σ-algebra F, we say that

E @ F generates F whenever Σ (E) = F.

Let X be a conditional set, (Y,H) a conditional measurable space and f : X→ Y a con-

ditional function. Then f−1 (H) :=
{
f−1 (D) | D ∈ H

}
is a conditional σ-algebra on X by

Proposition 2.19 in [DJKK16]. Moreover, if E @ P (Y) then Σ
(
f−1 (E)

)
= f−1 (Σ (E)).

Indeed, since f−1 (E) @ f−1 (Σ (E)) and since f−1 (Σ (E)) is a conditional σ-algebra, it

follows that Σ
(
f−1 (E)

)
@ f−1 (Σ (E)). Conversely, it follows from Proposition 2.19 in

[DJKK16] that
{
D @ Y | f−1 (D) ∈ f−1 (Σ (E))

}
is a conditional σ-algebra including E,

and thus it also holds that f−1 (Σ (E)) @ Σ
(
f−1 (E)

)
.

Example 1.22. (i). The conditional trivial σ-algebra on some conditional set X is the

conditional set {X|a | a ∈ A}.

(ii). Let N ∈ N where N =
∑

n∈Nmn|an, and let RN =
∑

n∈NRmn |an be the N -

dimensional conditional Euclidean space. Denote by BN the conditional σ-algebra
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conditionally generated by the conditional set of conditionally open sets in RN

and call it the conditional Borel σ-algebra on RN . Let K ∈ N be such that K =∑
n∈N kn|an where 1 ≤ kn ≤ mn. The conditional K-th projection πK : RN → R,

mapping
∑

n∈N (x1, . . . , xmn) |an to
∑

n∈N xkn |an, is conditionally measurable.

(iii). We define B to be the conditional Borel σ-algebra on R generated by the condi-

tional topology of conditionally open conditional sets on R.

Definition 1.23. Let (X,F) be a conditional measurable space. A conditional measure

is a conditional function µ : F→ [0,∞] such that

(i). µ (X|0) = 0,

(ii). µ
(⊔

N∈N CN
)

=
∑

N∈N µ (CN )N∈N for every conditional sequence (CN )N∈N of

conditionally pairwise disjoint conditional sets in F.

The triplet (X,F, µ) is called a conditional measure space. Let a = ∨{a | µ (X|a) =∞}.
Then the conditional measure µ is finite if a = 0; it is conditionally infinite if a > 0; it

is a conditional probability measure if µ (X) = 1. If X =
⊔
N∈N CN for some conditional

sequence of conditional sets in F satisfying µ (CN ) < ∞ for each N ∈ N, then µ is

conditionally σ-finite.

Remark 1.24. We collect some properties of a conditional measure space (X,F, µ).

(i). Due to stability and (i) in Definition 1.23,

µ (C|a+ (X|0) |ac) = µ (C) |a+ µ (X|0) |ac = µ (C) |a+ 0|ac,

for every C ∈ F and a ∈ A.

(ii). For conditionally finite and pairwise disjoint conditional sets (CM )1≤M≤N @ F, it

holds that

µ

 ⊔
1≤M≤N

CM

 =
∑

1≤M≤N
µ (CM ) .

(iii). If C @ D, then µ (C) ≤ µ (D). Indeed, let a = ∨{a | µ (D) |a = +∞}. Then

µ (C) |a ≤ µ (D) |a. So assume without loss of generality that a = 0. Then

µ (D) = µ
(
C t

(
D u C@

))
= µ (C) + µ

(
D u C@

)
≥ µ (C) .

(iv). For all C,D ∈ F such that µ (C) , µ (D) < +∞, it holds that

µ (C t D) = µ (C) + µ (D)− µ (C u D) .
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Indeed, write CtD = (C u D)t(C u D@)t(D u C@). Then µ (C t D) = µ (C u D)+

µ (C u D@) + µ (D u C@). Subtracting twice µ (C u D) < +∞ yields the result.

By conditional induction one extends the previous equation in order to obtain

the conditional version of the inclusion-exclusion formula (see e.g. Section 10 in

[Bil86]).

(v). Let (CN )N∈N be an increasing, that is CN @ CM for N ≤M , conditional sequence

in F such that C =
⊔
N∈NCN . Let D1 = C1 and Dn = Cn u C@n−1. Then

Yn := µ (Cn) = µ

(
n⊔
k=1

Dk

)
=

n∑
k=1

µ (Dk) ≤ µ (C) .

Let a := ∨{a | µ (C) |a =∞}. Define XN =
∑

n∈N Ymn |an for N =
∑

n∈Nmn|an ∈
N. Then (XN |ac)N∈N is a conditionally increasing and bounded sequence in R. By

Lemma 5.2.9 in [Jam14] the sequence has an essential supremum. Thus µ (CN )N∈N
converges to µ (C) from below.

(vi). For a conditional sequence (CN )N∈N in F, we have µ
(⊔

N∈N CN
)
≤
∑

N∈N µ (CN ).

Indeed, define D1 = C1 and DN = CN u (C1 t . . . t CN−1)@. By monotonic-

ity µ (DN ) ≤ µ (CN ) and µ
(⊔

N∈N CN
)

= µ
(⊔

N∈NDN
)

=
∑

N∈N µ (DN ) ≤∑
N∈N µ (CN ).

Example 1.25. (i). Let ν be a measure on N. Let C @ N and for every non-empty I ⊂
N let aI := ∨{a | C|a = I}. Then ∨I∈N aI = 1. Then µ (C) :=

∑
n∈N ν (In) |an,

defines a conditional measure µ : P (N)→ [0,+∞].

(ii). Let (X,F) be a conditional measurable space. A conditional measure µ on (X,F)

is conditionally discrete if there are conditional sequences (XN )N∈N in X and

(mN )N∈N in [0,+∞] such that for any C ∈ F,

µ (C) =
∑
N∈N

(mN |aN + 0|acN ) , aN = ∨{a | XN |a ∈ C|a} .

In particular, for X ∈ X and m = 1 we obtain the conditional Dirac measure on

X ∈ X.

Definition 1.26. Let X be a conditional set. A conditional π-system on X is a con-

ditional family of conditional subsets of X which is closed under conditionally finite

conditional intersections. A conditional λ-system on X is a conditional family D of

conditional subsets of X satisfying

(i). X ∈ D,
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(ii). if C ∈ D, then C@ ∈ D,

(iii). if (CN )N∈N is a conditional sequence of conditionally pairwise disjoint sets in D,

then
⊔
N∈N CN ∈ D.

Remark 1.27. Since X ∈ D, the conditional intersection of any non-empty family

of conditional λ-systems is a conditional λ-system. Let ∆ (E) denote the conditional

λ-system generated by some conditional set E of conditional subsets of X.

Theorem 1.28. Let X be a conditional set and E @ P (X) a π-system. Then Σ (E) =

∆ (E).

Proof. The proof of Dynkin’s π-λ theorem (see e.g. proof of Theorem 3.2 in [Bil86])

relies only on Boolean arithmetic. Since Boolean arithmetic is valid in conditional set

theory by Theorem 2.8 in [DJKK16], a proof of a conditional version of Dynkin’s π-λ

theorem follows analogously to the classical proof.

Theorem 1.29. Let E be a conditional π-system on some conditional set X, and let

µ1 and µ2 be two conditional measures on Σ (E). Suppose there exist two conditional

sequences (CN )N∈N and (DN )N∈N in E such that µ1 (CN ) , µ2 (DN ) < +∞ for all N ∈ N

and
⊔
N∈N CN =

⊔
N∈NDN = X. If µ1 (C) = µ2 (C) for all C ∈ E, then µ1 (D) = µ2 (D)

for all D ∈ Σ (E).

Proof. The theorem follows analogous to a proof of the respective classical statement

(e.g. proof of Theorem 10.3 in [Bil86]) by Theorem 1.28 and Properties (iv) and (v) of

conditional measure spaces.

Definition 1.30. Let X be a conditional set. A conditional function µ∗ : P (X)→ [0,∞]

is a conditional outer measure if

(i). µ∗ (X|0) = 0,

(ii). µ∗ (C) ≤ µ∗ (D) for C @ D,

(iii). µ∗
(⊔

N∈N CN
)
≤
∑

N∈N µ∗ (CN ) for any conditional sequence (CN )N∈N in X.

A conditional set C @ X is conditionally µ∗-measurable if

µ∗ (W u C) + µ∗
(
W u C@

)
≤ µ∗ (W) , for allW @ X. (1.1)

Denote by F (µ∗) the class of conditionally µ∗-measurable conditional sets.

Theorem 1.31. If µ∗ is a conditional outer measure, then F(µ∗) is a conditional σ-

algebra, and µ∗ restricted to F (µ∗) a conditional measure.
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Proof. From Properties (i) and (ii) of Definition 1.30 it follows that X ∈ F (µ∗). Since

(1.1) is symmetric in C and C@, for every C ∈ F (µ∗) it follows also that C@ ∈ F (µ∗).

To show that for all C,D ∈ F (µ∗), it follows that C t D ∈ F (µ∗), one can proceed as

in the classical argument by applying (1.1) twice and using the conditional subaddi-

tivity of µ∗ and the distributivity and De Morgan’s law on the conditional power set.

For conditionally disjoint C,D ∈ F (µ∗) it follows from (1.1) that µ∗ (W u (C t D)) ≥
µ∗ (W u C) + µ∗ (W uD), and thus by induction for C1, . . . , Cn ∈ F (µ∗), pairwise condi-

tionally disjoint, that

µ∗

(
W u

(
n⊔
k=1

Ck

))
≥

n∑
k=1

µ∗ (W u Ck) . (1.2)

The inequation (1.2) extends by stability of the conditional set operations and of µ∗

to every conditionally finite family of conditionally pairwise disjoint sets. Thus for a

conditionally finite and pairwise disjoint family (CM )1≤M≤
∑
n∈Nmn|an

in F (µ∗) it holds

that

µ∗ (W) ≥ µ∗
(
W u

( ⊔
M∈N

CM

))
+ µ∗

(
W u

( ⊔
M∈N

CM

)@)

≥
∑
n∈N

(
mn∑
k=1

µ∗ (W u Ck) |an

)
+ µ∗

(
W u

( ⊔
M∈N

CM

)@)
.

(1.3)

Given a conditionally pairwise disjoint conditional sequence (CN )N∈N, we take in (1.3)

the limit for M ∈ N and by applying conditional subadditivity twice it follows that

µ∗ (W) ≥
∑
N∈N

µ∗ (W u CN ) + µ∗

(
W u

( ⊔
N∈N

CN

)@)

which implies that F (µ∗) is a conditional σ-algebra by (1.1) and also that µ∗ on F (µ∗)

is a conditional measure.

Definition 1.32. Let X be a conditional set. A conditional semiring R on X is a

conditional family of conditional subsets of X such that

(i). X|0 ∈ R,

(ii). If C,D ∈ R, then C u D ∈ R,

(iii). If C,D ∈ R and C @ D, then there exists a conditionally finite family (WM )1≤M≤N
of conditional subsets in R such that D u C@ =

⊔
1≤M≤NWM .
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Example 1.33. Let RN be the conditional N -dimensional Euclidean space. Then

RN =
{

]P |a,Q|a] | P,Q ∈ QN , P ≤ Q, a ∈ A
}

is a conditional semiring.

Theorem 1.34. Let X be a conditional set and let R be a conditional semi-ring on X.

Let µ : R→ [0,∞] be a conditional function such that

(i). µ (X|0) = 0,

(ii). µ
(⊔

1≤N≤N CN
)

=
∑

1≤N≤N µ (CN ) for every conditionally finite and pairwise

disjoint conditional sequence (CN )1≤N≤N in R such that
⊔

1≤N≤N CN ∈ R,

(iii). µ
(⊔

N∈N CN
)
≤
∑

N∈N µ (CN ) for every conditional sequence (CN )N∈N in R such

that
⊔
N∈N CN ∈ R.

Then µ extends to a conditional measure on Σ (R).

Proof. Let aC := ∨
{
a ∈ A | ∃ (DN )N∈N ⊂ R, C|a @

⊔
N∈NDN

}
for every C @ X, and

define

µ∗ (C) := inf

{∑
N∈N

µ (DN ) | DN ∈ R, C @
⊔
N∈N

DN

}
|aC +∞|acC . (1.4)

We need to show that µ∗ is a conditional outer measure. First, we show that µ∗ is a con-

ditional function. To this end let (an)n∈N be a partition in A and (Cn)n∈N be a sequence

in X. For each n, it holds that aanCn = an∧aCn implying a∑
n∈N anCn = ∨n∈N (an ∧ aCn).

Thus µ∗
(∑

n∈N Cn|an
)

=
∑

n∈N µ
∗ (Cn) |an. Second, we verify the axioms of a condi-

tional outer measure. Since a (X|0) = 1, it follows that µ∗ (X|0) = µ (X|0) = 0 by

assumption. Let C,D @ X and such that C @ D. Since every conditional cover of D is a

conditional cover of C by Boolean arithmetic, aD ≤ aC , and thus µ∗ (C) ≤ µ∗ (D) by def-

inition of µ∗. Finally, let (CN )N∈N be a conditional sequence in X. By Proposition 2.25

in [DJKK16] NN is conditionally countable. Thus ∨N∈NaCN = a⊔
N∈N CN . On a⊔

N∈N CN
we argue with sequences. That is to say, by [DJKK16, Theorem 4.4], that for every

n ∈ N there exists a conditional cover (Dn,k)k∈N for Cn such that
∑

k∈N µ (Dn,k) <
µ∗ (Cn) + ε/2n, and then µ∗

(⊔
N∈N CN

)
= µ∗

(⊔
n∈N Cn

)
≤
∑

(n,k)∈N×N µ (Dn,k) <∑
n∈N µ

∗ (Cn) + ε =
∑

N∈N µ∗ (CN ) + ε. This shows that µ∗ defines a conditional outer

measure.
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Next we show that R @ F (µ∗). Let C ∈ R and W @ X and

a = ∨{a ∈ A | µ∗ (W|a) =∞}

The relation (1.1) is trivially true on a. We argue on ac in the following. For every

ε > 0, there exists a conditionally sequence (DN )N∈N in R such that W @
⊔
N∈NDN

and
∑

N∈N µ∗ (DN ) < µ∗ (W)+ε [DJKK16, Theorem 4.4]. Since R is a conditional semi-

ring, EN := C u DN ∈ R and there exist (E ′N,K)1≤K≤M(N) in R such that C@ u DN =

DN u E@N =
⊔

1≤K≤M(N) E ′N,K for every N . Thus DN =
⊔

1≤K≤M(N) E ′N,K t EN is

a conditionally disjoint conditional union and it holds that C u W @
⊔
N∈N EN and

C uW@ @
⊔
N∈N

⊔
1≤K≤M(N) E ′N,K . By definition of µ∗ and conditional finite additivity

of µ,

µ∗ (C uW) + µ∗
(
C@ uW

)
≤
∑
N∈N

µ (EN ) +
∑
N∈N

∑
1≤K≤M(N)

µ
(
E ′N,K

)
=
∑

µ (CN ) < µ∗ (W) + ε.

Letting ε going to 0 yields (1.1) on ac, and thus C is µ∗-measurable by stability.

It remains to show that µ and µ∗ coincide on R. Let C,D ∈ R be such that C @ D. Then

there exists a conditionally finite family (WM )1≤M≤N such that DuC@ =
⊔

1≤M≤NWM

since R is a conditional semi-ring. By Boolean arithmetic
⊔

1≤M≤NWM u C = X|0.

Given N =
∑

n∈Nmn|an, by stability and associativity, ⊔
1≤M≤N

WM

 t C =

(∑
n∈N

(
mn⊔
k=1

Wk|an

))
t C =

∑
n∈N

(
mn⊔
k=1

(Wk t C) |an

)

=
∑
n∈N

(
mn+1⊔
k=1

Wk|an

)
=

⊔
1≤M≤N+1

WM

where Wmn+1 = C for all n. By conditionally finite additivity,

µ (D) = µ

 ⊔
1≤M≤N+1

WM

 =
∑
n∈N

(
mn+1∑
k=1

µ (Wk) |an

)
≥ µ (C) . (1.5)

Let C ∈ R and (CN )N∈N in R be a conditional cover of C. By (1.5), it holds that

µ (C) ≤
∑

N∈N µ (C u CN ) ≤
∑

N∈N µ (CN ). Thus µ (C) ≤ µ∗ (C). Since for C ∈ R, it

holds that aC = 1 and since C is a conditional cover of C, it holds also that µ∗(C) ≤ µ(C),

and thus µ(C) = µ∗(C) for all C ∈ R.

25
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Since R @ F (µ∗) and since F (µ∗) is a conditional σ-algebra by Theorem 1.31, it holds

that Σ (R) @ F (µ∗). Since µ∗ is countably additive on F (µ∗) by Theorem 1.31, µ∗

restricted to Σ (R) is a conditional extension of µ on R.

We show that every kernel on d-dimensional Euclidean space Rd extends naturally to

a conditional measure on the d-dimensional conditional Euclidean space Rd and from

there by stability to RD for every D ∈ N. In particular, every measure on Rd extends

to a conditional measure on RD.

Example 1.35. Recall that (Ω,F ,P) is the underlying probability space. Let Bd denote

the Borel σ-field on Rd. Let ν : Ω× Bd → R+ satisfy

(i). for all ω ∈ Ω, ν (ω, ·) is a measure on Bd,

(ii). for every A ∈ Bd, ν (·, A) is a measurable function.

Let R be the conditional semi-ring of bounded conditional rational rectangles. For

]P,Q]|a ∈ R, where a = A, define

µ (]P,Q]|a) (ω) := ν (ω, ]P,Q] (ω)) , P-a.e. ω ∈ A.

Measurability implies that µ : R → [0,∞] is a conditional function. Inspection shows

that µ satisfies the assumptions of Theorem 1.34. Thus µ can be extended to the

conditional Borel σ-field Bd on Rd. Note that if ν (ω, ·) = ρ (·) for all ω where ρ is

a σ-finite measure on Rd, then its conditional extension µ to Rd is conditionally σ-

finite, and thus by Theorem 1.29 it is unique. We call the conditional extension of the

Lebesgue measure the conditional Lebesgue measure. The extension of the conditional

Borel σ-field to R
d

is denoted by B
d
.

1.2.2 Conditional integrals

The conditional Borel σ-algebra is generated by either of the following conditional sys-

tems; the conditionally open conditional balls, the conditionally closed conditional balls,

the conditionally compact conditional balls, or the bounded conditional rational rectan-

gles. This is a result of the properties of Boolean arithmetic in [DJKK16].

Remark 1.36. A conditional function f : (X,F) →
(
R,B

)
is F-B-conditionally mea-

surable if {X @ X | f (X) @ [−∞, α]} ∈ F for all α ∈ R. This coincides with the more

general definition of measurability as in Definition 1.21.

Being consistent with the standard literature on measure and integration theory, we

consider the short notation {f ≤ g} := {X ∈ X | f (X) ≤ g (X)} |a with the definition
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1 Conditional theory

a := ∨{a ∈ A | there existsX ∈ X such that f (X) |a ≤ g (X) |a} for F-B-conditionally

measurable conditional functions f, g : (X,F)→
(
R,B

)
.

Theorem 1.37. The conditional function f : (X,F) →
(
R,B

)
is F-B-conditionally

measurable if and only if one of the following conditions holds true

{f ≥ α} ∈ F ∀α ∈ R, {f > α} ∈ F ∀α ∈ R

{f ≤ α} ∈ F ∀α ∈ R, {f < α} ∈ F ∀α ∈ R.

Furthermore, it is equivalent if quantification ranges over α ∈ R.

Proof. Clearly, the conditional intervals generate the conditional σ-algebra B. Further,

we observe that {f > α} =
⊔
N∈N

{
f ≥ α+ 1

N

}
, {f ≤ α} = {f > α}@, {f < α} =⊔

N∈N
{
f ≤ α+ 1

N

}
and {f ≥ α} = {f < α}@.

Theorem 1.38. Let f, g : (X,F)→
(
R,B

)
be F-B-conditionally measurable conditional

functions. Then {f < g} , {f ≤ g} , {f = g} , {f 6= g} ∈ F.

Proof. This follows by Theorem 1.37, {f < g} =
⊔
Q∈Q ({f < Q} u {Q < g}) and that

Q is conditionally dense in R.

Theorem 1.39. Let f, g : (X,F)→
(
R,B

)
be F-B-conditionally measurable conditional

functions. Then, f ·g, f+g, f−g are F-B-conditionally measurable conditional functions

if they are well-defined.

Proof. The conditional sets {f = ±∞} and {g = ±∞} are in F by Theorem 1.37. On

their conditional complement, by Theorem 1.37, β + γg is F-B-conditionally measur-

able for β, γ ∈ R if g is F-B-conditionally measurable. Hence, with {f + g ≥ α} =

{f ≥ α− g}, f + g and f − g are F-B-conditionally measurable. Considering f · g =
1
4 (f + g)2 − 1

4 (f − g)2, it suffices to show that f2 is F-B-conditionally measurable. To

this end, observe
{
f2 ≥ α

}
= X|a + ({f ≥

√
α} t {f ≤ −

√
α}) |ac where we use the

definition a = ∨{a ∈ A | α|a ≤ 0}.

Theorem 1.40. Let (fN )N∈N be a conditional sequence of F-B-conditionally measur-

able conditional functions fN : (X,F) →
(
R,B

)
, N ∈ N. Then the conditional func-

tions ess infN∈N fN , ess supN∈N fN , ess lim infN∈N fN and ess lim supN∈N fN are F-B-

conditionally measurable conditional functions, and, too limN∈N fN if it exists.
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Proof. We observe that {ess supN∈N fN ≤ α} =
d
N∈N {fN ≤ α}, hence, ess supN∈N fN

is F-B-conditionally measurable. With Theorem 1.39 and by definition, ess infN∈N fN =

− ess supN∈N (−fN ), ess lim infN∈N fN = ess supN∈N (ess infM>N fM ) and also finally

ess lim supN∈N fN = ess infN∈N (ess supM>N fM ) are F-B-conditionally measurable.

Theorem 1.41. The conditional function f : (X,F) →
(
R,B

)
is F-B-conditionally

measurable if and only if its positive part f+ := ess sup{f, 0} and its negative part

f− := ess inf{f, 0} are F-B-conditionally measurable. If so, the absolute value |f | :=

ess sup {f,−f} is F-B-conditionally measurable.

Proof. Considering f = f+ − f− and |f | = f+ + f−, Theorem 1.39 and Theorem 1.40

yield the claims.

We define a conditional sequence (fN )N∈N of F-B-conditionally measurable conditional

functions fN : (X,F) →
(
R,B

)
to be increasing if fN ≥ fM whenever N ≥ M and

strictly increasing if fN > fM whenever N > M .

Definition 1.42. Let F be a conditional σ-algebra on a conditional set X. Let X ∈
X and C ∈ F. The conditional indicator function χC (X) : X × F → {0, 1} @ R is

defined by χC (X) := (1|a+ 0|ac) |b where a := ∨{a ∈ A | X|a ∈ C|a} ≤ b and {X} u C
lives on b. A conditional function f : (X,F) →

(
R,B

)
is called elementary if there

exist conditional finite conditional families (αN )1≤N≤N in R and (CN )1≤N≤N in F such

that f =
∑

1≤N≤N αNχCN . Further, if µ : F → [0,∞] is a conditional measure and

f : (X,F) →
(
R,B

)
an elementary conditional function, f =

∑
1≤N≤N αNχCN , we

define the integral
∫
fdµ :=

∑
1≤N≤N αNµ (CN ) which is independent of the elementary

representation as the following lemma shows.

Lemma 1.43. Let µ : F → [0,∞] be a conditional measure. A conditional function

f : (X,F)→
(
R,B

)
may have two elementary representations, f =

∑
1≤N≤N αNχCN =∑

1≤M≤M βMχDM . Then, it holds that
∑

1≤N≤N αNµ (CN ) =
∑

1≤M≤M βMµ (DM ).

Proof. We observe that αN = βM on CN u DM . Then,∑
1≤N≤N

αNµ (CN ) =
∑

1≤N≤N

αN
∑

1≤M≤M

µ (CN u DM )

=
∑

1≤M≤M

βM
∑

1≤N≤N

µ (CN u DM ) =
∑

1≤M≤M

βMµ (DM ) ,

which shows the claim.
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Remark 1.44. The integral is R-linear and monotone, that is,
∫
αf + gdµ = α

∫
fdµ+∫

gdµ and
∫
fdµ ≤

∫
gdµ if f ≤ g for α ∈ R, elementary conditional functions f, g and

a conditional measure µ.

Theorem 1.45. Let µ : F → [0,∞] be a conditional measure and f, fN : (X,F) →(
R,B

)
elementary conditional functions. Then

∫
fdµ ≤ ess supN∈N

∫
fNdµ whenever

f ≤ ess supN∈N fN .

Proof. Let f =
∑

1≤N≤N αNχCN and α ∈ ] 0, 1 [ . By Theorem 1.39, DN := {fN ≥ αf} ∈
F. Then,

∫
fNdµ ≥ α

∫
fχDNdµ by Remark 1.44. Since µ is a conditional mea-

sure, it holds that
∫
fdµ =

∑
1≤N≤N αNµ (CN ) = limM∈N

∑
1≤N≤N αNµ (CN u DM ) =

limM∈N
∫
fχDMdµ. To conclude,

ess sup
N∈N

∫
fNdµ ≥ ess sup

N∈N
α

∫
uχDNdµ = α lim

∫
fχDMdµ = α

∫
udµ.

Since α ∈ ] 0, 1 [ has been chosen arbitrarily, the claim follows.

Theorem 1.46. Let µ : F → [0,∞] be a conditional measure. Let f : (X,F) →
(
R,B

)
be a nonnegative F-B-conditionally measurable conditional function. Then there ex-

ists an increasing conditional sequence (fN )N∈N of elementary conditional functions

fN : (X,F)→
(
R,B

)
such that limN∈N fN = f .

Proof. We approximate every nonnegative F-B-conditionally measurable conditional

function by dyadic conditional functions in R. To that end, we define conditional sets

Ckn ∈ F by

Ckn :=


{
f ≥ k

2n

}
u
{
f < k+1

2n

}
, 0 ≤ k ≤ n2n − 1, n ∈ N, k ∈ N,

{f ≥ n} , k = n2n.

We have that X =
⊔

0≤k≤n2n Ckn. Next, we define fn :=
∑

0≤k≤n2n
k

2nχCkn and fN :=∑
n∈N anfmn for N =

∑
n∈N anmn which is an elementary conditional function. The

conditional sequence (fN )N∈N is increasing and f = ess supN∈N fN by construction.

Definition 1.47. Let µ : F → [0,∞] be a conditional measure. Let f, g : (X,F) →(
R,B

)
be F-B-conditionally measurable conditional functions. A nonnegative f may

be represented as an increasing conditional sequence (fN )N∈N of elementary conditional
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functions. Then, the representation-independent∫
fdµ := ess sup

N∈N

∫
fNdµ ≥ 0 (1.6)

is the µ-conditional integral of f . The conditional function g is called µ-conditionally

integrable if the integrals
∫
g+dµ and

∫
g−dµ are in R. Then,∫

gdµ :=

∫
g+dµ−

∫
g−dµ (1.7)

is the µ-condtional integral of g.

Remark 1.48. The µ-conditional integral is R-linear, monotone and satisfies
∣∣∫ fdµ∣∣ ≤∫

|f | dµ. Furthermore, the µ-conditional integral of f over C ∈ F is defined by
∫
C fdµ :=∫

fχCdµ if f is µ-conditionally integrable or a nonnegative F-B-conditionally measurable

conditional function. Plenty of properties of this integral can be derived from properties

of the conditional indicator functions.

Theorem 1.49 (Monotone convergence, Fatou’s Lemma, Dominated convergence). Let

µ : F → [0,∞] be a conditional measure. Let (fN )N∈N be a conditional sequence of

nonnegative F-B-conditionally measurable conditional functions fN : (X,F) →
(
R,B

)
.

Then ess supN∈N fN is a nonnegative F-B-conditionally measurable conditional function

and
∫

ess supN∈N fNdµ = ess supN∈N
∫
fNdµ. Further,∫

ess lim inf
N∈N

fNdµ ≤ ess lim inf
N∈N

∫
fNdµ. (1.8)

If additionally limN∈N fN = f for an F-B-conditionally measurable conditional func-

tion f : (X,F) →
(
R,B

)
and there is a µ-conditionally integrable conditional function

g : (X,F) →
(
R,B

)
with |fN | ≤ g then f and fN are µ-conditionally integrable and

limN∈N
∫
|f − fN | dµ = 0.

Proof. Let f∗ := ess supN∈N fN . The claim is to find an increasing conditional sequence

(gN )N∈N of elementary conditional functions with ess supN∈N gN = f∗. To this end by

definition of fN , there are elementary conditional functions gMN with ess supM∈N gMN =

fN . Then gM := ess sup0≤K≤M gMK is a elementary conditional function. The condi-

tional sequence (gM )M∈N is increasing. It follows that gM ≤ fM and ess supM∈N gM ≤
f∗. Further, gMN ≤ gM , hence, ess supM∈N gMN = fN ≤ ess supM∈N gM , and finally,

ess supM∈N gM = f∗, hence, the conditional sequence (gM )M∈N has all the required

properties.
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To show Fatou’s Lemma, by monotone convergence,
∫

ess supN∈N ess infM≥N fM =

ess supN∈N
∫

ess infM≥N fMdµ. Further,
∫

ess infM≥N fNdµ ≤
∫
fMdµ. Taking the es-

sential infimum on both sides yields
∫

ess infM≥N fNdµ ≤ ess infM≥N
∫
fMdµ. Hence

finally, it holds that
∫

ess supN∈N ess infM≥N fM = ess supN∈N
∫

ess infM≥N fMdµ ≤
ess supN∈N ess infM≥N

∫
fMdµ.

To show Dominated convergence, we define gN := |f − fN | and we will show that

limN∈N
∫
gNdµ = 0. To this end, consider 0 ≤ gN ≤ g + |f | where the latter is µ-

conditionally integrable since |f | ≤ g and by Theorem 1.41, Theorem 1.46 and Remark

1.48. Then gN is µ-conditionally integrable for the same reasons. We apply Fatou’s

Lemma to g + |f | − gN and obtain, since limN∈N gN = ess lim infN∈N gN = 0,∫
g + |f | dµ =

∫
ess lim inf

N∈N
(g + |f | − gN ) dµ ≤ ess lim inf

N∈N

∫
(g + |f | − gN ) dµ

=

∫
g + |f | dµ− ess lim sup

N∈N

∫
gNdµ

which yields ess lim supN∈N
∫
gNdµ ≤ 0. But gN is nonnegative, thus we have established

that limN∈N
∫
gNdµ = 0 which by definition of gN yields the claim.

1.2.3 Radon-Nikodym theorem

In the sequel, let µ : F → [0,∞] be a conditional measure and let f : (X,F) →
(
R,B

)
be a nonnegative F-B-conditionally measurable conditional function.

Theorem 1.50. For all nonnegative F-B-conditionally measurable conditional functions

f : (X,F)→
(
R,B

)
, we define a conditional measure ν : F→ [0,∞] by

ν (C) :=

∫
C
fdµ :=

∫
fχCdµ. (1.9)

Proof. By definition, ν (X|0) = 0 and µ (C) ≥ 0. For a conditional sequence (CN )N∈N
of conditionally pairwise disjoint conditional sets in F, it holds that fχ⊔

N∈N CN =∑
N∈N fχCN , hence, by R-conditional linearity and monotone convergence (Theorem

1.49), ν (C) =
∑

N∈N ν (CN ), thus the claim holds.

Theorem 1.51. Let µ : F→ [0,∞] be a conditional measure and let f : (X,F)→
(
R,B

)
be a nonnegative F-B-conditionally measurable conditional function. Then,

∫
fdµ =

0 if and only if µ ({f = 0}) = 0. A conditional function g : (X,F) →
(
R,B

)
is µ-

conditionally integrable over every C ∈ F with µ (C) = 0.
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Proof. Clearly, {f 6= 0} = {f > 0} ∈ F, since f is F-B-conditionally measurable and by

Theorem 1.37. So, let
∫
fdµ = 0. Further, let CN :=

{
f ≥ 1

2N

}
∈ F. Then, f ≥ 1

2N
χCN

implies 0 =
∫
fdµ ≥ 1

2N
µ (CN ) ≥ 0. But, µ ({f > 0}) = limN∈N µ (CN ) = 0.

On the other hand, let µ ({f > 0}) = 0. Then, f ≤ ess supN∈NNχ{f>0}, and 0 ≤∫
fdµ ≤

∫
ess supN∈NNχ{f>0}dµ = ess supN∈N

∫
Nχ{f>0}dµ = 0 by monotone conver-

gence. But, for all N ∈ N it holds that
∫
Nχ{f>0} = 0 by construction.

If g ≥ 0 then consider f := gχC which fulfills the conditions of the first part of the

theorem. For arbitrary g, we apply this to g+ and −g− to show the last claim.

Definition 1.52. For all nonnegative F-B-conditionally measurable conditional func-

tions f : (X,F) →
(
R,B

)
, the conditional measure ν : F → [0,∞] defined by (1.9) is

called the conditional measure with density f with respect to µ. We write ν = fµ.

Lemma 1.53. Let f, g, ϕ : (X,F)→
(
R,B

)
be nonnegative F-B-conditionally measur-

able conditional functions. We define ν := fµ and ν∗ := gν. Then,∫
ϕdν =

∫
ϕfdµ and ν∗ = (gf)µ. (1.10)

Proof. The first part follows directly for simple conditional functions and by monotone

convergence on their supremum. The second part follows from the first part and ν∗ (C) =∫
gχCdν =

∫
gfχCdµ which is the claim.

Definition 1.54. A conditional measure ν : F→ [0,∞] is called continuous with respect

to a conditional measure µ : F → [0,∞] or µ-conditionally continuous if µ (C) |a = 0

implies ν (C) |a = 0 for C ∈ F.

Theorem 1.55 (Radon-Nikodym). Let µ, ν : F → [0,∞] be conditional measures and

let µ be conditionally σ-finite. Then, ν has a density with respect to µ if and only if ν

is µ-continuous.

Proof. If ν has a density with respect to µ, then, by Theorem 1.51, ν is µ-continuous.

For the inverse implication, we consider the cases, that µ, ν are finite, then only that µ

is finite and finally, µ is conditionally σ-finite.

First, let µ and ν be finite. We define the set G of nonnegative F-B-conditionally

measurable conditional functions g with gµ ≤ ν. The conditional function g ≡ 0 is

in G, hence, G is nonempty. Further, define γ := ess sup
{∫

gdµ | g ∈ G
}
∈ R which

exists since ν is finite. By [DJKK16, Theorem 4.5] und monotonicity of the integral,

there exists an nondecreasing conditional sequence (gN )N∈N such that limN∈N
∫
gNdµ =
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γ. By monotone convergence, ess supN∈N gN ∈ G and
∫
N∈N ess sup gNdµ = γ. Thus,

ess supN∈N gN is a maximizer of g 7→
∫
gdµ. We show that ess supN∈N gNµ = ν. To this

end, let ν := ν−ess supN∈N gNµ which is µ-conditionally continuous by assumption and

assume that ν (X) |a > 0, since if ν (X) = 0 we are done. By µ-conditional continuity,

µ (X) |a > 0, thus, we can define β := ν(X)
2·µ(X) |a+0|ac with β|a > 0. Applying Lemma 1.57,

we obtain C0 ∈ F such that ν (C0)−βµ (C0) ≥ ν (X)−βµ (X) with (ν (C0)− βµ (C0)) |a >
0 and ν (D) |a ≥ βµ (D) |a for all D @ C0 u F. We show that ess supN∈N gN + βχC0 ∈ G.

First, it is F-B-conditionally measurable. For all C ∈ F, it holds that∫
C

ess sup
N∈N

gN + βχC0dµ ≤
∫
C

ess sup
N∈N

gNdµ+ βµ (C0 u C)

≤
∫
C

ess sup
N∈N

gNdµ+ ν (C0 u C) ≤ ν (C) .

Since ν (C0) |a = (ν (C0)− βµ (C0)) |a > 0 and ν is µ-conditional continuous, it holds that

µ (C0) |a > 0. Then,∫
ess sup
N∈N

gN + βχC0dµ|a = γ|a+ βµ (C0) |a > γ|a,

in contradiction to the maximality of γ and ess supN∈N gN + βχC0 ∈ G. Hence, ν ≡ 0,

as required.

In the second part, we consider the case that only µ is finite. We construct C0 ∈ F and a

conditional sequence (CN )N∈N such that
⊔
N∈N CN tC0 = X, ν (CN ) is finite, and for all

D @ C0uF, there exists aD ∈ A such that µ (D) |aD = ν (D) |aD = 0 and 0 < µ (D) |acD <
ν (D) |acD =∞. To this end, we define α := ess sup {µ (D) | D ∈ F, ν (D) <∞} ∈ R since

µ is finite. Again, by [DJKK16, Theorem 4.5], there exists an nondecreasing conditional

sequence (DN )N∈N with limN∈N µ (DN ) = α. Thus,
⊔
N∈NDN ∈ F, and by monotone

convergence, µ
(⊔

N∈NDN
)

= α. We consider C1 := D1, CN+1 := DN+1 u D@
N and

C0 :=
(⊔

N∈NDN
)@

. For all D @ C0 u F, let aD := (∨{a ∈ A | ν (D) |a =∞})c. We

show that µ (D) |aD = 0. Since ν (D) |aD < ∞, it holds that ν (DN u D) |aD < ∞,

thus, µ (DN u D) |aD ≤ α|aD, and by monotone convergence, µ
(⊔

N∈NDN u D
)
|aD =

limN∈N µ (DN u D) |aD ≤ α|aD. Since by construction
⊔
N∈NDN u D = X|0, it holds

that µ
(⊔

N∈NDN u D
)
|aD = α|aD + µ (D) |aD. Thus, µ (D) |aD = 0.

We make use of this decomposition by considering µ and ν restricted on the conditional

σ-algebras CN u F denoted by µN and νN . By assumption, νN is µN -conditionally

continuous and µ and ν are finite. By the first part of the proof, there are nonnegative

CN u F-B-conditionally measurable conditional functions fN such that νN = fNµN . By
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the construction of the decomposition, µ0 and ν0 as restrictions of µ and ν on C0 u F

that fulfill ν0 = f0µ0 with f0 ≡ ∞. Finally, f defined as fN on CN satisfies ν = fµ.

For the third part, assume µ to be conditionally σ-finite. By Lemma 1.56, there exists

a µ-conditionally integrable conditional function f : (X,F)→ (R,B) with f > 0. Thus,

we can define the conditional measure µ := fµ with µ (C) = 0 if and only if µ (C) = 0 for

all C ∈ F. Hence, ν is µ-conditionally continuous. By the second part of the proof, there

exists a nonnegative F-B-conditionally measurable conditional function g with ν = gµ.

Then, ν = (gf)µ by Lemma 1.53 which yields the claim.

Lemma 1.56. Let µ : F → [0,∞] be a conditional measure. It is σ-conditionally finite

if and only if there exists a µ-conditionally integrable conditional function f : (X,F)→
(R,B) with f > 0.

Proof. By definition of a conditionally σ-finite conditional measure, there exists a con-

ditional sequence (CN )N∈N in X such that µ (CN ) ≥ 0 and
⊔
N∈N CN = X. We define

aN := ∨{a ∈ A | µ (CN ) |a = 0} and αN := 1
2N
|aN +

(
1

2N
∧ 1
µ(CN )·2N

)
|acN > 0. Further,

define f :=
∑

N∈N αNχCN . By definition, f is a F-B-conditionally measurable condi-

tional function with 0 ≤ f ≤ 1 and
∫
fdµ ≤ 1. If f > 0, we are done. If f |a = 0, we

have that µ (Cn) |a = 0, hence µ = 0, in turn, any f is as required.

Lemma 1.57. Let µ, ν : F → [0,∞] be finite conditional measures. Let µ := ν − µ.

Then, there is C0 ∈ F such that µ (C0) ≥ µ (X) and µ (D) ≥ 0 for all D @ C0 u F.

Proof. First, we proof that for every ε > 0 there exists Cε ∈ F such that µ (Cε) ≥ µ (X)

and µ (D) ≥ −ε for all D @ Cε u F. We may assume that µ (X) ≥ 0. For if a :=

sup {a ∈ A | µ (X) |a ≥ 0} then any Cε ∈ F with µ (Cε) |a ≥ µ (X) |a and µ (D) |a ≥ −ε|a
for all D @ Cε u F yields Cε|a ∈ F fulfilling all the properties of the claim.

We define a0 := (∨{a ∈ A | µ (D) |a ≥ −ε|a ∀D ∈ F})c. If a0 = 0, we choose Cε :=

X to fulfill the claim. Otherwise, there exists D1 ∈ F with µ (D1) |a0 ≤ −ε|a0. By

definition of µ, it holds that µ (D@
1 ) |a0 ≥ (µ (X) + ε) |a0 > µ (X) |a0. Define a1 :=

(∨{a ∈ A | µ (D) |a ≥ −ε|a ∀D ∈ D@
1 u F})c∧a0. If a1 = 0, we choose Cε := D@

1 |a0+X|ac0
to fulfill the claim. Otherwise, there exists D2 ∈ D@

1 u F with µ (D2) |a2 ≤ −ε|a2.

Assume (DN )N∈N to be constructed pairwise conditionally disjoint with µ (DN ) ≤ −ε
for DN ∈ D@

N−1 u F. Then, on aN ,

µ

 ⊔
1≤N≤K

DN

@ = µ (X)−
∑

1≤N≤K
µ (DN ) ≥ µ (X) +Kε > µ (X) .
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Thus,
∑

1≤N≤K µ (DN ) |aK ≤ −Kε|aK and, hence,
∑

N∈N µ (DN ) |∧K∈NaK = −∞. But

also
∑

N∈N µ (DN ) | ∧K∈N aK = ν
(⊔∞

N∈NDN
)
| ∧K∈N aK − µ

(⊔
N∈NDN

)
| ∧K∈N aK >

−∞. Thus, ∧K∈NaK = 0. Then, Cε :=
∑

N∈N (aN − aN−1)D@
N+1 + a0D1 + ac0X fulfills

the claim.

We conclude with the original claim. We consider ε := 1
N , and choose the conditional

sequence (CN )N∈N such that CN @ CN−1 in F. Consider, C0 :=
d
N∈N CN . Then, it

holds that µ (D) ≥ −ε for all D ∈ C0 u F and all ε > 0, hence, µ (D) ≥ 0. Further, since

µ (Cn) ≥ µ (X) we can apply the limit and obtain µ (C0) = limN∈N µ (CN ) ≥ µ (X). The

claim then follows by Remark 2.3.

1.2.4 Product measures

Definition 1.58. Let Fi be a conditional σ-algebra on Xi. The conditional σ-algebra

Σ
(
pr−1
i (Fi)

)
on the conditional product of

(
Xi
)
i∈I generated by the projection map-

pings pri :
∏
i∈I Xi → Xi is the conditional product σ-algebra ⊗i∈IFi.

Lemma 1.59. Let Ci be a generator of Fi with (Cik)k∈N in Ci such that
⊔
k∈N Cik = Xi.

Then, ⊗Fi = Σ (×i∈ICi) for Ci ∈ Ci.

Proof. That follows directly from the definitions.

Theorem 1.60. Let Ci be a conditional π-system and a generator of Fi with (Cik)k∈N
in Ci such that

⊔
k∈N Cik = Xi and µi (Cik) <∞. Then, there is at most one conditional

measure µ on ⊗Fi such that µ (×i∈ICi) =
∏
i∈I µ (Ci) for all Ci ∈ Ci.

Proof. Clearly, ⊗Fi is a conditional π-system and Ck := ×i∈ICik are such that
⊔
k∈N Ck =∏

i∈I Xi. The claim follows by Lemma 1.59 and Theorem 1.29.

For the sake of simplicity, we consider the conditional product of two conditional sets

X1 and X2. By induction, the generalisations of the following theorems can easlily be

derived for condtional countable conditional products by Remark 2.3.

Lemma 1.61. Let C @ X1×X2 and define Cx1 := {X2 ∈ X2 | (X1, X2) ∈ C} and CX2 :=

{X1 ∈ X1 | (X1, X2) ∈ C}, the X1-section of C and the X2-section of C. If C ∈ F1 ⊗ F2

then CX1 ∈ F2 and CX2 ∈ F1.

Proof. We observe that

(C1 × C2)X1
= C2|b, b := ∨{b∗ ∈ A | X1|b∗ ∈ C1|b∗} .
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Thus, the conditional sets {C | CX1 ∈ F} are a conditional σ-algebra for fixed X1. Every

connditional set C1×C2 for C1 ∈ F1 and C2 ∈ F2 is in this conditional σ-algebra which is

the smallest conditional σ-algebra containing all these sets by Lemma 1.59.

Lemma 1.62. Let µ1 and µ2 be conditionally σ-finite. For C ∈ F1⊗F2, the conditional

functions X1 7→ µ2 (CX1) |aX1
C and X2 7→ µ1 (CX2) |aX2

C are F1-B-measurable and F2-B-

measurable, respectively, where aXiC := ∨{b∗ ∈ A | Xi|b∗ ∈ pri (C) |b∗}.

Proof. We define sC (X1) := µ2 (CX1) |aX1
C . First, let µ2 be totally finite. The collection

of conditional sets D := {C ∈ F1 ⊗ F2 | sC is F1-B-measurable} is a conditional λ-system

for which C1 × C2 for Ci ∈ Fi are a conditional π-system since sC (C1 × C2) = µ2 (C2)χC1 .

Thus, D = F1 ⊗ F2 by Theorem 1.28. For conditionally σ-finite conditional measures

µ2, let (Dn)n∈N be a sequence in X2 such that
⊔
n∈NDn = X2 with µ2 (Dn) < ∞.

Then, µ2,n (C2 u Dn) is a totally finite conditional measure on F2. Finally, µ2 (CX2) =

limn∈N µ2,n (CX2) is also F1-B-measurable by Property (v) following Definition 1.23 and

Theorem 1.49.

Theorem 1.63. Let X1 and X2 be conditional measure spaces where µ1 and µ2 are

conditionally σ-finite. Then, a conditional measure µ on F1 ⊗ F2 with µ (C1 × C2) =

µ1 (C1)µ2 (C2) exists and is unique. It is further conditionally σ-finite and it holds that

µ (C) =

∫ (
µ2 (CX1) |aX1

C

)
µ1 (dX1) =

∫ (
µ1 (CX2) |aX2

C

)
µ2 (dX2) . (1.11)

Proof. We define sC (X1) := µ2 (CX1) |aX1
C and µ (C) :=

∫
sCdµ1. Then, µ : X1 ×X2 →

[0,∞] is a conditional measure by the properties of the integral. For sC1×C2 = µ2 (C2)χC1 ,

by integration with respect to µ1, it holds that µ (C1 × C2) = µ1 (C1)µ2 (C2). By Theorem

1.60, it is unique. The conditional measure µ∗ (C) :=
∫
µ1 (CX2) |aX2

C µ2 (dX2) is thus

equal to µ, thus, (1.11) holds. Conditional σ-finiteness of µ follows from the same

property of µ1 and µ2 since µ (C1 × C2) = µ1 (C1)µ2 (C2) < ∞ for the same exhausting

sequences of µ1 and µ2.

Definition 1.64. The conditional measure constructed in Theorem 1.63 on conditionally

σ-finite conditional measure spaces is the product measure and denoted by µ1 ⊗ µ2.

For the X1-section and X2-section of conditional functions f : X1×X2 → R, we consider

conditional functions f : X2 → R with fX1 (X2) := f (X1, X2) for fixed X1 and f : X1 →
R with fX2 (X1) := f (X1, X2) for fixed X2.
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Lemma 1.65. Let f : X1 ×X2 → R be a F1 ⊗ F2-B-measurable conditional function.

Then, fX1 is F2-B-measurable and fX2 is F1-B-measurable.

Proof. By F1 ⊗ F2-B-measurability of f , it holds that f−1
X1

(C) =
(
f−1 (C)

)
X1

and the

claim follows from Lemma 1.61.

Theorem 1.66. Let X1 and X2 be conditional measure spaces where µ1 and µ2 are

conditionally σ-finite and let f : X1×X2 → [0,∞] be a F1⊗F2-B-measurable conditional

function. Then, the conditional functions X2 7→
∫
fX2dµ1|aX2

X and X1 7→
∫
fX1dµ2|aX1

X

are F2-B-measurable and F1-B-measurable, respectively. It further holds that∫
fd (µ1 ⊗ µ2) =

∫ (∫
fX2dµ1|aX2

X

)
µ2 (dX2) =

∫ (∫
fX1dµ2|aX2

X

)
µ1 (dX1) .

(1.12)

Proof. We first consider elementary conditional functions f =
∑

1≤n≤n αnχCn . By

Lemma 1.65 and Lemma 1.62, it holds that
∫
fX2dµ1 =

∑
1≤n≤n αnµ1 (Cn,X2) is F2-

B-measurable. By Theorem 1.63, we may intregrate with respect to µ2 and obtain∫ (∫
fX2dµ1|aX2

X

)
dµ2 =

∑
1≤n≤n αnµ (Cn) =

∫
fdµ. For nonnegative f , let (fm)m∈N be

an increasing sequence of simple conditional functions with limit f . Then, gm (X2) :=∫
fmX2

dµ1|aX2
X is F2-B-measurable and (gm)m∈N increases to

∫
fX2dµ1|aX2

X . Finally,∫ (∫
fX2dµ1|aX2

X

)
µ2 (dX2) = ess sup

m∈N

∫
gmdµ2 = ess sup

m∈N

∫
fmdµ =

∫
fdµ

by monotone convergence.

Corollary 1.67 (Fubini). Let X1 and X2 be conditional measure spaces where µ1 and µ2

are conditionally σ-finite and let f : X1×X2 → [0,∞] be a µ1⊗µ2-integrable conditional

function. Then, the conditional functions X2 7→
∫
fX2dµ1|aX2

X and X1 7→
∫
fX1dµ2|aX1

X

are µ1-integrable and µ2-integrable, respectively and (1.12) holds true.

Proof. By (1.12), it holds that∫ (∫
|f |X2

dµ1|aX2
X

)
µ2 (dX2) =

∫ (∫
|f |X1

dµ2|aX1
X

)
µ1 (dX1)

=

∫
|f | d (µ1 ⊗ µ2) <∞.

Thus, X1 7→
∫
|f |X1

dµ2|aX1
X is F1-B-measurable, µ1-integrable and conditionally real-

valued by Theorem 1.51. Thus, fX1 is µ2-integrable with
∫
fX1dµ2|aX1

X =
∫
f+
X1
dµ2|aX1

X −
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∫
f−X1

dµ2|aX1
X . By Theorem 1.66, X1 7→

∫
fX1dµ2|aX1

X is F1-B-measurable and X1 7→∫
f+
X1
dµ2|aX1

X and X1 7→
∫
f−X1

dµ2|aX1
X are µ1-integrable. Consequently,∫ (∫

fX1dµ2|aX1
X

)
µ1 (dX1)

=

∫ (∫
f+
X1
dµ2|aX1

X

)
µ1 (dX1)−

∫ (∫
f−X1

dµ2|aX1
X

)
µ1 (dX1)

=

∫
f+d (µ1 ⊗ µ2)−

∫
f−d (µ1 ⊗ µ2) =

∫
fd (µ1 ⊗ µ2)

The roles of X1 and X2 can be interchanged, thus the claim is proven.

1.2.5 A conditional version of the Daniell-Stone theorem and Riesz

representation theorem

In this section we will prove a conditional version of the Daniell-Stone theorem thanks

to which conditional versions of the Riesz representation theorem on the conditionally

n-dimensional Euclidean space are established.

Definition 1.68. Given a conditional set X, a conditional family L of conditional func-

tions f : X → R is called a conditional Stone vector lattice whenever f + g,Rf and

min {f, 1} are elements of L for all f, g ∈ L and R ∈ R and there exist f ∈ L and X ∈ X

such that f (X) |a 6= 0|a for all a > 0.

Definition 1.69. For a conditional sequence (fN )N∈N of conditional functions fN : X→
R and a conditional function f : X → R we write fN ↓ f if (fN )N∈N is decreasing and

limN∈N fN (X) = f (X) for all X ∈ X.

Theorem 1.70. Let L be a conditional Stone vector lattice and L : L → R a linear

conditional function such that L (f) ≥ 0 whenever f ≥ 0 and L (fN ) ↓ 0 whenever

fN ↓ 0. Then there exists a conditional measure Φ on Σ (L) such that L (f) =
∫
X fdΦ

for all f in L.

Proof. For f, g in L we define [f, g [ := {(X,R) ∈ X×R | f (X) 6 R < g (X)}. The

collection X of all conditional unions of conditional finite families ([fm, gm [ )1≤m≤n of

pairwise disjoint elements is a conditional ring on X × R. The conditional function

Ψ: X → R+ given by

Ψ

 ⊔
1≤m≤n

[fm, gm [

 :=
∑

1≤m≤n
L (gm − fm)
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is a conditional pre-measure which by Theorem 1.31 extends to a conditional measure

on Σ (X ). By inspection we have M′ := Σ
({
f−1 ( ] 1,∞ [ ) | f ∈ L

})
= Σ (L). For f ∈ L

let f−1 ( ] 1,∞ [ ) live on d, and for X ∈ X and N ∈ N set

aX = ∨{ã | f (X) |ã 6 1|ã} , bX = ∨
{
b̃ | 1|b̃ < f (X) |b̃ < N + 1

N
|b̃
}
,

cX = ∨
{
c̃ | f (X) |c̃ > N + 1

N
|c̃
}
, gN (X) := 0| (aX ∨ d) +N (f (X)− 1) |bX + 1|cX .

Since
⊔
N∈N [0, gN [ = f−1 ( ] 1,∞ [ ) × [0, 1 [ it holds that the conditional function

Φ (C) := Ψ (C × [0, 1 [ ) is a conditional measure on M′. The representation L (f) =∫
X fdΦ for all f ∈ L follows from (M8) and Theorem 1.49.

We give a conditional version of Dini’s lemma:

Lemma 1.71. Let (X,T) be a conditionally compact topological space and (fN )N∈N a

decreasing conditional sequence of continuous conditional functions fN : X → R con-

verging to a continuous conditional function f . Then for all R > 0 there exists N0 in N

such that supX∈X|fN (X)− f (X)| 6 R for all N > N0.

Proof. The proof is similar to the classical proof by using the definition of conditional

compactness.

For d ∈ N let c
(
Rd,R

)
denote the conditional family of all continuous conditional

functions f : Rd → R. The conditional function f ∈ c
(
Rd,R

)
has conditionally compact

support whenever cl
(
f−1

(
{0}@

))
is conditionally compact. We denote by cc

(
Rd,R

)
the

conditional family of c
(
Rd,R

)
of all functions with conditionally compact supported.

Both c
(
Rd,R

)
and cc

(
Rd,R

)
are conditional Stone vector lattices.

A finite conditional measure Φ on the conditional Borel σ-algebra BN is called condi-

tionally tight whenever

Φ (C) = sup {Φ (D) | D @ C conditionally compact}

for all C ∈ BN .

Corollary 1.72. Let L : c
(
Rd,R

)
→ R be an R-linear conditional function such that

L (f) ≥ 0 whenever f ≥ 0. Then there exists a finite conditionally tight measure Φ on

Bn such that L (f) =
∫
Rd fdΦ for all f ∈ c

(
Rd,R

)
.
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Proof. Let (fM )M∈N be a conditional sequence in c
(
Rd,R

)
with fN ↓ 0. Let CK ={

X ∈ Rd | ‖X‖ ≤ K
}

, K ∈ N which is conditionally compact by Remark 1.17. Put

gK (X) = max {1−minY ∈CK ‖X − Y ‖ , 0} and hKM = gKfM + (1− gK) f1 ‖·‖ /2K.

One has fM ≤ hKM for all K,M ∈ N. Fix R > 0. Now choose K such that

1/ (2K)L (f1 (1− g1) ‖·‖) < R/2. Next, chooseM such that L (gKfM ) < R/2 by Lemma

1.71. We have L (fM ) ≤ L (gKfM ) + 1/ (2K)L ((1− g1) f1 ‖·‖) < R. By Theorem 1.70

there exists a finite conditional measure Φ on Bd representing L. The regularity condi-

tion follows from an adaptation of the arguments in the proof of [CKT15, Proposition

1.5].

Corollary 1.73. Let L : cc
(
Rd,R

)
→ R be an R-linear conditional function such that

L (f) ≥ 0 whenever f ≥ 0. Then there exists a conditional measure Φ on Bd such that

L (f) =
∫
Rd fdΦ for all f ∈ cc

(
Rd,R

)
. Moreover, one has Φ (K) <∞ for all condition-

ally compact intervals K and Φ (C) = sup {Φ (D) | D @ C conditionally compact} for all

C ∈ Bd with Φ (C) <∞.

Proof. In order to obtain the assumptions of Theorem 1.70 apply Lemma 1.71 to the

conditional sequence (1KfN )N∈N where K denotes the support of f1. For a condition-

ally compact interval K and f (X) = max {1−minY ∈K ‖X − Y ‖ , 0} one has Φ (K) =∫
Rd fdΦ ≤ L (f). The conditional regularity condition follows similarly to Corollary

1.72.

1.3 Partition of unity

We close this Chapter with some topological theorem. In the sequel, we follow an

approach suggested in [AB06] and [Dug75], adapted to conditional theory, where we

show that R is conditionally normal and fulfills Urysohn’s characterization of normality

in a conditional setting.

Definition 1.74 (Partition of unity). A conditional family (fI)I∈I in R of conditional

functions is a partition of unity if fI : R→ [0, 1], I ∈ I, such that fI (X) ∈ R++ for all

X ∈ R only for conditionally finitely many I ∈ I and
∑

I∈I fI (X) = 1. (An arbitrary

sum of zeros is zero.)

A partition of unity (fI)I∈I is subordinated to a cover B of conditional balls (BJ)J∈J
in R if for all I ∈ I there exists J ∈ J such that fI |B@J = 0. It is continuous if fI is

continuous for all I ∈ I.
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Definition 1.75 (Normality). Let (X,T) be a conditional topological space which is

conditionally Hausdorff. It is normal if for all conditionally closed conditional sets C,D @

M which are conditionally disjoint, that is, CuD = X|0, there exist conditionally disjoint

conditionally open conditional sets O1 and O2 in M such that C @ O1 and D @ O2.

Example 1.76. The conditional set R is conditionally Hausdorff, cf. [DJKK16] and nor-

mal. Given conditionally closed conditional balls clBε1 (X1) and clBε2 (X2) @ R which

are conditionally disjoint, we choose Y1 := X1, Y2 := X2, δ1 := ε1 + d(X1,X2)−ε1−ε2
3 > ε1

and δ2 := ε2+ d(X1,X2)−ε1−ε2
3 > ε2. By construction, clBε1 (X1) @ Bδ1 (Y1), clBε2 (X2) @

Bδ2 (Y2) and Bδ1 (Y1) u Bδ2 (Y2) = R|0.

Theorem 1.77 (Urysohn’s characterization of normality). In a conditional topological

space (X,T), for conditionally disjoint conditionally closed conditional balls C,D @ X

there exists a continuous conditional function f : X→ [0, 1] such that 0 ≤ f (X) ≤ 1 for

all X ∈ X and

f (X) = 0 on a0 for a0 := ∨{a | X|a ∈ C|a} ,

f (X) = 1 on a1 for a1 := ∨{a | X|a ∈ D|a} .

We call f a conditional Urysohn function for C and D.

Proof. Let C and D be conditionally disjoint and conditionally closed conditional sets

in X. We show the existence of a conditional Urysohn function for C and D. We

consider R :=
{
K
2n | 0 ≤ K ≤ 2n,K ∈ N, n ∈ N

}
, a conditional countable conditional

dense conditional subset of [0, 1] @ R.

In an inductive procedure, we construct conditionally open B (R) := BεR
(
XR

)
@ X for

every R ∈ R such that

C @ B (R) , B (R) u D = X|0, and

R′ −R ∈ R++ implies clB (R) @ B
(
R′
)
.

First, we do the construction for k ∈ N. Let Dn :=
{
B
(
k

2n

)
| k = 0, 1, . . . , 2n

}
. Let

B (1) := (D)@ and B (0) @ X be such that C @ B (0) @ clB (0) @ D@ which exists by

the normality assumption. Define D0 := {B (0) ,B (1)}. Assuming Dm−1 already being

constructed we note that B
(
k

2m

)
for even k ∈ N is already defined. For k ∈ N odd,

by normality, there exists B
(
k

2n

)
such that clB

(
k−1
2n

)
@ B

(
k

2n

)
@ clB

(
k

2n

)
@ B

(
k+1
2n

)
.

Now, let K ∈ N be arbitrarily. Then, for all R ∈ R, we define B (R) :=
∑

R′∈R B (R′) |ar′
where ar′ := ∨{a | R|a = R′|a} for R′ = k

2n with k ∈ N.

41



1 Conditional theory

We continue with the definition of the conditional function f . Now, let B′ (1) := X,

and for R ∈ R, B′ (R) := X|a1 + B (R) |ac1 where a1 := ∨{a | R|a = 1|a}, thus, passing

from B (R) to B′ (R) is the identity but B (R) |a is replaced by R|a if R|a = 1|a. We

define f (X) := ess inf {R ∈ R | X ∈ B′ (R)} which is well defined by the conditional

density of R in [0, 1]. By definition, 0 ≤ f (X) ≤ 1 for all X ∈ X. We observe that

X|a ∈ C|a for some a implies that X|a ∈ B′ (0) |a, thus, f (X) |a = 0|a. If X|a ∈ D|a for

some a we observe that X|a′ ∈ D@|a′ for R|a < 1|a and X|a ∈ B′ (1) |a = X|a, hence,

f (X) |a = 1|a.

To proof continuity of the conditional function f , let X0 ∈ X and R0 ∈ R such that

f (X0) = R0. Let ε ∈ R++. If R0|a = 0|a for fixed a there exists R ∈ R such that

R|a ∈ ]0, (R0 + ε)[ |a for which holds that B′
(
R
)
|a is a neighbourhood of X0|a with

f
(
B′
(
R
))
|a @ [0, R0 + ε[ |a since by definition of f it holds that f (X) |a ≤ R|a for

all X|a ∈ B′
(
R
)
|a. If R0|a = 1|a there exists R ∈ R such that R|a ∈ ]R0 − ε, 1[ |a

for which holds that (clB′ (R))@ |a is a neighbourhood of X0|a with f
(
(clB′ (R))@

)
|a @

]R0 − ε, 1] |a since f (X) |a ≥ R|a for all X|a in (clB′ (R))@ |a by definition of f . Combin-

ing this whenever 0|a < R0|a < 1|a there exist R,R ∈ R such that R|a ∈ ]R0, R0 + ε[ |a
and R|a ∈ ]R0 − ε,R0[ |a for which hold that B′|a := B′

(
R
)
u (clB′ (R))@ |a is a neigh-

bourhood of X0|a with f (B) |a @ ]R0 − ε,R0 + ε[ |a since by definition of f it holds that

f (X) |a ≤ R|a for all X|a ∈ B′
(
R
)
|a and f (X) |a ≥ R|a for all X|a ∈ (clB′ (R))@ |a.

Hence, f is continuous.

Lemma 1.78. Let B := (BI)I∈I be a conditionally open cover of X. Then, there is a

continuous partition of unity which is subordinated to B.

Proof. For X ∈ X, define aX,I := ∨{a | {X} u BI |a = {X} |a}. Since B is a cover of X,

it holds that
⋃
I∈I aX,I = 1 for all X ∈ X. We fix a partition (aI)I∈I of 1 subordinated

to (aX,I)I∈I , that is, without loss of generality, aI ≤ aX,I and the conditionally open

conditional ball BI ∈ B with X|aI ∈ BI |aI . By Urysohns characterization of normality

in Lemma 1.77 on aI for conditionally closed {X|AI} and B@I there is a continuous

conditional function fX : X → [0, 1] with fX (Y ) |a = 1|a for any a ≤ aI such that

Y |a = X|a and fX (Y ) |a′ = 0|a′ for any a′ ≤ aI such that Y |a′ ∈ B@I |a′. We consider the

conditional set CX := {Y ∈ X | fX (Y ) ∈ R++}. It is a conditionally open conditional

set of X since fX is continuous. Thus, (CX)X∈X is a conditional open cover of X.

We choose a conditional finite subcover (CXJ )1≤J≤N by conditional compactness. On

a ≤ aI , we observe that fXJ (Y ) |a > 0|a for all Y |a ∈ CXJ |a for all 1 ≤ J ≤ N and

fXJ (Y ) |a = 0|a for all Y |a ∈ C@XJ |a. Now, we define f (Y ) :=
∑

1≤J≤N fXJ (Y ) and

observe that f (Y ) |a > 0|a for all Y ∈ X on a ≤ aI . We normalize fX by dividing
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1 Conditional theory

by f and assume that
∑

1≤J≤N fXJ (Y ) = 1 for all Y ∈ X which now, having again

constructed f :=
∑

I∈I fXI |aI , has all the proterties of the claim.
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2 Variational analysis in a conditional

setting

In this chapter, we generalize the concepts of variational analysis on Rd provided by

[RW09] to the L0 (F)-module L0 (F)d. To that end, we make use of the basics of con-

ditional theory as explained in Chapter 1. We give all the results within L0-theory. A

generalization to conditional theory can be derived in the same way.

First, we give the details of set convergence in L0 (F) followed by its application to

hypographs. After that, we explain the relation of hypoconvergence and maximization.

Further, the concept of lopsided convergence is introduced in an L0-theory setting. Fi-

nally, we present the results for a KY FAN-inequality and its relation to the Brouwer

fixed point theorem in L0 (F).

2.1 Conditional subsequences

Having introduced conditional sequences in Definition 1.12 we also consider conditional

subsequences. Therefore, we examine subsets of N (F). Let

N (F)#∞ :=
{
N @ N (F) | ∀N ∈ N , ∃N ′ ∈ N , ∀a ∈ A+ : N ′|a > N |a

}
be the conditional subset of N (F) containing strictly increasing conditional sequences

and

N (F)∞ :=
{
N @ N (F) | ∃N ∈ N (F) , ∀N ′ ≥ N : N ′ ∈ N

}
be the conditional subset of N (F) containing all elements beyond some N ∈ N (F)

and naturally, strictly increasing conditional sequences. Equivalent definitions are, that

N (F)#∞ are all conditional countable subsets of N (F) and N (F)∞ are all sets of the

type N (F) uM@ where M is conditionally finite.
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2 Variational analysis in a conditional setting

Lemma 2.1. There is a natural duality given by the relations

N (F)#∞ =
{
N @ N (F) | ∀N ′ ∈ N (F)∞, N uN

′ lives on Ω
}
,

N (F)∞ =
{
N @ N (F) | ∀N ′ ∈ N (F)#∞, N uN

′ lives on Ω
}
.

Proof. Let N @ N (F) be a conditional subset such that for all N ′ ∈ N (F)#∞ holds that

N uN ′ lives on Ω. Assume for all N ∈ N exists N ′ ∈ N (F), N ′ 6∈ N with N ′|a > N |a
for all a ∈ A+. This yields a strictly increasing conditional sequence in N (F)#∞ which is

a conditional subset of N . This contradicts that N uN ′ lives on Ω, thus N ∈ N (F)∞.

Now, let N @ N (F) be a conditional subset such that for all N ′ ∈ N (F)∞ holds that

N u N ′ lives on Ω. Let N ′0 := N (F). By assumption, there exist Nk ∈ N u N ′k on

1 with N ′k := {Ñ | Ñ ≥ Nk−1 + 1}, k ∈ N. By construction, Nk+1|a > Nk|a, hence

N ∈ N (F)#∞.

Definition 2.2 (Conditional subsequence). Let X be a conditional set. A conditional

subsequence of (XJ)J∈N(F) is (XJ)J∈M where M∈ N (F)#∞.

Remark 2.3. Let P be a property about a conditional set which holds for all n ∈ N.

Then by stability P already holds for all N ∈ N (F) since each N ∈ N (F) is of the

form N =
∑

n∈Nmn|an. We illustrate this with the following definition. Let (Cn)n∈N
be a sequence of conditional subsets in L0 (F). Then (Cn)n∈N is pairwise conditionally

disjoint if Cn u Cm = L0 (F) |0 whenever m 6= n. Now define CN :=
∑

n∈N Cmn |an for

every N =
∑

n∈Nmn|an ∈ N (F). Then (CN )N∈N(F) is a conditional sequence such that

CN u CM = L0 (F) |0 whenever N uM = L0 (F) |0.

To illustrate, we give the connection between almost sure convergence in L0 (Ω,F ,P)

and conditional convergence in L0 (F) if the underlying Boolean algebra is a σ-algebra.

Example 2.4. Consider the standard example of R-valued random variables on the

measurable space (Ω,F) = (R,B (R)) with P being the Lebesgue-measure. It is known

that the sequence (Xn)n∈N defined by Xn := 1[0, 1
n

] converges P-almost surely to 0.

Further, the property that

for any ε ∈ L0
++ there existsn0 ∈ N such thatXn < ε for alln ≥ n0 (2.1)

does not hold since for any ε ∈ L0
++ with ε < 1

2 , we observe that Xn = 1[0, 1
n

] ≥
1
21[0, 1

n
] ≥

ε1An for all n ∈ N. But, the slightly different condition that

for any ε ∈ L0
++ there existsN0 ∈ N (F) such thatXN < ε for allN ≥ N0 (2.2)
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2 Variational analysis in a conditional setting

does hold, since with the definition N0 :=
∑∞

n=1 n1( 1
n
, 1
n−1

] ∈ N (F) we have that 0 ≤
XN ≤ XN0 =

∑∞
n=1 1{N=n}Xn =

∑∞
n=1 1( 1

n
, 1
n−1

]1[0, 1
n

] = 0 for all N ≥ N0, thus, the

property (2.2) holds.

Lemma 2.5. Let (Xn)n∈N be a sequence in L0 (Ω,F ,P) and (XN )N∈N(F) be the same

family regarded as a conditional sequence in L0 (F). Then the following statements are

equivalent.

The sequence (Xn)n∈N convergesP-almost surely toX. (2.3)

The conditional sequence (XN )N∈N(F) converges toX

with respect to the conditional topology.
(2.4)

Proof. We first show that (2.4) implies (2.3). Let δ > 0 for δ ∈ R be fixed. We show

that there exists n0 ∈ N such that P (ω | |Xn (ω)−X (ω)| > δ) < δ for all n ≥ n0. By

assumption, there exists N0 ∈ N (F) such that ‖XN −X‖ < δ1Ω for all N ≥ N0. Then,

for n ∈ N, we define An := {n ≥ N0}. Since the conditional distance is a conditional

function and thus stable we first observe that, on An, for all n ≥ n, ‖Xn − X‖1An <
δ1An + 1Acn . Thus, P (ω | |Xn (ω)−X (ω)| > δ) ≤ P (Acn). By construction, it holds

that P (Acn) → 0 for n → ∞. Thus, there is n0 ∈ N such that P
(
Acn0

)
< δ, for which

the claim holds.

Now, we show that (2.3) implies (2.4). We show that there exists N0 ∈ N (F) such that

XN < ε for all N ≥ N0. Let ε ∈ L0 (F)++. Then, there is ε′ ∈ Q (F)++ such that ε′ ≤ ε
sinceQ (F) @ L0 (F) is conditionally dense. We proof (2.4) for ε′. Since ε′ is in Q (F)++

it can be written as ε′ =
∑∞

k=1 1Akδk for a partition (Ak)k∈N of Ω and δk ∈ R. For each

k ∈ N, by assumption, there exists nk0 ∈ N such that 1AkP (ω | |Xn (ω)−X (ω)| > δk) <

δk1Ak for all n ≥ nk0. Define N0 :=
∑∞

k=1 n
k
01Ak ∈ N (F). Since Xn =

∑∞
k=1Xn1Ak

and X =
∑∞

k=1X1Ak , we further observe that ‖XN − X‖ =
∑∞

k=1 1Ak‖XN − X‖ <∑∞
k=1 1Akδk = ε′ for all N ≥ N0.

Frequently, we apply this Lemma 2.5 without further mentioning. For example, we write

limN∈N(F)XN in a conditional setting for limn∈NXn, the P-almost sure limit of the

sequence (Xn)n∈N of random variables. By the indexing the version of the convergence

is made clear, by using conditional or classical index sets.
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2 Variational analysis in a conditional setting

2.2 Hypographs and semicontinuity

For optimization problems, it has been turned out that it is useful to consider epigraphs

and hypographs, and by closedness characterizations the conditional functions are semi-

continuous. Traditionally, semicontinuity rather may be formulated for an arbitrary

conditional topological space. In context with extended-valued conditional functions,

we restrict ourselves to L0 (F). Further, all relations are clear from L0 (F), if not, a

conditional relation along with conditional directness, that is, a conditional set is closed

with respect to the supremum or infimum of 2 elements of the conditional set, should

be imposed. That is as for the construction of R by closing Q. Then, theorems for the

existence of an essential supremum and infimum with respect to the conditional relation

can be derived just as in [FS04].

For the following definition we recall that, by [DJKK16], the product space L0 (F) ×
L0 (F) is a conditional set.

Definition 2.6 (Epigraph and hypograph of an extended-valued conditional function).

Let f : L0 (F)→ L0 (F) be a conditional function. Then, the epigraph epi f of f is

epi f :=
{

(X,Y ) ∈ L0 (F)× L0 (F) | f (X) ≤ Y
}

and the hypograph hypo f is

hypo f :=
{

(X,Y ) ∈ L0 (F)× L0 (F) | f (X) ≥ Y
}
.

Definition 2.7. Let f : L0 (F)→ L0 (F) be a conditional function. The upper limit of

f at X is defined by

ess lim sup
X→X

f (X) := ess inf
δ>0

 ess sup
X∈Bδ(X)

f (X)

 .

The conditional function f is upper semicontinuous if ess lim supX→X f (X) ≤ f
(
X
)

and it is lower semicontinuous if −f is upper semicontinuous.

Lemma 2.8 (Characterization of upper limits). Let f : L0 (F)→ L0 (F) be a conditional

function. It holds that

ess lim sup
X→X

f (X) = max

{
Y ∈ L0 (F) | ∃ (XJ)J∈N(F) → X : lim

J∈N(F)
f (XJ) = Y

}
.
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2 Variational analysis in a conditional setting

Proof. Let (XJ)J∈N(F) → X be a conditional sequence with limJ∈N(F) f (XJ) = Y . We

show Y ≤ Y := ess lim supX→X f (X). Let δ ∈ L0 (F)++. If XJ ∈ Bδ
(
X
)
, J ∈ N (F),

then ess sup
{
f (X) | X ∈ Bδ

(
X
)}
≥ limJ∈N(F) f (XJ) = Y . Since δ ∈ L0 (F)++ has

been chosen arbitrarily, Y ≤ Y . We show the existence of a maximizing conditional

sequence. For J ∈ N (F), let Y J := ess sup{f (X) | X ∈ BδJ
(
X
)
} for δJ ∈ L0 (F)++

with δJ−δJ+1 ∈ L0 (F)++ and limJ∈N(F) δJ = 0. By definition of Y , limJ∈N(F) Y J = Y .

By definition of the conditional sequence
(
Y J

)
J∈N(F)

, there are XJ ∈ BδJ
(
X
)

such that

Y J ≥ f (XJ) ≥ Y J − δJ . Then limJ∈N(F)XJ = X and Y ≥ limJ∈N(F) f (XJ) ≥
limJ∈N(F) Y J − limJ∈N(F) δJ = Y .

Since we always refer to the sequential characterization we write ess lim supJ∈N(F) f (XJ)

for ess lim supX→X f (X) whenever limJ∈N(F)XJ = X, similarly, for the essential limes

inferior.

Since the epigraph of a conditional function is a conditional set, it holds that
d
i∈I epi fi =

epi (ess supi∈I fi) and
⊔
i∈I epi fi = epi (ess infi∈I fi) for a family (fi)i∈I of conditional

functions fi : L
0 (F) → L0 (F), i ∈ I. Consequently,

d
i∈I hypo fi = hypo (ess infi∈I fi)

and
⊔
i∈I hypo fi = hypo (ess supi∈I fi). That directly implies that the essential infimum

of a family of upper semicontinuous conditional functions is an upper semicontinuous

conditional function since the conditional intersection of arbitrarily many hypographs is

conditionally closed by the definition of a conditional topology.

For equivalent characterizations of epigraphs and hypographs, we need the following

concepts of level sets.

Definition 2.9 (Level set). Let f : L0 (F) → L0 (F) be a conditional function. We

define the lower level set lev≤Y f :=
{
X ∈ L0 (F) | f (X) ≤ Y

}
and the upper level set

lev≥Y f :=
{
X ∈ L0 (F) | f (X) ≥ Y

}
for all Y ∈ L0 (F).

Theorem 2.10. Let f : L0 (F)→ L0 (F) be a conditional function. Then, the following

is equivalent.

(i). f is upper semicontinuous.

(ii). hypo f is conditionally closed in L0 (F)× L0 (F).

(iii). The level sets lev≥Y f are conditionally closed in L0 (F).

Proof. We show that (i) implies (ii). Assume that (XJ , YJ)J∈N(F) is a conditional

sequence in hypo f with limJ∈N(F)XJ = X and limJ∈N(F) YJ = Y . We show that

Y ≤ f
(
X
)
. In L0 (F), any conditional sequence has a converging conditional subse-

quence, thus, there is someM∈ N (F)#∞ with limJ∈M f (XJ) = Y ∗. Then, by construc-
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2 Variational analysis in a conditional setting

tion, Y ≤ Y ∗, and Y ∗ ≤ ess lim supX→X f (X) by Lemma 2.8. Hence, Y ≤ f
(
X
)

by

assumption that f is upper semicontinuous.

We show that (ii) implies (iii). If hypo f is conditionally closed in L0 (F)×L0 (F) then

also hypo f u
(
L0 (F) , Y

)
@ L0 (F) × L0 (F) is conditionally closed for all Y ∈ L0 (F)

which is the level set lev≥Y f for Y ∈ L0 (F). If Y ∈ L0 (F)@ then the level set lev≥Y f =
d
J∈N(F) lev≥YJ f is for some conditional sequence (YJ)J∈N(F) with limJ∈N(F) YJ = Y

and YJ ≤ Y for all J ∈ N (F), thus, conditionally closed, or if YJ ≥ Y for all J ∈ N (F)

then the level set lev≥Y f =
⊔
J∈N(F) lev≥YJ f , nevertheless, is conditionally closed.

We show that (iii) implies (i). Fix X ∈ L0 (F) and let Y := ess lim supX→X f (X). We

show that f
(
X
)
≥ Y . By Lemma 2.8, there is is a conditional sequence (XJ)J∈N(F) with

limJ∈N(F)XJ = X and limJ∈N(F) f (XJ) = Y . If there is Y < Y (if Y ≥ Y on A, we are

done on this A) then there is M ∈ N (F)#∞ such that f (XJ) ≥ Y for all J ∈ M. That

is, XJ ∈ lev≥Y f which is conditionally closed by assumption. Since limJ∈MXJ = X it

holds that X ∈ lev≥Y f . Hence, f
(
X
)
≥ Y for all Y < Y , thus, f

(
X
)
≥ Y .

For any conditional function f : L0 (F) → L0 (F), we can defined cl (hypo f). This is a

hypograph of some upper semicontinuous conditional function, denoted by cl f for which

holds that f ≤ clf . It is the lowest of all upper semicontinuous conditional functions

larger than f .

Definition 2.11. The domain of a conditional function f : L0 (F)→ L0 (F) is defined by

dom f :=
{
X ∈ L0 (F) | f (X) <∞

}
. The conditional function f is called proper if there

is some X ∈ L0 (F) such that f (X) ∈ L0 (F) and f (X) < ∞ for all X ∈ L0 (F). It is

level-bounded if the conditional sets lev≥α f :=
{
X ∈ L0 (F) | f (X) ≥ α

}
are bounded

for all α ∈ L0 (F).

Theorem 2.12. Let f : L0 (F) → L0 (F) be an upper semicontinuous, level-bounded

and proper conditional function. Then ess sup f ∈ L0 (F) and argmin f lives on Ω and

is conditionally compact.

Proof. Define a := ess sup f > −∞ since f is proper. For α < α, the level sets lev≥α

are nonempty, conditionally closed by Theorem 2.10 and bounded, thus conditionally

compact. Their conditional intersection lives on Ω by [FKV09], or [DJKK16, Proposition

3.25], and is equal to argmax f which is nonempty, conditionally compact and nowhere

∞ since f is proper.
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2.3 Set convergence

The most general concept in variational analysis is the convergence of sets. Its applica-

tion to hypographs or epigraphs of functions is useful to find their optimal points. These

approximations of optimal points sometimes fail if the problem is considered pointwisely,

namely continuity is not preserved for the limit of a sequence of continuous functions,

however, semicontinuity has this property.

In this section we characterize set convergence. The main result is a condition for the

existence of a limit of a conditional sequence of sets in Theorem 2.20.

Definition 2.13 (limit set, inner limit set, outer limit set). Let (CJ)J∈N(F) be a condi-

tional sequence of conditional subsets of L0 (F) where each CJ lives on AJ for J ∈ N (F).

Then, the outer limit is

lim sup
J∈N(F)

CJ :=

{
X ∈ L0 (F) | ∃N ∈ N (F)#∞, ∃XJ ∈ CJ , lim

J∈N
XJ = X

}
(2.5)

which lives on

Ao := ess sup
{
A ∈ F | ∃N ⊂ N (F)#∞, ∀J ∈ N : A ⊂ AJ

}
(2.6)

whereas the inner limit is

lim inf
J∈N(F)

CJ :=

{
X ∈ L0 (F) | ∃N ∈ N (F)∞, ∃XJ ∈ CJ , lim

J∈N
XJ = X

}
(2.7)

which lives on

Ai := ess sup {A ∈ F | ∃N ⊂ N (F)∞, ∀J ∈ N : AJ ⊂ A} . (2.8)

If outer limit and inner limit are equal on some A ∈ F the limit exists

lim
J∈N(F)

CJ := lim sup
J∈N(F)

CJ = lim inf
J∈N(F)

CJ onA.

In general, it holds that Ai ⊂ Ao. The definition may be generelized to arbitrary index

families M @ N (F)#∞. Then, the sets of conditional subsequences in 2.5 and 2.7 are

conditional subsets of M, additionally.

We observe that the outer and inner limit are in L0 (F) and defined almost surely, thus,
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it may be convenient to write essential outer and inner limit. Clearly, since there is

no need to consider a pointwise outer and inner limit, we simply write limes superior

and inferior for conditional sets. When we consider random variables, we write essential

limes, explicitely.

For the next characterization, we will use the conditional distance of an element X ∈
L0 (F) to a conditional subset C @ L0 (F). We define ‖X − C‖ := ess infY ∈C‖X − Y ‖.

Lemma 2.14 (Equivalent characterizations of outer and inner limit). Let (CJ)J∈N(F)

be a conditional sequence of subsets of L0 (F). Then, on Ao, given by (2.6),

lim sup
J∈N(F)

CJ =
{
X ∈ L0 (F) | ∀ V ∈ U (X) ∃N ∈ N (F)#∞, ∀ J ∈ N : V ∩ CJ 6= ∅

}
(2.9)

=
{
X ∈ L0 (F) | ∀δ ∈ L0 (F)++ , ∃N ∈ N (F)#∞, ∀ J ∈ N : ‖X − CJ‖ ≤ δ

}
(2.10)

=

{
X ∈ L0 (F) | ess lim inf

J∈N(F)
‖X − CJ‖ = 0

}
(2.11)

=
l

N∈N(F)∞

cl
⊔
J∈N

CJ (2.12)

and, on Ai, given by (2.8),

lim inf
J∈N(F)

CJ =
{
X ∈ L0 (F) | ∀ V ∈ U (X) ∃N ∈ N (F)∞, ∀ J ∈ N : V ∩ CJ 6= ∅

}
(2.13)

=
{
X ∈ L0 (F) | ∀δ ∈ L0 (F)++ , ∃N ∈ N (F)∞, ∀ J ∈ N : ‖X − CJ‖ ≤ δ

}
(2.14)

=

{
X ∈ L0 (F) | ess lim sup

J∈N(F)
‖X − CJ‖ = 0

}
(2.15)

=
l

N∈N(F)#∞

cl
⊔
J∈N

CJ (2.16)

Proof. We observe that, on Ai, (2.13) is just a reformulation of convergence of (2.7) in

terms of conditional neighborhoods instead of conditional sequences, equivalently, (2.14)

by the use of the conditional distance. Moreover, (2.15) is a reformulation of conditional

subsequences, and (2.16) by means of the limes superior. The same holds for the outer

limit.

In the sequel, we assume that Ai = Ω since it is not important where the objects live.
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Proposition 2.15. For conditional sequences (CJ)J∈N(F), (DJ)J∈N(F) in L0 (F), the

outer and inner limits are conditionally closed. Further, if cl CJ = clDJ for all J ∈ N (F)

then lim infJ∈N(F) CJ = lim infJ∈N(F)DJ and lim supJ∈N(F) CJ = lim supJ∈N(F)DJ .

Proof. We apply the equivalent characterizations of outer and inner limit in (2.12) and

(2.16).

Example 2.16. Let
(
C1
J

)
J∈N(F)

,
(
C2
J

)
J∈N(F)

and (CJ)J∈N(F) be conditional sequences

in L0 (F). It holds that limJ∈N(F) CJ = cl
⊔
J∈N(F) CJ if CJ @ CJ+1 and limJ∈N(F) CJ =

d
J∈N(F) cl CJ if CJ+1 @ CJ .

If C1
J @ CJ @ C2

J for all J ∈ N (F) then limJ∈N(F) C1
J = C = limJ∈N(F) C2

J implies

limJ∈N(F) CJ = C.

Example 2.17. A conditional sequence (CJ)J∈N(F) in L0 (F) with CJ = 1AJD1+1AcJD2

for AJ := ess sup {A ∈ F | 1AJ = 1A (2k + 1) for some k ∈ N} has the inner limit D1 u
D2 and the outer limit D1 t D2, hence, does not necessariliy setconverge.

Example 2.18. In L0 (F), a conditional sequence of balls
(
BδJ (XJ)

)
J∈N(F)

setcon-

verges to the conditionally closed ball clBδ (X) if for all ε ∈ L0 (F)++ there exists some

J ∈ N (F) such that ‖XJ −X‖ < ε and ‖δJ − δ‖ < ε for all J > J . The constant condi-

tional sequence CJ ≡ Q (F) setconverges to L0 (F). Further, we recall from [DJKK16]

that a conditional subset M @ L0 (F) is conditionally dense if clM = L0 (F) and it is

conditionally countable if there is an bijective conditional function g : M → N (F). It

is conditionally seperable if it is conditionally dense and conditionally countable. Thus,

Q (F) @ L0 (F) is conditionally separable since it is conditionally dense in L0 (F) and

Q (F) is conditionally countable.

In the next theorem, we describe set convergence in L0 (F) in terms of a conditionally

separable conditional subset.

Theorem 2.19 (Hit-and-miss-criteria). Let C, CJ be conditional subsets of L0 (F) for all

J ∈ N (F) with C being conditionally closed. Let D @ L0 (F) be conditionally separable.

Then, it holds that

(i). C @ lim infJ∈N(F) CJ if and only if for every conditionally open set O @ L0 (F)

with C u O living on Ω there exists N ∈ N (F)∞ such that CJ u O lives on Ω for

all J ∈ N .

(ii). It suffices in (i) to consider the collection of conditional balls Bδ (Y ) with Y ∈ D
and δ ∈ D++.
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(iii). lim supJ∈N(F) CJ @ C if and only if for every conditionally compact set B @ L0 (F)

with C u B = L0 (F) |∅ there exists N ∈ N (F)∞ such that CJ u B = L0 (F) |∅ for

all J ∈ N .

(iv). It suffices in (iii) to consider the collection of conditional closures of conditional

balls Bδ (Y ) with Y ∈ D and δ ∈ D++.

Proof. (i) and (ii). Let X ∈ C and δ ∈ D++. We show that X ∈ lim infJ∈N(F) CJ . Since

D @ L0 (F) is conditionally dense, there is X ′ ∈ D with X ′ ∈ B
δ
2 (X). By assumption,

there exists N ∈ N (F)∞ such that CJ u B
δ
2 (X) lives on Ω for all J ∈ N . Thus,

‖X ′ − CJ‖ ≤ δ
2 and ‖X − CJ‖ ≤ ‖X ′ − CJ‖ + ‖X − X ′‖ ≤ δ

2 + δ
2 = δ for all J ∈ N

which by Lemma 2.14 yields that X ∈ lim infJ∈N(F) CJ . The other direction is clear by

definition.

(iii) and (iv). Let X ∈ C@. We show that X ∈
(

lim supJ∈N(F) CJ
)@

. That implies

directly lim supJ∈N(F) CJ @ C. Since C is conditionally closed, there exists δ ∈ D++ such

that C u B2δ(X) = L0 (F) |∅. We find X ′ ∈ Bδ (X) u D. Then X ∈ Bδ (X ′) and C u
Bδ (X ′) = L0 (F) |∅. By assumption, there exists N ∈ N (F)∞ such that CJ u Bδ (X ′) =

L0 (F) |∅ for all J ∈ N . Since X ∈ intBδ (X ′), it holds that {X} u lim supJ∈N(F) CJ =

L0 (F) |∅. The other direction is clear by definition.

Theorem 2.20 (Setconvergent conditional subsequences). Let D @ L0 (F) be condi-

tionally separable. A conditional sequence (CJ)J∈N(F) of subsets of L0 (F) has an outer

limit that lives on A ∈ F . Then there is some index set N ∈ N (F)#∞ such that the

sequence (CJ)J∈N is setconverging to a set C @ L0 (F) that lives on A ∈ F .

Proof. We suppose that A = Ω. If not, we may consider the proof in L0 (F) and all sets

living on A ∈ F . Since there is X ∈ L0 (F) in the outer limit, there exists N0 ∈ N (F)#∞
such that

lim
J∈N0

XJ = X ∈ lim sup
J∈N(F)

CJ .

Next, consider the conditionally countable collection of conditionally open balls Bδ (Y )

for Y ∈ D and δ ∈ D++ in Theorem 2.19 (ii) writing it as a conditional sequence(
BI
)
I∈N(F)

. We construct a conditional sequence of index sets
(
N I
)
I∈N(F)

with N I @
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N I′ if I ′ ≤ I by defining

A := ess sup
{
A ∈ F |

{
J ∈ N I−1 | CJ u BI lives onA

}
∈ N (F)#∞

}
(2.17)

N I := 1A
{
J ∈ N I−1 | CJ u BI lives onA

}
+ 1Ac

{
J ∈ N I−1 | CJ u BI = L0 (F) |∅

}
(2.18)

for I ≥ 1. We observe that, on A
c
, the conditional set

{
J ∈ N I−1 | CJ u BI = L0 (F) |∅

}
is in N (F)∞, that is if the definition for A does not hold.

Let I ′ ≤ I. We show that N I @ N I′ . Since I, I ′ ∈ N (F), we write I − I ′ =
∑

k∈N 1Akk

where Ak = ess sup {A ∈ F | 1A (I − I ′) = 1Ak} for all k ∈ N. Restricting (2.18) on

each Ak yields N I @ N I′ by definition.

Next, define the conditional set N =
(
NK

)
K∈N(F)

such that inf N0 ∈ N and NK :=

ess inf
{
N ∈

(
N I
)
I≥K | N > M ∀M ∈ NK′ , K

′ < K
}

. By construction, N ∈ N (F)#∞.

For each K ∈ N (F), we observe that

1A

{
J | CJ u BK lives onA

}
+ 1Ac

{
J | CJ + BK = L0 (F) |∅

}
∈ N (F)∞ (2.19)

with A := ess sup
{
A ∈ F |

{
J | CJ u BK lives on A

}
∈ N (F)#∞

}
.

Let C := lim supJ∈N CJ . Clearly, X ∈ C. Suppose, for a ball BK where K ∈ N (F), it

holds that C u BK lives on Ω. By the definition of the outer limit, it cannot hold that

CJ uBI = L0 (F) |∅ for all J ∈ N . Thus, by (2.19), CJ uBI lives on Ω for all J ∈ N and,

by Theorem 2.19(ii), it holds that C @ lim infJ∈N CJ .

2.4 Outer and inner semicontinuity

An application of the outer and inner limits in Section 2.3 is the definition of outer und

inner semicontinuity, where a conditional function has subsets of L0 (F) as values. We

write (XJ)J∈N(F) → X for some converging conditional sequence with limit X. For a
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conditional function f : L0 (F)→ L0 (F), we define

lim sup
X→X

f (X) :=
⊔

XJ→X

lim sup
J∈N(F)

f (XJ)

=
{
Y ∈ L0 (F) | ∃ (XJ)J∈N(F) → X, ∃ (YJ)J∈N(F) → Y , YJ ∈ f (XJ)

}
,

lim inf
X→X

f (X) :=
l

XJ→X

lim inf
J∈N(F)

f (XJ)

=
{
Y ∈ L0 (F) | ∀ (XJ)J∈N(F) → X, ∃N ∈ N (F)∞ ,

(YJ)J∈N → Y , YJ ∈ f (XJ)
}
.

Definition 2.21. A conditional function f : L0 (F)→ L0 (F) is

outer semicontinuous if lim sup
X→X

f (X) @ f
(
X
)
,

inner semicontinuous if f
(
X
)
@ lim inf

X→X
f (X) .

It is called continuous if it is outer and inner semicontinuous.

We note that inner semicontinuity of f at X ∈ dom f means that X ∈ int dom f .

2.5 Hypoconvergence

In this section, we examine the consequences of setconvergence applied to hypographs

of conditional functions. We see that the set limit of hypographs itself is a hypograph

and give characterizations of hypoconvergence by essential limes inferior and superior of

their respective conditional functions.

First, we consider a conditional sequence (CJ)J∈N(F) of hypographs in L0 (F) and show

that their outer and inner limit set are again hypographs. To that end, let (X,Y ) ∈
lim supJ∈N(F) CJ . We show that (X,Y ′) ∈ lim supJ∈N(F) CJ for all Y ′ ≤ Y . By definition,

there are N ∈ N (F)#∞, (XJ)J∈N and (YJ)J∈N such that limJ∈N XJ = X, limJ∈N YJ =

Y and (XJ , YJ) ∈ CJ for all J ∈ N . Define Y ′J := YJ∧Y ′. By the definition of hypograph,

(XJ , Y
′
J) ∈ CJ . Now, ess lim supJ∈N (Y ′J) = ess lim supJ∈N (YJ) ∧ Y ′ = limJ∈N (YJ) ∧

Y ′ = Y ∧Y ′ and ess lim infJ∈N (Y ′J) = ess lim infJ∈N (YJ)∧Y ′ = limJ∈N (YJ)∧Y ′ = Y ∧
Y ′. Thus, limJ∈N (Y ′J) = Y ∧ Y ′ = Y ′, or, (X,Y ′) ∈ lim supJ∈N(F) CJ . The same holds

for the inner limit, where N is chosen in N (F)∞. By Proposition 2.15, outer and inner

limit of (CJ)J∈N(F) are conditionally closed. Finally,
(
{X} × L0 (F)

)
u lim supJ∈N(F) CJ
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and
(
{X} × L0 (F)

)
u lim infJ∈N(F) CJ are conditional intervals that are left-unbounded

right-conditionally-closed, thus, hypographs.

Thus, hypoconvergence and semicontinuity is closed under the limits of conditional se-

quences, a fact that does not hold for continuity, see the example given in [RW09].

Therefore, many optimization problems are given only for semicontinuity.

Definition 2.22 (Lower and upper hypolimit). Let (hypo fJ)J∈N(F) be a conditional

sequence of hypographs of conditional functions fJ : L0 → L0 (F), J ∈ N (F). The

upper hypolimit h-lim supJ∈N(F) fJ is the conditional function f : L0 (F)→ L0 (F) with

hypograph which is the outer limit of the conditional sequence (hypo fJ)J∈N(F), or

hypo

(
h-lim sup
J∈N(F)

fJ

)
:= lim sup

J∈N(F)
(hypo fJ) .

The lower hypolimit h-lim infJ∈N(F) fJ is the conditional function f : L0 (F) → L0 (F)

with hypograph which is the inner limit of the conditional sequence (hypo fJ)J∈N(F), or

hypo

(
h-lim inf
J∈N(F)

fJ

)
:= lim inf

J∈N(F)
(hypo fJ) .

If lower and upper hypolimit are equal the hypolimit exists and is

h-lim
J∈N(F)

fJ := h-lim sup
J∈N(F)

fJ = h-lim inf
J∈N(F)

fJ .

Indeed, the upper hypolimit conditional function f : L0 (F) → L0 (F) is a conditional

function since

f

(∑
k∈N

1AkXk

)
= h-lim sup

J∈N(F)
fJ

(∑
k∈N

1AkX
J
k

)
=
∑
k∈N

1Ak h-lim sup
J∈N(F)

fJ
(
XJ
k

)
=
∑
k∈N

1Akf (Xk)

for all partitions (Ak)k∈N of Ω in F and Xk, X
J
k ∈ L0 (F) for all J ∈ N (F) and k ∈ N.

The same holds for the lower hypolimit function.

We remark here, in advantage to the setting in [RW09], that the conditional definition of

setconvergence and conditional functions that the definitions yield directly A ∈ F where

the objects may live. So, there is no need to define a pointwise hypolimit by upper and

lower hypolimit values as done there. In the sequel we assume that all sets live on Ω.
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Lemma 2.23 (Characterizations of hypolimits). Let (hypo fJ)J∈N(F) be a conditional

sequence of hypographs of conditional functions fJ : L0 (F) → L0 (F), J ∈ N (F) and

X ∈ L0 (F). Then

h-lim sup
J∈N(F)

fJ (X) = max

{
Y ∈ L0 (F) | ∃ (XJ)J∈N(F) → X : ess lim sup

J∈N(F)
fJ (XJ) = Y

}
,

(2.20)

h-lim inf
J∈N(F)

fJ (X) = max

{
Y ∈ L0 (F) | ∃ (XJ)J∈N(F) → X : ess lim inf

J∈N(F)
fJ (XJ) = Y

}
.

(2.21)

Proof. By Definition 2.22, Y ≤ h-lim supJ∈N(F) fJ (X) if and only if for some N ∈
N (F)#∞ there are conditional sequences (XJ)J∈N → X, (YJ)J∈N → Y with YJ ≤
fJ (XJ) for all J ∈ N . The conditional set

M :=

{
Y ∈ L0 | ∃ (XJ)J∈N(F) → X : ess lim sup

J∈N(F)
fJ (XJ) = Y

}

is upwards directed since for Y, Y ′ ∈M there are (XJ)J∈N(F) → X and (X ′J)J∈N(F) → X

such that ess lim supJ∈N(F) fJ (XJ) = Y and ess lim supJ∈N(F) fJ (X ′J) = Y ′ for which

hold that
(
1{Y≥Y ′}XJ + 1{Y <Y ′}X

′)
J∈N(F)

→ X with

ess lim sup
J∈N(F)

fJ
(
1{Y≥Y ′}XJ + 1{Y <Y ′}X

′) = Y ∧ Y ′,

thus, Y ∧Y ′ ∈M. Then, there exists a nondecreasing conditional sequence (YK)K∈N(F)

such that limK∈N(F) YK = ess supM. Let ε ∈ L0 (F)++. For each k ∈ N there is

Y k ∈ L0 (F) such that ‖Y k−ess supM‖ < ε
2k+1 and Xk ∈ L0 (F) such that ‖X−Xk‖ <

ε
2k+1 and ‖fk

(
Xk

)
− Y k‖ < ε

2k+1 . Now, for the corresponding conditional sequences(
XK

)
K∈N(F)

and
(
Y K

)
K∈N(F)

, it holds that limK∈N(F)XK = X and ‖ess supM −
fK
(
XK

)
‖ ≤ ‖ess supM−Y K‖+‖Y K−fK

(
XK

)
‖ ≤ ε

2K+1 + ε
2K+1 . Hence, the maximum

in (2.20) is justified, also for L0 (F). The same holds for N ∈ N (F)∞ and the lower

hypolimit.

Lemma 2.24 (Characterization of hypoconvergence). Let (fJ)J∈N(F) be a conditional

sequence of conditional functions fJ : L0 (F) → L0 (F), J ∈ N (F). Let f : L0 (F) →
L0 (F) be a conditional function. Then, h-limJ∈N(F) fJ = f if and only if for all X ∈
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L0 (F) it holds that

∃ (XJ)J∈N(F) → X : ess lim inf
J∈N(F)

fJ (XJ) ≥ f (X) ,

and

∀ (XJ)J∈N(F) → X : ess lim sup
J∈N(F)

fJ (XJ) ≤ f (X) .

Proof. That is a consequence of Lemma 2.23.

Proposition 2.25 (Properties of hypolimits). Let (fJ)J∈N(F) be a conditional sequence

of conditional functions fJ : L0 (F)→ L0 (F), J ∈ N (F). Then the following properties

hold.

(i). The conditional functions h-lim supJ∈N(F) fJ , h-lim infJ∈N(F) fJ are upper semi-

continuous, and h-limJ∈N(F) fJ , too, if it exists.

(ii). Let (gJ)J∈N(F) be a conditional sequence of conditional functions gJ : L0 (F) →
L0 (F), J ∈ N (F). If cl fJ = cl gJ for all J ∈ N (F) then h-lim infJ∈N(F) fJ =

h-lim infJ∈N(F) gJ and h-lim supJ∈N(F) fJ = h-lim supJ∈N(F) gJ .

(iii). If fJ ≥ fJ ′ for J ≤ J ′ then h-limJ∈N(F) fJ = cl
(
ess infJ∈N(F) fJ

)
.

(iv). If fJ ≤ fJ ′ for J ≤ J ′ then h-limJ∈N(F) fJ = ess supJ∈N(F)

(
cl fJ

)
.

(v). If f1J ≤ fJ ≤ f2
J for all J ∈ N (F), it holds that if h-limJ∈N(F) f

1

J = f =

h-limJ∈N(F) f
2
J then h-limJ∈N(F) fJ = f .

Proof. The inner and outer limit of conditional subsets is conditionally closed by Propo-

sition 2.15, this is equivalent to lower semicontinuity of the conditional function by

Theorem 2.10. This implies (i). Directly, Proposition 2.15 yields (ii), and (iii), (iv) and

(v) are consequences of Example 2.16.

Theorem 2.26 (Hypoconvergent conditional subsequences). Let (fJ)J∈N(F) be a condi-

tional sequence of conditional functions fJ : L0 (F)→ L0 (F), J ∈ N (F). Let the outer

limit of (hypo fJ)J∈N(F) live on A ∈ F . Then, there is some N ∈ N (F)#∞ such that

(fJ)J∈N is hypoconverging to a conditional function f : L0 (F)→ L0 (F) on A ∈ F .

Proof. The upper and lower limit of conditional sequences of hypographs are hypographs.

Thus, the claim follows by Theorem 2.20.
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2.6 Hypoconvergence and maximization

The main benefit of the theory of hypoconvergence is that upper semicontinuity of the

conditional functions is maintained under to closure with respect to limits. In this

section, we give the details connected with the maximization problem and focus on

conditionally compact domains.

Theorem 2.27 (Characterization of hypoconvergence via maximization). Let

(fJ)J∈N(F) be a conditional sequence of conditional functions fJ : L0 (F) → L0 (F),

J ∈ N (F). Let f : L0 (F) → L0 (F) be an upper semicontinuous conditional function.

Then it holds that

(i). h-lim supJ∈N(F) fJ ≤ f if and only if ess lim supJ∈N(F) (ess supC fJ) ≤ ess supC f

for all conditionally compact conditional subsets C @ L0 (F), and

(ii). h-lim infJ∈N(F) fJ ≥ f if and only if ess lim infJ∈N(F) (ess supO fJ) ≥ ess supO f

for all conditionally open conditional subsets O @ L0 (F).

Proof. The proof relies on the hit-and-miss-criteria in Theorem 2.19. We may use cylin-

ders C (X,Y, δ) := clBδ (X)× [Y − δ, Y + δ] for X,Y ∈ L0 (F) and δ ∈ L0 (F)++ instead

of balls to fulfill the hit-and-miss-creteria. Then, Bδ (X,Y ) @ C (X,Y, δ) @
√

2Bδ (X,Y ).

We assume that hypo f lives on Ω.

In (i), by definition, h-lim supJ∈N(F) fJ ≤ f if and only if lim supJ∈N(F) hypo fJ @

hypo f . Assuming this, we show that lim supJ∈N(F) (ess supC fJ) ≤ ess supC f for con-

ditionally compact C @ L0 (F). Let C @ L0 (F) be conditionally compact and Y ′ such

that ess supC f < Y ′. By construction, (C, Y ′) u hypo f = L0 (F) |0 in L0 (F) × L0 (F).

By Thereom 2.19 (iii), there is N ∈ N (F)∞ such that hypo fJ u (C, Y ′) = L0 (F) |0 for

all J ∈ N . Then, ess supC f ≤ Y ′. Thus, ess lim supJ∈N(F) (ess supC fJ) ≤ Y ′ for all

Y ′ > ess supC f , hence, finally, ess lim supJ∈N(F) (ess supC fJ) ≤ ess supC f .

For the reverse implication in (i), let ess lim supJ∈N(F) (ess supC fJ) ≤ ess supC f for

conditionally compact C @ L0 (F). We show that lim supJ∈N(F) hypo fJ @ hypo f .

Suppose a cylinder C (X,Y, δ) such that C (X,Y, δ)uhypo f = L0 (F) |0. By assumption,

the conditional function f is upper semicontinuous, hence, hypo f is conditionally closed.

This implies ess supBδ(X) f < Y − δ by the definition of the cylinder. By assumption,

ess lim infJ∈N(F)

(
ess supBδ(X) fJ

)
< Y − δ for the conditionally compact ball clBδ (X).

That means, there exists N ∈ N (F)∞ such that ess supBδ(X) fJ < Y − δ for all J ∈ N .

Then, C (X,Y, δ) u hypo fJ = L0 (F) |0 for all J ∈ N . Hence, lim supJ∈N(F) hypo fJ @

hypo f by Theorem 2.19 (iv).
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In (ii), by definition, h-lim infJ∈N(F) fJ ≥ f if and only if hypo f @ lim infJ∈N(F) hypo fJ .

Assuming this, we show that ess lim infJ∈N(F)

(
ess supO fJ

)
≥ ess supO f for condition-

ally open O @ L0 (F). Let O @ L0 (F) be conditionally open and Y ′ such that

ess supO f > Y ′. Now, O×{Y | Y < Y ′} is conditionally open and (O × {Y | Y < Y ′})u
hypo f lives on Ω. By Theorem 2.19 (i), there is N ∈ N (F)∞ such that the conditional

set hypo fJ u O × {Y | Y < Y ′} lives on Ω for all J ∈ N . Then, ess supO fJ > Y ′.

Thus, ess lim infJ∈N(F)

(
ess supO fJ

)
≥ Y ′ for all Y ′ > ess supO f , hence, we have that

ess lim infJ∈N(F)

(
ess supO fJ

)
≥ ess supO f .

For the reverse implication in (ii), let ess lim infJ∈N(F)

(
ess supO fJ

)
≥ ess supO f for

conditionally open O @ L0 (F). We show that hypo f @ lim infJ∈N(F) hypo fJ . Suppose

a conditionally open cylinder int C (X,Y, δ) such that int C (X,Y, δ) u hypo f lives on Ω.

This yields ess supBδ(X) f > Y −δ. By assumption, ess lim infJ∈N(F)

(
ess supBδ(X) fJ

)
>

Y − δ for the conditionally open ball Bδ (X). That means, there exists N ∈ N (F)∞
such that ess supBδ(X) fJ > Y − δ for all J ∈ N . Then, C (X,Y, δ) u hypo fJ lives on Ω

for all J ∈ N . Hence, hypo f @ lim infJ∈N(F) hypo fJ by Theorem 2.19 (ii).

Definition 2.28 (ε-optimality). Let f : L0 (F)→ L0 (F) be a conditional function. We

define

ε-argmin f :=
{
X ∈ L0 (F) | f (X) ≤ ess inf f + ε

}
,

ε-argmax f :=
{
X ∈ L0 (F) | f (X) ≥ ess sup f − ε

}
,

the ε-minimizer and ε-maximizer of f for all ε ∈ L0 (F)++.

Proposition 2.29 (Outer limit of maxima is maximum). Let (fJ)J∈N(F) be a conditio-

nal sequence of conditional functions fJ : L0 (F)→ L0 (F), J ∈ N (F). Let f : L0 (F)→
L0 (F) be an upper semicontinuous conditional function. If h-lim infJ∈N(F) fJ ≥ f then

ess lim infJ∈N(F)

(
ess sup fJ

)
≥ ess sup f . Furthermore, if (εJ)J∈N(F) is a conditional

sequence in L0 (F)++ with limJ∈N(F) εJ = 0, then

lim sup
J∈N(F)

(εJ-argmax fJ) @ argmax f

if, for N ∈ N (F)#∞ and every conditional sequence (XJ)J∈N in L0 (F) with limJ∈N XJ =

X and XJ ∈ εJ-argmax fJ it holds that limJ∈N fJ (XJ) = f (X).

Proof. By Theorem 2.27 (ii), ess lim infJ∈N(F)

(
ess sup fJ

)
≥ ess sup f since L0 (F) is

conditionally open. Now, assume a conditional sequence (εJ)J∈N(F) in L0 (F)++ with
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limJ∈N(F) εJ = 0 and forN ∈ N (F)#∞ and every conditional sequence (XJ)J∈N in L0 (F)

with limJ∈N XJ = X and XJ ∈ εJ-argmax fJ it holds that limJ∈N fJ (XJ) = f (X).

Then,

f (X) = lim
J∈N

f (XJ) ≥ lim
J∈N

(ess sup fJ − εJ) ≥ ess lim inf
J∈N(F)

(ess sup fJ) ≥ ess sup f.

Hence, X maximizes f .

Proposition 2.30. Let f : L0 (F) → L0 (F) be a conditional function. Let (fJ)J∈N(F)

be a conditional sequence of conditional functions fJ : X → L0 (F), J ∈ N (F). Let

h-limJ∈N(F) fJ = f and ess sup f ∈ L0 (F).

(i). limJ∈N(F) (ess sup fJ) = ess sup f if and only if for every ε ∈ L0 (F)++ there is

a conditionally compact C @ L0 (F) and N ∈ N (F)∞ such that ess supC fJ ≥
ess sup fJ − ε for all J ∈ N .

(ii). lim supJ∈N(F)

(
ε-argmax fJ

)
@ ε-argmax f for all ε ∈ L0 (F)+ and if (εJ)J∈N(F)

is a conditional sequence in L0 (F)++ with limJ∈N(F) εJ = 0 then

lim sup
J∈N(F)

(εJ-argmax fJ) @ argmax f.

Proof. To show (i), let ε ∈ L0 (F)++, C @ L0 (F) conditionally compact and N ∈
N (F)∞ such that ess supC fJ ≥ ess sup fJ − ε for all J ∈ N . Then, by Theorem 2.27 (i),

it holds that

ess lim sup
J∈N

(ess sup fJ − ε) ≤ ess lim sup
J∈N

(
ess sup
C

fJ

)
≤ ess sup

C
f ≤ ess sup f.

Since ε ∈ L0 (F)++ has been chosen arbitrarily, we have ess lim supJ∈N (ess sup fJ) ≤
ess sup f . Further, it holds that ess lim infJ∈N(F)

(
ess sup fJ

)
≥ ess sup f by assumption

that h-limJ∈N(F) fJ = f and Proposition 2.29, hence, limJ∈N(F) (ess sup fJ) = ess sup f .

To continue with (i), let limJ∈N(F) (ess sup fJ) = ess sup f . Further, let ε ∈ L0 (F)++.

Fix X ∈ L0 (F) such that f (X) ≥ ess sup f − ε. Since h-limJ∈N(F) fJ = f , by Lemma

2.23, there exists a conditional sequence (XJ)J∈N(F) that converges to X such that

ess lim infJ∈N(F) fJ (XJ) ≥ f (X). By the convergence, there is a conditionally compact

C @ L0 (F) containing all XJ , J ∈ N (F). Then, it holds that ess supC fJ ≥ fJ (XJ) for

all J ∈ N (F). By ess lim infJ∈N(F) fJ
(
XJ

)
≥ f (X), there is N ∈ N (F)∞ such that

fJ (XJ) ≥ f (X) for all J ∈ N . Hence, for all J ∈ N , ess supC fJ ≥ ess sup f − ε.

Next, we show (ii). Let ε ∈ L0 (F)+ and XJ ∈ ε-argmax fJ . If X ∈ L0 (F) is a cluster
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point of the conditional sequence (XJ)J∈N(F), that is, there is N ∈ N (F)#∞ such that

limJ∈N XJ = X, then, by h-limJ∈N fJ = f and Theorem 2.27 (i), it holds that f
(
X
)
≥

ess lim supJ∈N fJ (XJ). Directly, ess lim infJ∈N fJ
(
XJ

)
≤ ess lim supJ∈N fJ

(
XJ

)
. By

the assumption that XJ ∈ ε-argmax fJ , it further holds that ess lim infJ∈N fJ
(
XJ

)
≥

ess lim infJ∈N
(
ess sup fJ − ε

)
. Furthermore, by Proposition 2.30 (i), it also holds that

ess lim infJ∈N
(
ess sup fJ − ε

)
≥ ess sup f − ε. Thus, f

(
X
)
≥ ess sup f − ε, X ∈

ε-argmin f and lim supJ∈N(F)

(
ε-argmax fJ

)
@ ε-argmax f . Since ε1 ≤ ε2 for ε1, ε2 ∈

L0 (F)+ implies ε1-argmax fJ @ ε2-argmax fJ for all J ∈ N (F) it holds for a conditional

sequence (εJ)J∈N(F) in L0 (F)++ with limJ∈N(F) εJ = 0 that

lim sup
J∈N(F)

(
εJ-argmax fJ

)
@

l

J∈N(F)

εJ-argmax f = argmax f

which yields the claim.

Corollary 2.31. Let f : L0 (F) → L0 (F) be a conditional function. Let (fJ)J∈N(F)

be a conditional sequence of conditional functions fJ : L0 (F) → L0 (F), J ∈ N (F).

Let h-limJ∈N(F) fJ = f and ess sup f ∈ L0 (F). If there is C @ L0 (F) condition-

ally compact and N ∈ N (F) such that ess supC fJ = ess sup fJ for all J ≥ N then

limJ∈N(F)(ess sup fJ) = ess sup f .

Proof. That is Proposition 2.30 (ii).

2.7 Lopsided convergence

For the characterization of saddle points, we introduce the concept of lopsided conver-

gence. The optimal points here are maxinf- or minsup-points. We characterize lopsided

convergence by hypoconvergence in one variable and the values of the optimal points.

A bivariate conditional function F : L0 (F) × L0 (F) → L0 (F) maps each (X,Y ) ∈
L0 (F) × L0 (F) to an element in L0 (F) and is a conditional function, that is, if

F
(∑

i∈I 1Ai (Xi, Yi)
)

=
∑

i∈I 1AiF (Xi, Yi) for every partition (Ai)i∈I of Ω in F and

all families (Xi)i∈I and (Yi)i∈I in L0 (F).

Definition 2.32 (Max/essinf-, min/esssup-points). Let F : L0 (F) × L0 (F) → L0 (F)

be a conditional function. If X ∈ argmaxX∈L0(F)

(
ess infY ∈L0(F) F (X,Y )

)
we call X ∈

L0 (F) a max/inf-point. Furthermore, we call X ∈ L0 (F) a min/sup-point if X ∈
argminX∈L0(F)

(
ess supY ∈L0(F) F (X,Y )

)
.
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Definition 2.33 (Lopsided convergence). A conditional sequence (FJ)J∈N(F) of bivari-

ate conditional functions FJ : L0 (F)× L0 (F)→ L0 (F), J ∈ N (F), converges lopsided

to an L0 (F)-valued bivariate conditional function F : L0 (F) × L0 (F) → L0 (F) if for

all (X,Y ) ∈ L0 (F)× L0 (F) holds that

∀ (XJ)J∈N(F) → X ∃ (YJ)J∈N(F) → Y : ess lim sup
J∈N(F)

FJ (XJ , YJ) ≤ F (X,Y ) , (2.22)

∃ (XJ)J∈N(F) → X ∀ (YJ)J∈N(F) → Y : ess lim inf
J∈N(F)

FJ (XJ , YJ) ≥ F (X,Y ) . (2.23)

Theorem 2.34. Let C @ L0 (F) be conditionally compact. A conditional sequence

(FJ)J∈N(F) of bivariate conditional functions FJ : L0 (F) × C → L0 (F), J ∈ N (F),

converges lopsided to a bivariate conditional function F : L0 (F)×C → L0 (F) such that

ess infY ∈C F (X,Y ) < ∞ for all X ∈ L0 (F). Then, h-limJ∈N(F) (ess infY ∈C FJ (·, Y )) =

ess infY ∈C F (·, Y ).

Proof. We define gJ (X) := ess infY ∈C FJ (X,Y ) and g (X) := ess infY ∈C F (X,Y ). As

given in Lemma 2.24, we show ess lim supJ∈N(F) gJ
(
XJ

)
≤ g (X) if limJ∈N(F)XJ = X.

We define AX := ess sup {A ∈ F | 1Ag (X) = −∞}. Thus, for 1AcXg (X) ∈ L0 (F), ε ∈
L0 (F)++ and Yε ∈ ε-argmaxF (X, ·), by assumption of lopsided convergence (2.22),

there exists a conditional sequence (YJ)J∈N(F) that converges to Yε with the property

finally 1AcX ess lim supJ∈N(F) FJ
(
XJ , XJ

)
≤ 1AcXF (X,Yε). Then

1AcX ess lim sup
J∈N(F)

g (XJ) ≤ 1AcX ess lim sup
J∈N(F)

FJ (XJ , YJ) ≤ 1AcXF (X,Yε) ≤ 1AcX (g (X) + ε)

hence, since ε has been chosen arbitrarily, it holds that 1AcX ess lim supJ∈N(F) gJ
(
XJ

)
≤

1AcXg (X). Now, on AX , for any N ∈ N (F) there is YN such that 1AXF
(
X,YN

)
≤

−1AXN . Then, by the same assumption on lopsided convergence (2.22), there ex-

ists a conditional sequence (YJ)J∈N(F) → YN with 1AX ess lim supJ∈N(F) FJ
(
XJ , YJ

)
≤

1AXF
(
X,YN

)
. Then

1AX ess lim sup
J∈N(F)

g (XJ) ≤ 1AX ess lim sup
J∈N(F)

FJ (XJ , YJ) ≤ 1AXF
(
X,YN

)
≤ −1AXN,

which holds for any N ∈ N (F), thus, 1AX ess lim supJ∈N(F) g
(
XJ

)
= −1AX∞.

To prove (2.23), we show that there exists a conditional sequence (XJ)J∈N(F) → X

such that lim infJ∈N(F) gJ (XJ) ≥ g (X). On AX , there is nothing to show. Thus, we

assume g (X) ∈ L0 (F). By the assumption of lopsided convergence (2.23), there ex-
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ists a conditional sequence (XJ)J∈N(F) → X such that for all conditional sequences

(YJ)J∈N(F) → Y holds that ess lim infJ∈N(F) FJ (XJ , YJ) ≥ F (X,Y ) implying that

ess lim infJ∈N(F) FJ (XJ , ·) ≥ F (X, ·). Again, ess lim supJ∈N(F) FJ
(
XJ , XJ

)
≤ F (X,Y )

by lopsided convergence (2.22). Thus, the conditional sequence (FJ (XJ , ·))J∈N(F) of

conditional functions FJ (XJ , ·) : L0 (F)→ L0 (F), J ∈ N (F) hypoconverges to F (X, ·)
by Lemma 2.24. By Proposition 2.30 it holds that limJ∈N(F) ess infY ∈C FJ (XJ , Y ) =

ess infY ∈C F (X,Y ), and since C @ L0 (F) is conditionally compact, we finally conclude

that ess lim infJ∈N(F) gJ (XJ) ≥ g (X). Hence, the theorem holds.

Theorem 2.35. Let B @ L0 (F) and C @ L0 (F) be conditionally compact. A con-

ditional sequence of bivariate conditional functions FJ : B × C → L0 (F), J ∈ N (F),

converges lopsided to a bivariate conditional function F : B × C → L0 (F) such that

ess infY ∈C F (X,Y ) < ∞ for all X ∈ B. If for all J ∈ N (F), XJ is a max/essinf-point

of FJ and there is N ∈ N (F)#∞ such that limJ∈N XJ = X then X is a max/essinf-point

of F . Moreover, there is convergence of the values of the max/essinf-points

lim
J∈N

(
ess inf
X∈C

FJ (XJ , Y )

)
= ess inf

Y ∈C
F
(
X,Y

)
.

Proof. Defining gJ (X) := ess infY ∈L0(F) FJ (X,Y ) and g (X) := ess infY ∈L0(F) F (X,Y ),

we observe that h-limJ∈N(F) gJ = g by Theorem 2.34. Max/essinf-points of FJ and F

are maximizers of gJ and g. It holds that limJ∈N XJ = X, XJ ∈ argmax gJ , thus, by

Proposition 2.30, limJ∈N gJ (XJ) = g
(
X
)
. That shows the claim.

2.8 Convexity

Definition 2.36 (Conditionally convex sets, adapted from [DJKK16]). Let C @ L0 (F)

be a conditional set. The conditional convex hull of C is

conv (C) :=
{
λX + (1− λ)X | X,X ∈ C, λ ∈ L0 (F) , 0 ≤ λ ≤ 1

}
.

If C = conv (C) then C is called conditionally convex.

Definition 2.37 (Conditional convex conditional functions, adapted from [CKV15]).

Let C @ L0 (F) be a conditionally convex conditional subset. A conditional function

f : C → L0 (F) is conditionally convex if

f
(
λX + (1− λ)X

)
≤ λf (X) + (1− λ) f

(
X
)

(2.24)
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for λ ∈ L0 (F) with 0 ≤ λ ≤ 1. The conditional function f : C → L0 (F) is conditionally

strict convex if

f
(
λX + (1− λ)X

)
< λf (X) + (1− λ) f

(
X
)

(2.25)

for λ ∈ L0 (F) with 0 < λ < 1. The conditional function is conditionally concave if −f
is conditionally convex.

In [FKV09], it is shown that any conditionally convex function f : C → L0 (F) is a

conditional function.

In the definition of conditional strict convexity we only consider strict inequality for

λ ∈ (0, 1) since a stable combination of X and X leads to equality for a conditional

function f , thus, a strict inequality is never fullfilled.

Proposition 2.38. Let C @ L0 (F) be a conditionally convex conditional subset. A

conditional function f : C → L0 (F) is conditionally concave if and only if its hypograph

hypo f is conditionally convex in L0 (F)× L0 (F).

Proof. Clearly, hypo f is conditionally convex if and only if (X,Y ) ,
(
X,Y

)
∈ hypo f uC

and λ ∈ [0, 1] implies
(
Xλ, Y λ

)
:= λ (X,Y ) + (1− λ)

(
X,Y

)
∈ hypo f u C. That is

f (X) ≥ Y and f
(
X
)
≥ Y implies f

(
Xλ
)
≥ Y λ which is the definition of conditional

concavity of f on C.

Theorem 2.39. Let f : L0 (F) → L0 (F) be a conditionally concave conditional func-

tion. Then, the set argmax f is conditionally convex. Additionally, if f is conditionally

strict concave and there exists X ∈ L0 (F) such that f (X) < ∞, the set argmax f

consists of at maximum one point.

Proof. If ess sup f > −∞ we consider X,X ∈ L0 (F) such that f (X) = f
(
X
)

=

ess sup f . With λ ∈ [0, 1], we define Xλ := λX+(1− λ)X and by conditional concavity,

it holds that f
(
Xλ
)
≥ λ ess sup f + (1− λ) ess sup f = ess sup f . Thus, Xλ ∈ argmax f

and argmax f is conditionally convex.

If f is conditionally strict concave assume that X ∈ argmax f . Then, for any X ∈ L0 (F),

f
(
Xλ
)
> λf

(
X
)

+(1− λ) f (X) ≥ f
(
X
)
. Thus, X is not a maximum, hence, argmax f

is at maximum a singleton.

Proposition 2.40. Let (CJ)J∈N(F) be a conditional sequence of conditionally convex

sets in L0 (F). The inner limit set lim infJ∈N(F) CJ is conditionally convex, and, too,

the limit set if it exists.
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Proof. Let X,X ∈ lim infJ∈N(F) CJ . Then, there exists N ∈ N (F)∞ with limJ∈N XJ =

X and limJ∈N XJ = X. For λ ∈ [0, 1], we define Xλ := λX + (1− λ)X and Xλ
J :=

λXJ+(1− λ)XJ for J ∈ N . Then, limJ∈N X
λ
J = Xλ, hence, Xλ ∈ lim infJ∈N(F) CJ .

Theorem 2.41. Let (fJ)J∈N(F) be a conditional sequence conditionally convex condi-

tional functions fJ : L0 (F)→ L0 (F), J ∈ N (F). Then, the function h-lim infJ∈N(F) fJ
is conditionally concave, and, too, h-limJ∈N(F) fJ if it exists.

Proof. That is the definition 2.22 of the lower hypo limit and Proposition 2.40 for the

inner limit of a conditional sequence of conditional sets.

2.9 Equilibrium

In [AE06], an approach to deriving a KY FAN-inequality is presented. Here, we extend

it to conditional theory. We examine conditions on bivariate condtional functions which

yield to max/essinf-points and approximate max/essinf-points by continuous conditional

functions.

Lemma 2.42. Let F : L0 (F)× L0 (F)→ L0 (F) be a conditional function. Then,

ess inf
Y ∈L0(F)

ess sup
X∈L0(F)

F (X,Y ) ≥ ess sup
X∈L0(F)

ess inf
Y ∈L0(F)

F (X,Y ) .

Proof. Let D @ L0 (F) be a conditionally finite conditional subset of L0 (F). Let S :={
D @ L0 (F) | D is conditionally finite

}
. Then, by definition,

ess inf
Y ∈L0(F)

ess sup
X∈L0(F)

F (X,Y ) = ess inf
Y ′∈L0(F)

ess sup
X∈L0(F)

ess inf
Y ∈{Y ′}

F (X,Y )

≥ ess inf
D∈S

ess sup
X∈L0(F)

ess inf
Y ∈D

F (X,Y ) .

By ess infY ∈D F (X,Y ) ≥ ess infY ∈L0(F) F (X,Y ) for conditionally finite D @ L0 (F), it

holds that

ess sup
X∈L0(F)

ess inf
Y ∈D

F (X,Y ) ≥ ess sup
X∈L0(F)

ess inf
Y ∈L0(F)

F (X,Y )

and thus,

ess inf
D∈S

ess sup
X∈L0(F)

ess inf
Y ∈D

F (X,Y ) ≥ ess sup
X∈L0(F)

ess inf
Y ∈L0(F)

F (X,Y ) .
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Hence, ess infY ∈L0(F) ess supX∈L0(F) F (X,Y ) ≥ ess supX∈L0(F) ess infY ∈L0(F) F (X,Y ).

Definition 2.43 (Conditionally inf-compact). Let f : L0 (F)→ L0 (F) be a conditional

function. It is conditionally inf-compact if the sets cl
{
X ∈ L0 (F) | f (X) ≥ α

}
are

conditionally compact for all α ∈ L0 (F).

That is the usual setting, for example as in Theorem 2.12.

Theorem 2.44. Let F : L0 (F) × L0 (F) → L0 (F) be a bivariate conditional function.

Assume that

(i). ∃Y0 ∈ L0 (F) such that X 7→ F (X,Y0) is conditionally inf-compact,

(ii). ∀Y ∈ L0 (F) the mapping X 7→ F (X,Y ) is upper semicontinuous.

Then, again with S :=
{
D @ L0 (F) | D is conditionally finite

}
, it holds that

ess inf
D∈S

ess sup
X∈L0(F)

ess inf
Y ∈D

F (X,Y ) = ess sup
X∈L0(F)

ess inf
Y ∈L0(F)

F (X,Y ) (2.26)

and there exists X ′ ∈ L0 (F) living on Ω, such that

ess inf
Y ∈L0(F)

F
(
X ′, Y

)
= ess inf
D∈S

ess sup
X∈L0(F)

ess inf
Y ∈D

F (X,Y ) . (2.27)

Proof. We introduce level sets depending on Y ∈ L0 (F). Thus, we define

CY :=

{
X ∈ L0 (F) | F (X,Y ) ≥ ess inf

D∈S
ess sup
X∈L0(F)

ess inf
Y ′∈D

F
(
X,Y ′

)}
.

We first show a conditional finite intersection property. Let D @ L0 (F) be condi-

tionally finite with Y0 ∈ D living on Ω. We will show that
d
Y ∈D CY lives on Ω. To

see that, consider the conditional function gD : L0 (F) → L0 (F) defined by gD (X) :=

minY ∈D F (X,Y ). The minimum is attained since D is conditionally finite. By assump-

tion (ii) for the attained minimum, gD is upper semicontinuous. By Theorem 2.10, the

level sets lev≥α gD for α ∈ L0 (F) are conditionally closed. Since cl lev≥α F (X,Y0) @

lev≥α gD by definition of g and by assumption (i), the set lev≥α gD is conditionally

compact. For α ≤ ess sup gD that both live on Ω, the level sets lev≥α gD live on

Ω, and if α′ ≤ α then lev≥α gD @ lev≥α′ gD. The conditional intersection of condi-

tionally compact nested sets is nonempty and lives on Ω, cf. [DJKK16, Proposition

3.25]. Thus,
d
α≤ess sup gD

lev≥α gD = lev≥ess supgD
gD = argmax gD lives on Ω. For any

X ∈ argmax gD, it holds that X ∈ CY , hence,
d
Y ∈D CY lives on Ω.
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Next, we show that
d
Y ∈L0(F) CY lives on Ω. For the proof, we follow an approach ap-

plied in [DJKK16]. Assume the contrary,
d
Y ∈L0(F) CY = L0 (F) |0 on A ∈ F . Then,

we observe that 1A
⊔
Y ∈L0(F) (CY u CY0) = 1ACY0 . Since CY0 is conditionally compact

from the first part of the proof, there exists a conditionally finite set D′ such that

1A
⊔
Y ∈D′ (CY u CY0) = 1ACY0 , and further, 1A

d
Y ∈(D′t{Y0}) CY = L0 (F) |0 in contra-

diction to the conditionally finite intersection property. For any X ′ ∈
d
Y ∈L0(F) CY , it

further holds that

ess inf
Y ∈L0(F)

F
(
X ′, Y

)
≥ ess inf
D∈S

ess sup
X∈L0(F)

ess inf
Y ∈D

F (X,Y ) .

by definition of CY . Finally, we observe that ess supX∈L0(F) ess infY ∈L0(F) F (X,Y ) ≥
ess infY ∈L0(F) F (X ′, Y ) ≥ ess supX∈L0(F) ess infY ∈L0(F) F (X,Y ) by Lemma 2.42. That

shows the claim.

Definition 2.45. We define the set c
(
L0 (F) , L0 (F)

)
to the set of continuous condi-

tional functions f : L0 (F)→ L0 (F). The set f
(
L0 (F) , L0 (F)

)
is the set of conditional

functions f : L0 (F)→ L0 (F).

Lemma 2.46. Let F : L0 (F) × L0 (F) → L0 (F) be a bivariate conditional function.

Then,

ess inf
g∈f(L0(F),L0(F))

ess sup
X∈L0(F)

F (X, g (X)) = ess sup
X∈L0(F)

ess inf
Y ∈L0(F)

F (X,Y ) .

Proof. For all ε ∈ L0 (F)++ and X ′ ∈ L0 (F) there exists a conditional function

g : L0 (F)→ L0 (F) such that

ess sup
X∈L0(F)

ess inf
Y ∈L0(F)

F (X,Y ) ≥ ess sup
Y ∈L0(F)

F
(
X ′, Y

)
≥ F

(
X ′, g

(
X ′
))
− ε

≥ ess inf
g∈f(L0(F),L0(F))

ess sup
X′∈L0(F)

F
(
X ′, g

(
X ′
))
− ε.

Furthermore, it also holds that ess infg∈f(L0(F),L0(F)) ess supX′∈L0(F) F (X ′, g (X ′)) ≥
ess supX∈L0(F) ess infY ∈L0(F) F (X,Y ) by Lemma 2.42. Since ε ∈ L0 (F)++ has been

chosen arbitrarily, the claim is proven.

Theorem 2.47. Let F : L0 (F) × L0 (F) → L0 (F) be a bivariate conditional function.

Assume that

(i). ∃Y0 ∈ L0 (F) such that X 7→ F (X,Y0) is conditionally inf-compact,
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(ii). ∀Y ∈ L0 (F) : X 7→ F (X,Y ) is upper semicontinuous,

(iii). ∀X ∈ L0 (F) : Y 7→ F (X,Y ) is conditionally convex.

Then,

ess inf
h∈c(L0(F),L0(F)))

ess sup
X∈L0(F)

F (X,h (X)) = ess sup
X∈L0(F)

ess inf
Y ∈L0(F)

F (X,Y ) .

Proof. We begin with the observation that

ess inf
Y ∈L0(F)

ess sup
X∈L0(F)

F (X,Y ) ≥ ess inf
h∈c(L0(F),L0(F))

ess sup
X∈L0(F)

F (X,h (X))

≥ ess sup
X∈L0(F)

ess inf
Y ∈L0(F)

F (X,Y ) .

Indeed, the left hand inequality follows from the fact that ess supX∈L0(F) F (X,Y ) ≥
ess supX∈L0(F) F (X,h(X)) for h ∈ c

(
L0 (F) , L0 (F)

)
, thus, ess supX∈L0(F) F (X,Y ) ≥

ess infh∈c(L0(F),L0(F)) ess supX∈L0(F) F (X,h (X)) and the application of the supremum

of Y ∈ L0 (F) on the left hand side since the right hand side is independent of Y . The

right hand inequality follows by F (X,h (X)) ≥ ess infY ∈L0(F) F (X,Y ) and applying

first the infimum of X ∈ L0 (F), then the supremum of h ∈ c
(
L0 (F) , L0 (F)

)
, where

again the right hand side is independent of h.

To show the inequality

ess sup
X∈L0(F)

ess inf
Y ∈L0(F)

F (X,Y ) ≥ ess inf
h∈c(L0(F),L0(F))

ess sup
X∈L0(F)

F (X,h (X)) ,

let ε ∈ L0 (F)++. Then, by Lemma 2.46, there exists a conditional function g : L0 (F)→
L0 (F) with ess supX∈L0(F) F (X, g (X)) ≤ ess supX∈L0(F) ess infY ∈L0(F) F (X,Y )+ε. By

(ii) and the definition of upper semicontinuity, there exist conditionally open neighbour-

hoods (U (X))X∈L0(F) such that F (X, g (X)) ≤ F (X ′, g (X)) + ε for all X ′ ∈ U (X).

We consider C0 :=
{
X ∈ L0 (F) | F (X,Y0) ≥ ess supX∈L0(F) ess infY ∈L0(F) F (X,Y )

}
which is a conditional subset of L0 (F). It is conditionally compact by the same reasoning

as in the proof of Theorem 2.44. Since X 7→ F (X,Y ) is upper semicontinuous, the level

set lev≥ess supX∈L0(F) ess infY ∈L0(F) F (X,Y ) F (·, Y0) is conditionally closed (Theorem 2.10),

and thus conditionally compact since Y 7→ F (X,Y ) is condionally inf-compact. Thus,

from the conditional open covering (U (X))X∈L0(F) of C0, that is, each U (X) is condi-

tionally open and C0 @
⊔
X∈L0(F) UX we can choose a conditionally finite conditional

open covering (UJ)1≤J≤N := (U (XJ))1≤J≤N of C0 for some N ∈ N (F). With U0 := C@0 ,

we have a conditional finite conditional open covering (UJ)0≤J≤N of L0 (F).
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Now, we consider a continuous partition of unity (pJ)0≤J≤N (cf. Section 1.3) subordinate

to this conditional finite covering which exists by Lemma 1.78. The conditional function

g : L0 (F)→ L0 (F) defined by g (X) := p0 (X)Y0 +
∑

1≤J≤N pJ (X) g (XJ) is continuous

since we have a continuous partition of unity and F (X, g (X)) ≤ F (X ′, g (X))+ε for all

X ′ ∈ U (X) for a neighbourhood U (X) of X ∈ L0 (F) as already shown. By pJ (X) ≥ 0,∑
0≤J≤N pJ (X) = 1 and since Y 7→ F (X,Y ) is conditionally convex it holds that

F (X, g (X)) ≤ p0 (X)F (X,Y0) +
∑

1≤J≤N pJ (X)F (X, g (XJ)). If we define A0 :=

ess sup {A ∈ F | p0 (X) |A > 0} it holds that 1A0X ∈ 1A0U0 = 1A0C@0 and therefore

1A0F (X,Y0) ≤ 1A0 ess sup
X∈L0(F)

ess inf
Y ∈L0(F)

F (X,Y ) < 1A0 ess sup
X∈L0(F)

ess inf
Y ∈L0(F)

F (X,Y ) + ε.

(2.28)

On the other hand, for AJ := ess sup {A ∈ F | pJ (X) |A > 0}, it holds that 1AJX ∈
1AJUJ and

1AJF (X, g (XJ)) ≤ 1AJF (XJ , g (XJ)) + ε ≥ 1AJ ess sup
X∈L0(F)

ess inf
Y ∈L0(F)

F (X,Y ) + ε.

By these inequalities and since
∑

0≤J≤N pJ (X) = 1, it holds that

F (X, g (X)) ≤ p0 (X)F (X,Y0) +
∑

1≤J≤N
pJ (X)F (X, g (XJ))

≤
∑

0≤J≤N
pJ (X)

(
ess sup
X∈L0(F)

ess inf
Y ∈L0(F)

F (X,Y ) + ε

)
= ess sup

X∈L0(F)

ess inf
Y ∈L0(F)

F (X,Y ) + ε.

Consequently,

ess inf
g∈c(L0(F),L0(F))

F (X, g (X)) ≤ F (X, g (X)) ≤ ess sup
X∈L0(F)

ess inf
Y ∈L0(F)

F (X,Y ) + ε,

which shows the claim by letting ε converge to zero.

2.10 Ky Fan inequality in a conditional setting

Theorem 2.48 (Conditional version of Brouwer Fixed Point Theorem). A continuous

conditional function f : K → K such that K is a conditionally compact and L0 (F)-convex
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subset of L0 (F)d has a fixed point, that is there exists X ∈ K such that f (X) = X.

Proof. The proof will be given in Section 2.11.

Theorem 2.49. Let C @ L0 (F)d be a conditionally convex, conditionally compact con-

ditional subset and Φ: C × C → L0 (F) be a conditional function with Φ (X,X) ≥ 0

and

(i). X 7→ Φ (X,Y ) is upper semicontinuous for all Y ∈ C,

(ii). Y 7→ Φ (X,Y ) is conditionally concave.

Then, there exists some X ∈ C such that ess infY ∈C Φ
(
X,Y

)
≥ ess infY ∈C Φ (Y, Y ).

Proof. We apply Theorem 2.44 and Theorem 2.47. Then, there exists X ∈ C such that

ess sup
X∈C

ess inf
Y ∈C

Φ (X,Y ) = ess inf
Y ∈C

Φ
(
X,Y

)
= ess inf

g∈c(C,C)
ess sup
X∈C

Φ (X, g (X)) ,

Since C is conditionally compact and g : C → C is a continuous conditional function there

exists a fixed point X ′ ∈ C of g by Chapter 2.11, hence,

ess sup
X∈C

Φ (X, g (X)) ≥ Φ
(
X ′, g

(
X ′
))

= Φ
(
X ′, X ′

)
≥ ess inf

Y ∈C
Φ (Y, Y ) ,

which shows the claim.

The Ky Fan inequality 2.49 also implies the Brouwer Fixed Point Theorem 2.69. Let

ψ : C → C be a continuous conditional function for a conditionally compact C @ L0 (F)d.

Then, define Φ (X,Y ) := 〈ψ (X)−X,Y −X〉 and observe that Φ satisfies the conditions

of Theorem 2.49. Hence, there exists X ∈ C such that ess supY ∈C〈ψ
(
X
)
−X,Y −X〉 ≤ 0.

Putting Y = ψ
(
X
)
∈ C, we obtain that ‖ψ

(
X
)
−X‖2 ≤ 0 and ψ

(
X
)

= X.

Theorem 2.50 (Nash equilibrium in L0 (F)). There are n ∈ N agents. For all i ∈ N,

let there are conditional functions fi : Ci ×
∏
j 6=i Cj → L0 (F) for conditionally compact

conditional conditionally convex set Ci @ L0 (F)d such that

(i). (Xi, Yi) 7→ f (Xi, Yi) is continuous

(ii). Xi 7→ f (Xi, Yi) is conditionally convex for all Yi ∈
∏
j 6=i Cj.

Then, there exists X ∈
∏
i≤n Ci such that ess supY ∈L0(F)d×n Φ

(
X,Y

)
= 0 and, further-

more,

fi
(
Xi,

(
X1, . . . , Xi−1, Xi+1, . . . , Xn

))
= min

Xi∈Ci
fi
(
Xi,
(
X1, . . . , Xi−1, Xi+1, . . . , Xn

))
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for all i ≤ n.

Proof. The conditional set
∏
i≤n Ci is conditionally compact and conditionally convex

by (i). Let Φ:
∏
i≤n Ci×

∏
i≤n Ci → L0 (F) defined by Φ ((X1, . . . , Xn) , (Y1, . . . , Yn)) :=∑

i≤n (fi (Xi, (X1, . . . , Xi−1, Xi+1 . . . , Xn))− fi (Yi, (X1, . . . , Xi−1, Xi+1 . . . , Xn))). For

a conditional sequence
(
XJ

1 , . . . , X
J
n

)
J∈N(F)

in
∏
i≤n Ci with limJ∈N(F)

(
XJ

1 , . . . , X
J
n

)
=

(X1, . . . , Xn) and for all Y ∈
∏
j 6=i Cj , it holds that

ess lim inf
J∈N(F)

Φ
((
XJ

1 , . . . , X
J
n

)
, (Y1, . . . , Yn)

)
= ess lim inf

J∈N(F)

∑
i≤n

(
fi
(
XJ
i ,
(
XJ

1 , . . . , X
J
i−1, X

J
i+1 . . . , X

J
n

))
−fi

(
Yi,
(
XJ

1 , . . . , X
J
i−1, X

J
i+1 . . . , X

J
n

)))
≥
∑
i≤n

ess lim inf
J∈N(F)

fi
(
XJ
i ,
(
XJ

1 , . . . , X
J
i−1, X

J
i+1 . . . , X

J
n

))
−
∑
i≤n

ess lim sup
J∈N(F)

fi
(
Yi,
(
XJ

1 , . . . , X
J
i−1, X

J
i+1 . . . , X

J
n

))
=
∑
i≤n

fi (Xi, (X1, . . . , Xi−1, Xi+1 . . . , Xn))−
∑
i≤n

fi (Yi, (X1, . . . , Xi−1, Xi+1 . . . , Xn))

= Φ ((X1, . . . , Xn) , (Y1, . . . , Yn))
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by (i), that is, the conditional mapping (X1, . . . , Xn) 7→ Φ ((X1, . . . , Xn) , (Y1, . . . , Yn))

is lower semicontinuous for all (Y1, . . . , Yn) ∈
∏
i≤n Ci, and

Φ
(
(X1, . . . , Xn) , λ (Y1, . . . , Yn) + (1− λ)

(
Y ′1 , . . . , Y

′
n

))
=
∑
i≤n

fi (Xi, (X1, . . . , Xi−1, Xi+1 . . . , Xn))

−
∑
i≤n

fi
(
λYi + (1− λ)Y ′i , (X1, . . . , Xi−1, Xi+1 . . . , Xn)

)
≤ λ

∑
i≤n

fi (Xi, (X1, . . . , Xi−1, Xi+1 . . . , Xn))

−
∑
i≤n

λfi (Yi, (X1, . . . , Xi−1, Xi+1 . . . , Xn))

+ (1− λ)
∑
i≤n

fi (Xi, (X1, . . . , Xi−1, Xi+1 . . . , Xn))

−
∑
i≤n

(1− λ) fi
(
Y ′i , (X1, . . . , Xi−1, Xi+1 . . . , Xn)

)
= λΦ ((X1, . . . , Xn) , (Y1, . . . , Yn)) + (1− λ) Φ

(
(X1, . . . , Xn) ,

(
Y ′1 , . . . , Y

′
n

))
,

by (ii), that is, the conditional mapping (Y1, . . . , Yn) 7→ Φ ((X1, . . . , Xn) , (Y1, . . . , Yn)) is

conditionally concave. By Theorem 2.49, there exists X ∈
∏
i≤n Ci such that

ess sup
Y ∈L0(F)d×n

Φ
(
X,Y

)
≤ ess sup

Y ∈L0(F)d×n
Φ (Y, Y ) = 0

by definition of Φ. Furthermore, for fixed i ≤ n, we have that

fi
(
Xi,

(
X1, . . . , Xi−1, Xi+1, . . . , Xn

))
− fi

(
X,
(
X1, . . . , Xi−1, Xi+1, . . . , Xn

))
= Φ

(
X,
(
X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn

))
≤ 0

if we choose X =
(
X1, . . . , Xi−1, Xi, Xi+1, . . . , Xn

)
. That is the last part of the claim.

2.11 Conditional Brouwer fixed point theorem

The following chapter is from [DKKS13]. It is given in in classical notation of random

variables. It states a conditional version of Brouwers Fixed Point Theorem. The

application we have in mind will be presented in Chapter 2.10. In view of Lemma 2.5,

here, we state all results in almost-sure convergence of sequences.
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2.11.1 Conditional simplex

We give the introduction from [DKKS13].

In the theory of real vector spaces the Brouwer fixed point theorem and corollaries are

very useful tools in analysis. A continuous function from a simplex, or a compact and

convex set in Rd, to itself has a fixed point which is a point x such that f(x) = x.

Cheridito, Filipović, Kupper and Vogelpoth ([CKV15], [FKV09]) examined properties

of (L0)d discussing concepts like linear independence, convex hull and sequential conti-

nuity of functions on L0-modules. Consequently, given affine independence a conditional

simplex can be defined in (L0)d. We obtain a fixed point for functions on conditional

simplexes using a result analogue to Sperner’s Lemma. To maintain a lot of nice uni-

form properties a simplex is subdivided barycentrically. Labeled in a measurable way

we ensure that there exists a completely labeled simplex contained in the original one.

Thus, we can construct a sequence of simplexes and we show that this converges to a

point which has to be a fixed point. Working with a measurable labeling function the

fixed point is measurable by construction. Hence, despite mainly following ideas and

techniques from Rd (cf. [Bor99]) we do not need any measurable selection argument.

The fixed point theorem for conditional simplexes by hand we prove a fixed point result

for L0-convex, bounded and sequentially closed sets in (L0)d. At the end we present the

implication of nice topological results, which are known from the real-valued case; the

incontractibility of a ball to a sphere in (L0)d and an intermediate value theorem in L0.

In Probabilistic Analysis the problem of finding random fixed points of random operators

is an important issue. Let C be a compact, convex set of a Banach space andR : Ω×C → C
be a function such that

• R(., x) : Ω→ C is a random variable for any fixed x ∈ C,

• R(ω, .) : C → C is a continuous function for any fixed ω ∈ Ω, 1

which is denoted by saying R is a continuous random operator. Then there exists

a random fixed point of R which is a random variable ξ : Ω → C such that ξ(ω) =

R(ω, ξ(ω)) for any ω (cf. [BR76], [Sha01], [FMM09]). Our approach is completely

within the theory of L0 and hence all objects are defined in that language and proofs

are done with L0-methods. Therefore, conditional simplexes or sequentially bounded

and closed sets are defined using elements of L0-theory and not via fixing ω. Moreover,

although it is clear that a conditional function is a continuous random operator it is not

clear that the opposite holds true. Also it is not certain that a conditional simplex S

1There exist versions in which C depends on ω with the property ω 7→ C(ω) is measurable.
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can always be represented via normal simplexes S(ω).

We introduce some terminology. The convex hull of X1, . . . , XN ∈ L0 (F)d, N ∈ N, is

defined as

conv (X1, . . . , XN ) =

{
N∑
i=1

λiXi | λi ∈ L0 (F)+ ,

N∑
i=1

λi = 1

}
.

An element Y ∈ conv (X1, . . . , XN ) such that λi > 0 for all i ∈ I ⊂ {1, . . . , N} is

called a strict convex combination of (Xi)i∈I . The diameter of C ⊂ L0 (F)d is defined as

diam (C) = ess supX,Y ∈C ‖X − Y ‖.

Definition 2.51. Elements X1, . . . , XN of L0 (F)d, N ∈ N, are said to be affinely

independent, if either N = 1 or N > 1 and {Xi −XN}N−1
i=1 are linearly independent,

that is

N−1∑
i=1

λi (Xi −XN ) = 0 implies λ1 = · · · = λN−1 = 0, (2.29)

where λ1, . . . , λN−1 ∈ L0 (F).

The definition of affine independence is equivalent to

N∑
i=1

λiXi = 0 and
N∑
i=1

λi = 0 implies λ1 = · · · = λN = 0. (2.30)

Indeed, first, we show that (2.29) implies (2.30). Let
∑N

i=1 λiXi = 0 and
∑N

i=1 λi =

0. Then,
∑N−1

i=1 λi (Xi −XN ) = λNXN +
∑N−1

i=1 λiXi = 0. By assumption (2.29),

λ1 = · · · = λN−1 = 0, thus also λN = 0. To see that (2.30) implies (2.29), let∑N−1
i=1 λi (Xi −XN ) = 0. With λN = −

∑N−1
i=1 λi, it holds

∑N
i=1 λiXi = λNXN +∑N−1

i=1 λiXi =
∑N−1

i=1 λi (Xi −XN ) = 0. By assumption (2.30), λ1 = · · · = λN = 0.

Remark 2.52. We observe that if (Xi)
N
i=1 ⊂ L0 (F)d are affinely independent then

(λXi)
N
i=1, for λ ∈ L0 (F)++, and (Xi + Y )Ni=1, for Y ∈ L0 (F)d, are affinely independent.

Moreover, if a family X1, . . . , XN is affinely independent then also 1BX1, . . . ,1BXN are

affinely independent on B ∈ F+, which means from
∑N

i=1 1BλiXi = 0 and
∑N

i=1 1Bλi =

0 always follows 1Bλi = 0 for all i = 1, . . . , N .

Definition 2.53. A conditional simplex in L0 (F)d is a set of the form

S = conv (X1, . . . , XN )
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such that X1, . . . , XN ∈ L0 (F)d are affinely independent. We call N ∈ N the dimension

of S.

Remark 2.54. The coefficients of convex combinations in a conditional simplex S =

conv (X1, . . . , XN ) are unique in the sense that

N∑
i=1

λiXi =

N∑
i=1

µiXi and

N∑
i=1

λi =

N∑
i=1

µi = 1 implies λi = µi for all i = 1, . . . , N.

(2.31)

Indeed, assume the given convex combinations. Then
∑N

i=1 (λi − µi)Xi = 0 with∑N
i=1 (λi − µi) = 0, and hence, by (2.30), λi − µi = 0 for all i since X1, . . . , XN are

affinely independent.

Since a conditional simplex is a convex hull it is in particular σ-stable. In contrast to a

simplex in Rd the representation of S as a convex hull of affinely independent elements

is unique but up to σ-stability.

Proposition 2.55. Let (Xi)
N
i=1 and (Yi)

N
i=1 be families in L0 (F)d with σ (X1, . . . , XN ) =

σ (Y1, . . . , YN ). Then conv (X1, . . . , XN ) = conv (Y1, . . . , YN ). Moreover, (Xi)
N
i=1 are

affinely independent if and only if (Yi)
N
i=1 are affinely independent.

If S is a conditional simplex such that S = conv (X1, . . . , XN ) = conv (Y1, . . . , YN ), then

it holds σ (X1, . . . , XN ) = σ (Y1, . . . , YN ).

Proof. Suppose σ (X1, . . . , XN ) = σ (Y1, . . . , YN ). For i = 1, . . . , N , it holds that

Xi ∈ σ (X1, . . . , XN ) = σ (Y1, . . . , YN ) ⊂ conv (Y1, . . . , YN ) .

Therefore, conv (X1, . . . , XN ) ⊂ conv (Y1, . . . , YN ) and the reverse inclusion holds anal-

ogously.

Now, let (Xi)
N
i=1 be affinely independent and σ (X1, . . . , XN ) = σ (Y1, . . . , YN ). We want

to show that (Yi)
N
i=1 are affinely independent. To that end, we define the affine hull

aff (X1, . . . , XN ) =

{
N∑
i=1

λiXi | λi ∈ L0 (F) ,
N∑
i=1

λi = 1

}
.

First, let Z1, . . . , ZM ∈ L0 (F)d, M ∈ N, such that σ (X1, . . . , XN ) = σ (Z1, . . . , ZM ).

We will show that if X1, . . . , XN are affinely independent and 1A aff (X1, . . . , XN ) ⊂
1A aff (Z1, . . . , ZM ) for A ∈ F+ then M ≥ N .
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Since Xi ∈ σ (X1, . . . , XN ) = σ (Z1, . . . , ZM ) ⊂ aff (Z1, . . . , ZM ), we conclude that

aff (X1, . . . , XN ) ⊂ aff (Z1, . . . , ZM ). Further, it holds that X1 =
∑M

i=1 1B1i
Zi for a par-

tition
(
B1i
)M
i=1

and hence there exists at least one B1k1 such that A1k1 := B1k1 ∩ A ∈ F+,

and 1A1k1
X1 = 1A1k1

Zk1 . Therefore,

1A1k1
aff (X1, . . . , XN ) ⊂ 1A1k1

aff (Z1, . . . , ZM ) = 1A1k1
aff ({X1, Z1, . . . , ZM} \ {Zk1}) .

For X2 =
∑M

i=1 1A2
i
Zi we find a set A2

k, such that A2
k2

= A2
k ∩ A1k1 ∈ F+, 1A2

k2

X2 =

1A2
k2

Zk2 and k1 6= k2. Assume to the contrary k2 = k1, then there exists a set B ∈ F+,

such that 1BX1 = 1BX2 which is a contradiction to the affine independence of (Xi)
N
i=1.

Hence, we can again substitute Zk2 by X2 on A2
k2

. Inductively, we find k1, . . . , kN such

that

1AkN
aff (X1, . . . , XN ) ⊂ 1AkN aff ({X1, . . . , XN , Z1, . . . , ZM} \ {Zk1 , . . . ZkN })

which shows M ≥ N . Now suppose Y1, . . . , YN are not affinely independent. This means,

there exist (λi)
N
i=1 such that

∑N
i=1 λiYi =

∑N
i=1 λi = 0 but not all coefficients λi are zero,

without loss of generality, λ1 > 0 on A ∈ F+. Thus, 1AY1 = −1A
∑N

i=2
λi
λ1
Yi and it holds

1A aff (Y1, . . . , YN ) = 1A aff (Y2, . . . , YN ). To see this, consider 1AZ = 1A
∑N

i=1 µiYi ∈
1A aff (Y1, . . . , YN ) which means 1A

∑N
i=1 µi = 1A. Thus, inserting for Y1,

1AZ = 1A

[
N∑
i=2

µiYi − µ1

N∑
i=2

λi
λ1
Yi

]
= 1A

[
N∑
i=2

(
µi − µ1

λi
λ1

)
Yi

]
.

Moreover,

1A

[
N∑
i=2

(
µi − µ1

λi
λ1

)]
= 1A

[
N∑
i=2

µi

]
+ 1A

[
−µ1

λ1

N∑
i=2

λi

]
= 1A(1− µ1) + 1A

µ1

λ1
λ1 = 1A.

Hence, 1AZ ∈ 1A aff (Y2, . . . , YN ). It follows that

1A aff (X1, . . . , XN ) = 1A aff (Y1, . . . , YN ) = 1A aff (Y2, . . . , YN ) .

This is a contradiction to the former part of the proof (because N − 1 6≥ N).

Next, we characterize extremal points in S = conv (X1, . . . , XN ). We show X ∈
σ (X1, . . . , XN ) if and only if there do not exist Y and Z in S \ {X} and λ ∈ (0, 1) such
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that λY + (1− λ)Z = X. Consider X ∈ σ (X1, . . . , XN ) which is X =
∑N

k=1 1AkXk

for a partition (Ak)k∈N. Now assume to the contrary that we find Y =
∑N

k=1 λkXk

and Z =
∑N

k=1 µkXk in S \ {X} such that X = λY + (1− λ)Z. This means that

X =
∑N

k=1 (λλk + (1− λ)µk)Xk. Due to uniqueness of the coefficients (cf. (2.31)) in a

conditional simplex we have λλk + (1− λ)µk = 1Ak for all k = 1 . . . , N . By means of

0 < λ < 1, it holds that λλk + (1− λ)µk = 1Ak if and only λk = µk = 1Ak . Since the

last equality holds for all k it follows that Y = Z = X. Therefore, we cannot find Y and

Z in S \ {X} such that X is a strict convex combination of them. On the other hand,

consider X ∈ S such that X /∈ σ (X1, . . . , XN ). This means, X =
∑N

k=1 νkXk, such that

there exist νk1 and νk2 and B ∈ F+ with 0 < νk1 < 1 on B and 0 < νk2 < 1 on B. Define

ε := ess inf {νk1 , νk2 , 1− νk1 , 1− νk2}. Then define µk = λk = νk if k1 6= k 6= k2 and

λk1 = νk1−ε, λk2 = νk2 +ε, µk1 = νk1 +ε and µk2 = νk2−ε. Thus, Y =
∑N

k=1 λkXk and

Z =
∑N

k=1 µkXk fulfill 0.5Y + 0.5Z = X but both are not equal to X by construction.

Hence, X can be written as a strict convex combination of elements in S \ {X}. To

conclude, consider X ∈ σ (X1, . . . , XN ) ⊂ S = conv (X1, . . . , XN ) = conv (Y1, . . . , YN ).

Since X ∈ σ (X1, . . . , XN ) it is not a strict convex combinations of elements in S\{X}, in

particular, of elements in conv (Y1, . . . , YN )\{X}. Therefore, X is also in σ (Y1, . . . , YN ).

Hence, σ (X1, . . . , XN ) ⊂ σ (Y1, . . . , YN ). With the same argumentation the other inclu-

sion follows.

As an example consider [0, 1]. For an arbitrary A ∈ F , it holds that 1A and 1Ac

are affinely independent and conv (1A,1Ac) = {λ1A + (1− λ)1Ac : 0 ≤ λ ≤ 1} = [0, 1].

Thus, the simplex [0, 1] can be written as a convex combination of different affinely

independent elements of L0 (F). This is due to the fact that σ (0, 1) = {1B | B ∈ F} =

σ (1A,1Ac) for any A ∈ F .

Remark 2.56. In L0 (F)d, let ei be the random variable which is 1 in the i-th com-

ponent and 0 in any other. Then the family 0, e1, . . . , ed is affinely independent and

L0 (F)d = aff (0, e1, . . . , ed). Hence, the maximal number of affinely independent ele-

ments in L0 (F)d is d+ 1.

The characterization of X ∈ σ (X1, . . . , XN ) leads to the following definition.

Definition 2.57. Let S = conv (X1, . . . , XN ) be a conditional simplex. We define the

set ext (S) = σ (X1, . . . , XN ) of extremal points. For an index set I and a collection

S = (Si)i∈I of simplexes we denote ext (S) = σ (ext(Si) | i ∈ I).

Remark 2.58. Let Sj = conv
(
Xj

1 , . . . , X
j
N

)
, j ∈ N, be conditional simplexes of the

same dimension N and (Aj)j∈N a partition. Then
∑

j∈N 1AjSj is again a simplex.
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To that end, we define Yk =
∑

j∈N 1AjX
j
k. Then

∑
j∈N 1AjSj = conv (Y1, . . . , YN ).

Indeed,

N∑
k=1

λkYk =
N∑
k=1

λk
∑
j∈N

1AjX
j
k =

∑
j∈N

1Aj

N∑
k=1

λkX
j
k ∈

∑
j∈N

1AjSj , (2.32)

shows conv (Y1, . . . , YN ) ⊂
∑

j∈N 1AjSj . Consider
∑N

k=1 λ
j
kX

j
k in Sj and define λk =∑

j∈N 1Ajλ
j
k yields the other inclusion.

To show that Y1, . . . , YN are affinely independent consider
∑N

k=1 λkYk = 0 =
∑N

k=1 λk.

Then by (2.32), it holds 1Aj
∑N

k=1 λkX
j
k = 0 and since Sj is a simplex, 1Ajλk = 0 for

all j ∈ N and k = 1, . . . , N . From the fact that (Aj)j∈N is a partition, it follows that

λk = 0 for all k = 1, . . . , N .

We will prove the Brouwer fixed point theorem in our setting using an analogue version

of Sperner’s Lemma. As in the unconditional case we have to subdivide a simplex in

smaller ones. For our argumentation we cannot use arbitrary subdivisions and need very

special properties of the simplexes in which we subdivide. This leads to the following

definition.

Definition 2.59. Let S = conv (X1, . . . , XN ) be a conditional simplex and SN the group

of permutations of {1, . . . , N}. Then for π ∈ SN we define

Cπ = conv

(
Xπ(1),

Xπ(1) +Xπ(2)

2
, . . . ,

Xπ(1) + · · ·+Xπ(k)

k
, . . . ,

Xπ(1) + · · ·+Xπ(N)

N

)
.

We call (Cπ)π∈SN
the barycentric subdivision of S, and denote Y π

k = 1
k

∑k
i=1Xπ(i).

Lemma 2.60. The barycentric subdivision is a collection of finitely many conditionally

simplexes satisfying the following properties

(i). σ
(⋃

π∈SN
Cπ
)

= S.

(ii). Cπ has dimension N , π ∈ SN.

(iii). Cπ ∩ Cπ is a conditional simplex of dimension r ∈ N and r < N for π, π ∈ SN,

π 6= π.

(iv). For s = 1, . . . , N − 1, let Bs := conv (X1, . . . , Xs). All simplexes Cπ ∩ Bs, π ∈ SN,

of dimension s subdivide Bs barycentrically.
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Proof. We show the affine independence of Y π
1 , . . . , Y

π
N in Cπ. It holds

λπ(1)Xπ(1) + λπ(2)

Xπ(1) +Xπ(2)

2
+ · · ·+ λπ(N)

∑N
k=1Xπ(k)

N
=

N∑
i=1

µiXi,

with µi =
∑N

k=π−1(i)
λπ(k)
k .

Since
∑N

i=1 µi =
∑N

i=1 λi, the affine independence of Y π
1 , . . . , Y

π
N is obtained by the affine

independence of X1, . . . , XN . Therefore all Cπ are conditional simplexes.

The intersection of two simplexes Cπ and Cπ can be expressed in the following manner.

Let J = {j | {π (1) , . . . , π (j)} = {π (1) , . . . , π (j)}} be the set of indexes up to which

both π and π have the same set of images. Then,

Cπ ∩ Cπ = conv

(∑j
k=1Xπ(k)

j
| j ∈ J

)
. (2.33)

To show Cπ ∩ Cπ ⊃ conv

(∑j
k=1Xπ(k)

j | j ∈ J
)

, let j ∈ J . It holds that
∑j
k=1Xπ(k)

j is in

both Cπ and Cπ because {π (1) , . . . , π (j)} = {π (1) , . . . , π (j)}. Since the intersection of

convex sets is convex, we get this implication.

For the reverse inclusion, let X ∈ Cπ ∩ Cπ. Since X ∈ Cπ, it is of the form X =∑N
i=1 λi

(∑i
k=1

Xπ(k)
i

)
and for X ∈ Cπ, it can be written as X =

∑N
i=1 µi

(∑i
k=1

Xπ(k)
i

)
.

Consider j 6∈ J . By definition of J , there exist p, q ≤ j with π−1 (π (p)) , π−1 (π (q)) 6∈
{1, . . . , j}. By (2.31), the coefficients of Xπ(p) are equal:

∑N
i=p

λi
i =

∑N
i=π−1(π(p))

µi
i .

The same holds for Xπ(q):
∑N

i=q
µi
i =

∑N
i=π−1(π(q))

λi
i . Put together

N∑
i=j+1

µi
i
≤

N∑
i=q

µi
i

=

N∑
i=π−1(π(q))

λi
i
≤

N∑
i=j+1

λi
i
≤

N∑
i=p

λi
i

=

N∑
i=π−1(π(p))

µi
i
≤

N∑
i=j+1

µi
i

which is only possible if µj = λj = 0 since p, q ≤ j.

Furthermore, if Cπ ∩Cπ is of dimension N by (2.33) follows that π = π. This shows (iii).

As for Condition (i), it clearly holds σ (∪π∈SN
Cπ) ⊂ S. On the other hand, let X =∑N

i=1 λiXi ∈ S. Then, cf. [Dra10], we find a partition (An)n∈N such that on every An

the indexes are completely ordered which is λin1 ≥ λin2 ≥ · · · ≥ λinN on An. This means,

that X ∈ 1AnCπn with πn (j) = inj . Indeed, we can rewrite X on An as

X =
(
λin1 − λin2

)
Xin1

+ · · ·+ (N − 1)
(
λinN−1

− λinN
) ∑N−1

k=1 Xink

N − 1
+NλinN

∑N
k=1Xink

N
,

80



2 Variational analysis in a conditional setting

which shows that X ∈ Cπn on An.

Further, for Bs = conv (X1, . . . , Xs) the elements Cπ′ ∩ Bs of dimension s are exactly

the ones with {π (i) | i = 1, . . . , s} = {1, . . . , s}. Therefore, (Cπ′ ∩ Bs)π′ is exactly the

barycentric subdivision of Bs, which has been shown to fulfill the properties (i)-(iii).

Remark 2.61. If we subdivide the conditional simplex S = conv (X1, . . . , XN ) barycen-

trically, we can consider an arbitrary Cπ = conv (Y π
1 , . . . , Y

π
N ), π ∈ SN. Then

diam (Cπ) ≤ ess sup
i=1,...,N

‖Y π
i − Y π

N‖ ≤
1

N
ess sup
i=1,...,N

∥∥∥∥∥
N∑
k=1

(Xn
i −Xn

k )

∥∥∥∥∥ ≤ N − 1

N
diam (S) .

If we now subdivide Cπ barycentrically and continue in that way, we obtain a chain

of simplexes Sn, with S0 = S. For the diameter of Sn, it holds that diam (Sn) ≤(
N−1
N

)n
diam (S). Since diam (S) < ∞ and

(
N−1
N

)n → 0, for n → ∞, it follows that

diam (Sn)→ 0, n→∞.

2.11.2 Brouwer fixed point theorem

Definition 2.62. Let S = conv (X1, . . . , XN ) be a conditional simplex, barycentrically

subdivided in S = (Cπ)π∈SN
. A stable function φ : ext (S) → {1, . . . , N} is called a

labeling function of S. For fixed X1, . . . , XN ∈ ext (S), the labeling function is called

proper, if for any Y ∈ ext (S) it holds that

P ({φ (Y ) = i} ⊂ {λi > 0}) = 1,

for i = 1, . . . , N , where Y =
∑N

i=1 λiXi. A conditional simplex C = conv(Y1, . . . , YN ) ⊂
S, with Yj ∈ ext (S) , j = 1, . . . , N , is said to be completely labeled by φ if this is a

proper labeling function of S and

P

 N⋃
j=1

{φ (Yj) = i}

 = 1,

for all i ∈ {1, . . . , N}.

Lemma 2.63. Let S = conv (X1, . . . , XN ) be a conditional simplex and f : S → S a

stable function. Let φ : ext (S)→ {0, . . . , N} be a stable function such that

(i). P ({φ (X) = i} ⊂ {λi > 0} ∩ {λi ≥ µi}) = 1, for all i = 1, . . . , N ,

(ii). P
(⋃N

i=1 ({λi > 0} ∩ {λi ≥ µi}) ⊂
⋃N
i=1 {φ (X) = i}

)
= 1,
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where X =
∑N

i=1 λiXi and f (X) =
∑N

i=1 µiXi. Then, φ is a proper labeling function.

Moreover, the set of functions fulfilling these properties is non-empty.

Proof. First we show that φ is a labeling function. Since φ is stable we just have

to prove that φ actually maps to {1, . . . , N}. Due to (ii), we have to show that

P
(⋃N

i=1 {λi ≥ µi : λi > 0}
)

= 1. Assume to the contrary, µi > λi on A ∈ F+, for

all λi with λi > 0 on A. Then it holds that 1 =
∑N

i=1 λi1{λi>0} <
∑N

i=1 µi1{µi>0} = 1

on A which yields a contradiction. Thus, φ is a labeling function. Moreover, due to (i)

it holds that P ({φ (X) = i} ⊂ {λi > 0}) = 1 which shows that φ is proper.

To prove the existence, for X ∈ ext (S) with X =
∑N

i=1 λiXi, f (X) =
∑N

i=1 µiXi

let Bi := {λi > 0} ∩ {λi ≥ µi}, i = 1, . . . , N . Then we define the function φ at X as

{φ (X) = i} = Bi \
(⋃i−1

k=1Bk

)
, i = 1, . . . , N . By the former part of the proof it follows

that φ maps to {1, . . . , N} and is proper. It remains to show that φ is stable. To this

end, consider X =
∑

j∈N 1AjX
j where Xj =

∑N
i=1 λ

j
iXi and f

(
Xj
)

=
∑N

i=1 µ
j
iXi. Due

to uniqueness of the coefficients in a simplex it holds that λi =
∑

j∈N 1Ajλ
j
i and due to

stableity of f it follows that µi =
∑

j∈N 1Ajµ
j
i . Therefore it holds that

Bi = {λi > 0} ∩ {λi ≥ µi} =
⋃
j∈N

({
λji > 0

}
∩
{
λji ≥ µ

j
i

}
∩Aj

)
=
⋃
j∈N

Bj
i ∩Aj .

Hence, φ (X) = i on Bi \
(⋃i−1

k=1Bk

)
=
(⋃

j∈N

(
Bj
i ∩Aj

))
\
(⋃i−1

k=1

(⋃
j∈NB

j
k ∩Aj

))
=⋃

j∈N

((
Bj
i \
⋃i−1
k=1B

j
k

)
∩Aj

)
. On the other hand, we see that

∑
j∈N 1Ajφ

(
Xj
)

is i

on any Aj ∩
{
φ
(
Xj
)

= i
}

, hence it is i on
⋃
j∈N

(
Bj
i \
⋃i−1
k=1B

j
k

)
∩ Aj . Thus, finally,∑

j∈N 1Ajφ
(
Xj
)

= φ
(∑

j∈N 1AjX
j
)

which shows that φ is stable.

The reason to demand stableity of a labeling function is exactly because we want to label

by the rule explained in the last lemma and hence keep stable information with it. For

example consider a conditional simplex S = conv (X1, X2, X3, X4) and Ω = {ω1, ω2}.
Let Y ∈ ext (S) be given by Y = 1

3

∑3
i=1Xi. Now consider a function f on S such that

f (Y ) (ω1) =
1

4
X1 (ω1) +

3

4
X3 (ω1) , f (Y ) (ω2) =

2

5
X1 (ω2) +

2

5
X2 (ω2) +

1

5
X4 (ω2) .

If we label Y by the rule explained in Lemma 2.63, φ takes the values φ (ω1) ∈ {1, 2}
and φ (ω2) = 3. Therefore, we can really express on which set λi ≥ µi and on which

not. Using a deterministic labeling of Y , we would loose this information. For example

bearing the label 3 would not mean anything on ω1 for Y . Moreover, it would be
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impossible to label properly by a deterministic labeling function following the rule of the

last lemma since there is no i such that λi ≥ µi.

Theorem 2.64. Let S = conv (X1, . . . , XN ) be a conditional simplex in L0 (F)d. Let

f : S → S be a stable, sequentially continuous function. Then there exists Y ∈ S such

that f (Y ) = Y .

Proof. We consider the barycentric subdivision (Cπ)π∈SN
of S and a proper labeling

function φ on ext (S). First, we show that we can find a completely labeled conditional

simplex in S. By induction on the dimension of S = conv (X1, . . . , XN ), we show that

there exists a partition (Ak)k=1,...,K such that on any Ak there is an odd number of

completely labeled Cπ. The case N = 1 is clear, since a point can be labeled with the

constant index 1, only.

Suppose the case N−1 is proven. Since the number of Y π
i of the barycentric subdivision

is finite and φ can only take finitely many values, it holds for all V ∈ (Y π
i )i=1,...,N,π∈SN

there exists a partition
(
AVk
)
k=1,...,K

, K < ∞, where φ (V ) is constant on any AVk .

Therefore, we find a partition (Ak)k=1,...,K , such that φ (V ) on Ak is constant for all V

and Ak. Fix Ak now.

In the following, we denote by Cπb these simplexes for which Cπb ∩ BN−1 are N − 1-

dimensional (cf. Lemma 2.60 (iv)), therefore πb (N) = N . Further we denote by Cπc
these simplexes which are not of the type Cπb , that is πc (N) 6= N . If we use Cπ we mean

a simplex of arbitrary type. We define

(i). C ⊂ (Cπ)π∈SN
to be the set of Cπ which are completely labeled on Ak.

(ii). A ⊂ (Cπ)π∈SN
to be the set of the almost completely labeled Cπ, which is the

property {φ (Y π
k ) | k = 1, . . . , N} = {1, . . . , N − 1} on Ak.

(iii). Eπ to be the set of the intersections (Cπ ∩ Cπl)πl∈SN
which are N − 1-dimensional

and completely labeled on Ak.

(iv). Bπb to be the set of the intersections Cπb ∩ BN−1 which are completely labeled on

Ak.

We know that Cπ ∩ Cπl is N − 1-dimensional on Ak if and only this holds on whole Ω

(cf. Lemma 2.60 (ii)) and Cπb ∩ BN−1 6= ∅ on Ak if and only if this also holds on whole

Ω (cf. Lemma 2.60 (iv)). So it does not play any role if we look at these sets which are

intersections on Ak or on Ω since they are exactly the same sets.

If Cπc ∈ C then |Eπc | = 1 and if Cπb ∈ C then |Eπb ∪Bπb | = 1. If Cπc ∈ A then |Eπc | = 2

and if Cπb ∈ A then |Eπb ∪Bπb | = 2. Therefore it holds
∑

π∈SN
|Eπ ∪Bπ| = |C|+ 2 |A|.
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If we pick an Eπ ∈ Eπ we know there always exists another πl such that Eπ ∈ Eπl
(Lemma 2.60(ii)). Therefore

∑
π∈SN

|Eπ| is even. Moreover (Cπb ∩ BN−1)πb subdivides

BN−1 barycentrically2 and hence we can apply the hypothesis (on ext (Cπb ∩ BN−1)).

This means that the number of completely labeled simplexes is odd on a partition of Ω

but since φ is constant on Ak it also has to be odd there. This means that
∑

πb |Bπb |
has to be odd. Hence, we also have that

∑
π |Eπ ∪Bπ| is the sum of an even and an odd

number and thus odd. So we conclude |C| + 2 |A| is odd and hence also |C|. Thus, we

find for any Ak a completely labeled Cπk .

By σ-stability of S and stableity of φ we can paste completely labeled simplexes. If we

do so, we obtain S1 :=
∑K

k=1 1AkCπk , which by Remark 2.58 is indeed a simplex and by

Remark 2.61 has a diameter which is less then N−1
N diam (S). So we finally got a simplex

S1 ⊂ S which is completely labeled on whole Ω.

This holds for any proper labeling function hence also for a φ of the type as in Lemma

2.63.

Now, we extract a sequence (Sn)n∈N of completely labeled simplexes contained in

S, fulfilling the diameter property diam (Sn) → 0 as in Remark 2.61. By [CKV15,

Theorem 3.8]) it holds that
⋂
n∈N Sn 6= ∅. The intersection consists of one element

Y =
∑N

l=1 αlXl by the diameter property. Let f (Y ) =
∑N

l=1 βlXl. Thus, all ext (Sn)

of the sequence of simplexes Sn also converge P-almost surely to Y , which then pre-

serves the properties of the index function. That is, for each i = 1, . . . , N , there exist

V n
k ∈ ext (Cnπ ) of Sn, k = 1, . . . , N, π ∈ SN, with P

(
{φ (V n

k ) = i} ⊂
{
λn,ki ≥ µn,ki

})
=

1 (cf. Lemma 2.63), where V n
k =

∑N
i=1 λ

n,k
i Xi and f (V n

k ) =
∑N

i=1 µ
n,k
i Xi. Then

P
(⋂

n∈N

{
λn,ki ≥ µn,ki

}
⊂ {αi ≥ βi}

)
= 1 for all k = 1, . . . , N by stableity of f , V n → Y

P-almost surely, and f (V n)→ f (Y ) P-almost surely. But,

P

(
N⋃
k=1

⋂
n∈N

{
λn,ki ≥ µn,ki

})
= P

(⋂
n∈N

N⋃
k=1

{
λn,ki ≥ µn,ki

})
= 1

by the complete labeling of Sn. Hence, αi ≥ βi for all i = 1, . . . , N . This is possible only

if αi = βi for all i = 1, . . . , N which is the condition of a fixed point.

Corollary 2.65. Let (Sn)n∈N be conditional simplexes, (An)n∈N a partition and S :=∑
n∈N 1AnSn. Then a stable, sequentially continuous function f : S → S has a fixed

point.

2The boundary of S is a σ-stable set so if it is partitioned by the labeling function into Ak we know that
BN−1 (S) =

∑K
k=1 1AkBN−1 (1AkS) and by Lemma 2.60 (iv) we can apply the induction hypothesis

also on Ak.
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Proof. Since f is stable, we have f (S) =
∑

n∈N 1Anf (Sn) and f restricted on Sn is still

sequentially continuous. Therefore we find Yn ∈ Sn with 1Anf (Yn) = 1AnYn. Defining

Y =
∑

n∈N 1AnYn we have

f(Y ) = f

(∑
n∈N

1AnYn

)
=
∑
n∈N

1Anf (Yn) =
∑
n∈N

1AnYn = Y.

Thus, f has a fixed point.

Remark 2.66. The Sn can be of different dimension. If Sn = conv
(
Y n

1 , . . . , Y
n
Nn

)
is of dimension Nn, the object S can be considered as to be of conditional dimension∑

n∈N 1AnNn. This conditional dimension is hence in {Nn | n ∈ N}, in particular a

measurable object.

2.11.3 Fixed point theorem for sequentially closed and bounded sets in

L0 (F)d

Proposition 2.67. Let K be a conditionally convex, sequentially closed and bounded

conditional subset of L0 (F)d and f : K → K a sequentially continuous conditional func-

tion. Then f has a fixed point.

Proof. Since K is bounded, there exists a conditional simplex S such that K ⊂ S. Now

define the function h : S → K by

h (X) =

1AX, if1AX ∈ 1AK,

argmin {‖X − Y ‖ | Y ∈ K} , else.

This means, that h is the identity on K and a projection towards K for the elements in

S \ K. Due to [CKV15, Corollary 4.5] this minmium exists and is unique. Therefore h

is well-defined.

We can characterize h by

Y = h (X)⇔ 〈X − Y,Z − Y 〉 ≤ 0, for allZ ∈ K. (2.34)

Indeed, let 〈X − Y, Z − Y 〉 ≤ 0 for all Z ∈ K. Then

‖X − Z‖2 = ‖(X − Y ) + (Y − Z)‖

= ‖X − Y ‖2 + 2 〈X − Y, Y − Z〉+ ‖Y − Z‖2 ≥ ‖X − Y ‖2 ,
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2 Variational analysis in a conditional setting

which shows the minimizing property of h. On the other hand, let Y = h (X). Since K
is conditionally convex, λZ + (1− λ)Y ∈ K for any λ ∈ (0, 1] and Z ∈ K. By standard

calculation,

‖X − (λZ + (1− λ)Y )‖2 ≥ ‖X − Y ‖2

yields 0 ≥ −2λ 〈X,−Y 〉 +
(
2λ− λ2

)
〈Y, Y 〉 + 2λ 〈X,Z〉 − λ2 ‖Z‖2 − 2λ (1− λ) 〈Z, Y 〉.

Any term can be divided by λ > 0. We do so and let λ ↓ 0 afterwards. We obtain

0 ≥ −2 〈X,−Y 〉+ 2 〈Y, Y 〉+ 2 〈X,Z〉 − 2 〈Z, Y 〉 = 2 〈X − Y,Z − Y 〉 ,

which is the claim.

Furthermore, for any X,Y ∈ S holds

‖h(X)− h(Y )‖ ≤ ‖X − Y ‖ .

Indeed, X − Y = (h (X)− h (Y )) +X − h (X) + h (Y )− Y =: (h (X)− h (Y )) + c which

means

‖X − Y ‖2 = ‖h(X)− h(Y )‖2 + ‖c‖2 + 2 〈c, h(X)− h(Y )〉 . (2.35)

Since 〈c, h (X)− h (Y )〉 = −〈X − h (X) , h (Y )− h (X)〉 − 〈Y − h (Y ) , h (X)− h (Y )〉,
by (2.34), it follows that 〈c, h (X)− h (Y )〉 ≥ 0. Then (2.35) yields ‖X − Y ‖2 ≥
‖h(X)− h(Y )‖2. Using this we see that h is a sequentially continuous conditional func-

tion, for if ‖Xn −X‖ → 0 then also ‖h (Xn)− h (X)‖ → 0.

The function f ◦ h is a sequentially continuous function mapping from S to S, more

precisely to K. Hence, there exists a fixed point f ◦ h (Z) = Z. But since f ◦ h maps

to K, this Z has to be in K. Therefore we know h (Z) = Z and hence f (Z) = Z which

ends the proof.

Remark 2.68. In [DJKK16] a concept of conditional compactness is introduced and it

is shown that there is an equivalence between conditional compactness and conditional

closed- and boundedness in L0 (F)d. In this concept we can formulate the conditional

Brouwer fixed point theorem as follows.

Theorem 2.69. A sequentially continuous conditional function f : K → K such that K
is a conditionally compact and L0 (F)-convex subset of L0 (F)d has a fixed point.
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2 Variational analysis in a conditional setting

2.11.4 Applications in analysis on L0 (F)d

Working in Rd the Brouwer fixed point theorem can be used to prove several topological

properties and is even equivalent to some of them. In the theory of L0 (F)d we will show

that the conditional Brouwer fixed point theorem has several implications as well.

Define the conditional unit ball in L0 (F)d by B (d) =
{
X ∈ L0 (F)d | ‖X‖ ≤ 1

}
. Then

by the former theorem any sequentially continuous conditional function f : B (d)→ B (d)

has a fixed point. The unit sphere is defined as S (d− 1) =
{
X ∈ L0 (F)d | ‖X‖ = 1

}
.

Definition 2.70. Let C and D be conditional subsets of L0 (F)d. A conditional ho-

motopy of two stable, sequentially continuous conditional functions f, g : C → D is

a sequentially continuous bivariate conditional function H : C × [0, 1] → D such that

H (C, 0) = f (C) and H (C, 1) = g (C).

Lemma 2.71. The identity function of the sphere is not conditionally homotop to a

constant function.

The proof is a consequence of the following lemma.

Lemma 2.72. A sequentially continuous conditional function f : B (d) → S (d− 1)

which is the identity on S (d− 1) does not exist.

Proof. Suppose there is a sequentially continuous conditional function f as assumed in

the lemma. We define g : S (d− 1) → S (d− 1) by g (X) = −X. Then the composition

g ◦ f : B (d) → B (d), which actually maps to S (d− 1), is a sequentially continuous

conditional function. Therefore, this has a fixed point Y which has to be in S(d − 1),

since this is the image of g ◦ f . But we know f (Y ) = Y and g (Y ) = −Y and hence

g ◦ f (Y ) = −Y . Therefore, Y cannot be a fixed point (since 0 ∈ S (d− 1)@) which is a

contradiction.

Directly follows that the identity on the sphere is not conditionally homotop to a constant

function. In the case d = 1 we get the following result which is the conditional version

of a intermediate value theorem.

Lemma 2.73. Let X,X ∈ L0 (F) with X ≤ X. Let f :
[
X,X

]
→ L0 (F) be a se-

quentially continuous conditional function. Define A :=
{
f (X) ≤ f

(
X
)}

. Then for

every Y ∈
[
1Af (X) + 1Acf

(
X
)
,1Af

(
X
)

+ 1Acf (X)
]

there exists Y ∈
[
X,X

]
with

f
(
Y
)

= Y .
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Proof. It is sufficient to prove the case for f (X) ≤ f
(
X
)

that is A = Ω. In the general

case we consider A and Ac separately, obtain 1Af
(
Y 1

)
= 1AY , 1Acf

(
Y 2

)
= 1AcY and,

by stableity, f
(
1AY 1 + 1AcY 2

)
= Y . Suppose, now Y ∈

[
f (X) , f

(
X
)]

.

Let first f (X) < Y < f
(
X
)
. Define the conditional function g :

[
X,X

]
→
[
X,X

]
by

g (V ) := p (V − f (V ) + Y ) with p (Z) = 1{Z≤X}X + 1{X≤Z≤X}Z + 1{X≤Z}X.

Therefore g has a fixed point Y by Proposition 2.67. If Y = X, it holdsX−f(X)+Y ≤ X
which means Y ≤ f (X) which is a contradiction. If Y = X, it follows that f

(
X
)
≤ Y ,

which is also a contradiction. Hence, Y = Y − f
(
Y
)

+ Y which means f
(
Y
)

= Y .

If Y = f (X) on B and Y = f
(
X
)

on C, it holds f (X) < Y < f
(
X
)

on (B ∪ C)c =: D.

Then we find Y such that f
(
Y
)

= Y on D. In total f
(
1BX + 1C\BX + 1DY

)
=

1Bf(X)+1C\Bf
(
X
)
+1Df

(
Y
)

= Y . This is the claim for arbitrary Y ∈
[
f (X) , f(X)

]
.
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3 Walras equilibrium

Motivated by the work of Jofré and Wets [JW02] we enlarge their setting in the con-

text of conditional sets. We describe the market setting, agents’ preferences dependent

on the price in the market, and the Walrasian as a price-dependent conditional function

whose max/essinf-points describe a Walras equilibrium price. Furthermore, we discuss

stability properties of the Walras equilibrium and converging economies.

3.1 Market setting

The market setting is introduced as follows. The set A of agents who trade in the market

is assumed to be finite. There are d goods which can be exchanged. At the beginning,

an agent a ∈ A has the endowment Ea ∈ L0 (F)d+. The endowment can be exchanged

for allocations X ∈ L0 (F)d of goods. Their utility is described by a conditional utility

function ua : L0 (F)d → [−∞;∞[. It is upper semicontinuous and conditionally concave

on the nonempty domain domua @ L0 (F)d of the conditional utility function. The

assumption of concavity is discussed in remark 3.5. For the domain we further suppose

that it is conditionally closed and its interior int domua is nonempty. Then, a natural

consistency assumption is that Ea ∈ int domua. In the sequel, we reduce the problem

to the case that int domua lives on Ω, the rest is of no futher interest mathematically.

Further, we impose criteria when utility functions are disturbed. In detail, we assume a

conditional sequence (uaJ)J∈N(F) of conditional utility functions uaJ : L0 (F)d → [−∞;∞[

disturbing ua in a hypoconverging sense, that is h-limJ∈N(F) u
a
J = ua. This implies that

ua is upper semicontinuous, cf. Proposition 2.25.

For the optimization problem we consider the exchange of goods at prices P ∈ L0 (F)d+.

The exchange is limited by 〈P,X〉 ≤ 〈P,Ea〉, thus, the feasible good allocations are

Ca (P ) := domua u
{
X ∈ L0 (F)d | 〈P,X〉 ≤ 〈P,Ea〉

}
. Clearly, Ca (P ) is a conditional

set, since if X1, X2 ∈ Ca (P ) and A ∈ F , it holds that 1AX
1 + 1AcX

2 ∈ domua and〈
P,1AX

1 + 1AcX
2
〉
≤ 〈P,Ea〉. Now, as a utility maximizer, each agent acquires

argmaxX∈C {ua (X) | X ∈ Ca (P )} (3.1)
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3 Walras equilibrium

for some conditionally compact conditional subset C @ L0 (F)d which lives on Ω and

describes trading constraints. Conditions for a conditionally compact C @ L0 (F)d

are discussed in Section 3.2. We define the conditional set of maximizers Da (P ) :={
X ∈ L0 (F)d | X ∈ argmaxX∈C {ua (X) | X ∈ Ca (P )}

}
. Since if X1, X2 ∈ Da (P ) and

A ∈ F , it holds that 1AX
1 + 1AcX

2 ∈ Ca (P ) since Ca (P ) is a conditional set and

ua
(
1AX

1 + 1AcX
2
)

= 1Au
a
(
X1
)

+ 1Acu
a
(
X2
)

= ua
(
X1
)
, thus, 1AX

1 + 1AcX
2 ∈

Da (P ). The mapping P 7→ Da (P ) is a conditional function since for P1, P2 ∈ L0 (F)d+
and A ∈ F it holds that

Da (1AP1 + 1AcP2)

=
{
X ∈ L0 (F)d | X ∈ argmaxX∈C {ua (X) | X ∈ Ca (1AP1 + 1AcP2)}

}
= 1A

{
X ∈ L0 (F)d | X ∈ argmaxX∈C {ua (X) | X ∈ 1ACa (P1)}

}
+ 1Ac

{
X ∈ L0 (F)d | X ∈ argmaxX∈C {ua (X) | X ∈ 1AcCa (P2)}

}
= 1ADa (P1) + 1AcDa (P2) .

A solution to the maximization problem in (3.1) exists since ua is conditionally concave

on a conditionally compact conditional set, and ua <∞, cf. Theorem 2.39.

We continue with the definition of Walras prices. Since Da (P ) = Da (λP ) for all

Da (P ) ∈ Da (P ) and λ ∈ L0 (F)++ we assume that P ∈ Σ := {P ∈ L0 (F)d+ |
∑

i≤d Pi =

1}. Now, we can define the excess supply

S (P ) :=
∑
a∈A

(Ea −Da (P )) forDa (P ) ∈ Da (P ) ,

S (P ) :=
{
S (P ) ∈ L0 (F) | Da (P ) ∈ Da (P )

}
.

By definition, S : Σ→ L0 (F) is a conditional function, and, thus, S (P ) is a conditional

set for each P ∈ Σ. The price vector P is a Walras equilibrium price if S (P ) ≥ 0.

If there exists some S′ ∈ S (P ) such that S′ ≥ 0, then S ≥ 0 for all S ∈ S (P ). To

see that, assume S ∈ S (P ) and A ∈ F+ such that S|A < 0. By definition, there

exist (Da (P ))a∈A in (Da (P ))a∈A such that S =
∑

a∈A (Ea −Da (P )). Then, on A, 0 >〈
P,
∑

a∈AE
a −Da

〉
=
∑

a∈A 〈P,Ea −Da〉 ≥ 0 since Da (P ) ∈ Ca (P ). This contradicts

A ∈ F+.
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3 Walras equilibrium

Finally, the Walrasian is a conditional function W : Σ×Σ→ L0 (F) which is defined by

W (P,Q) := ess sup
S∈S(P )

〈Q,S〉 .

The max/inf-point of the Walrasian will be our equilibrium price. Therefore, we sum up

some useful properties of the described setting.

Lemma 3.1. The following properties hold for the Walrasian.

For all Q ∈ Σ: P 7→W (P,Q) is upper semicontinuous. (3.2)

For all P ∈ Σ: Q 7→W (P,Q) is conditionally convex. (3.3)

For all Q ∈ Σ: W (Q,Q) ≥ 0. (3.4)

Proof. To show (3.2), first, we consider the conditional set Ca (P ) @ L0 (F). For all

P ∈ Σ, it holds that Ca (P ) is conditionally closed and conditionally convex by definition.

Further, int Ca (P ) lives on Ω since the conditional set
{
X ∈ L0 (F)d | 〈P,X〉 ≤ 〈P,Ea〉

}
is a half plane whose interior lives on Ω and Ea ∈ int domua. We will show that

lim supJ∈N(F) Ca
(
PJ
)
@ Ca (P ) for a conditional sequence (PJ)J∈N(F) of prices with

limJ∈N(F) PJ = P , that is, the mapping P 7→ Ca (P ) is outer semicontinuous. Clearly,

for conditional sequences (PJ)J∈N(F) → P in L0 (F)d and (XJ)J∈N(F) → X in L0 (F)d

it holds that (PJ,i (XJ,i − Ea
i ))J∈N(F) → Pi (Xi − Ea

i ), thus, lim supJ∈N(F) Ca
(
PJ
)
@

Ca (P ) since domua is conditionally closed. Next, we show that the conditional function

P 7→ Ca (P ) is inner semicontinuous, that is, by Definition 2.21, whenever (PJ)J∈N(F) →
P there existsM∈ N (F)∞ such that there exists a conditional subsequence (XJ)J∈M →
X with XJ ∈ Ca (PJ). For the proof consider X ∈ int Ca (P ). That is, there exist

δ ∈ L0 (F)++ and a conditional ball Bδ (X) @ Ca (P ) on Ω. For all X ′ ∈ Bδ (X) it holds

that 〈P,X ′〉 ≤ 〈P,Ea〉 by definition of Ca (P ). Now, there exist ε ∈ L0 (F)++ and a

conditional ball Bε (P ) @ Σ on Ω such that
〈
P ,X ′

〉
≤
〈
P ,Ea

〉
for all P ∈ Bε (P ) and

X ′ ∈ Bδ (X). To continue, consider the conditional subsequence (PJ)J∈M of (PJ)J∈N(F)

that is in Bε (P ). We observe that M ∈ N (F)∞ since (PJ)J∈N(F) → P . By construc-

tion, we find a conditional subsequence (XJ)J∈M with XJ ∈ Bδ (X) @ Ca (PJ), that is

inner semicontinuity of P 7→ Ca (P ), and thus, P 7→ Ca (P ) is continuous.

Second, we continue with the properties of P 7→ Da (P ). As in (3.1), we define

Da
J

(
PJ
)

:= argmaxX∈C
{
uaJ (X) | X ∈ Ca

(
PJ
)}

and we claim that lim supJ∈N(F)Da
J

(
PJ
)
@ Da (P ) whenever (PJ)J∈N(F) → P .
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To that end, for all A ∈ F , we define

1Av (X) :=

1Au (X) if 〈P,X〉 ≤ 〈P,Ea〉 ,

−1A∞ else,
(3.5)

1AvJ (X) :=

1AuJ (X) if 〈P,X〉 ≤ 〈P,Ea〉 ,

−1A∞ else.
(3.6)

and show that h-limJ∈N(F) vJ = v. By Lemma 2.24, we have to show that

∃ (XJ)J∈N(F) → X : ess lim inf
J∈N(F)

vJ (XJ) ≥ v (X) , (3.7)

∀ (XJ)J∈N(F) → X : ess lim sup
J∈N(F)

vJ (XJ) ≤ v (X) . (3.8)

for all X ∈ L0 (F)d. Inequality (3.8) is obvious if 1A ess lim supJ∈N(F) vJ
(
XJ

)
= −1A∞.

In turn, if ess lim supJ∈N(F) vJ
(
XJ

)
|A > −∞ for some A ∈ F there existsM∈ N (F)∞

such that 1AXJ ∈ 1ADa (PJ) for all J ∈ M. Then, since (PJ)J∈N(F) → P and, by

hypoconvergence of the utility functions uaJ , J ∈M, it follows that 1AX ∈ 1ADa (P ).

To proof inequality (3.7), we consider A1 := ess sup
{
A ∈ F | 1AX ∈ 1A (Da (P ))@

}
,

A2 := ess sup {A ∈ F | 1AX ∈ 1A intDa (P )} and the complement A3 := (A1 ∪A2)c =

ess sup
{
A ∈ F | 1AX ∈ 1A

(
clDa (P ) u (intDa (P ))@

)}
for X ∈ L0 (F)d. On A1 we

choose 1A1XJ = 1A1X for all J ∈ N (F). Then, 1A1 ess lim infJ∈N(F) vJ (XJ) =

1A1v (X) by (3.5) and the characterization of hypoconvergence in Lemma 2.23. On

A2, there exists M ∈ N (F)∞ such that 1A2X ∈ 1A2Da (PJ) by definition of Da

and (PJ)J∈M → P . Again, choosing 1A2XJ = 1A2X for all J ∈ M yields that

1A2 ess lim infJ∈M vJ (XJ) = 1A2v (X). On A3, we apply the inner semicontinuity of

the conditional mapping P 7→ Da (P ) which yields the existence of a conditional se-

quence (XJ)J∈N(F) → X with XJ ∈ intDa (P ).

Thus, h-limJ∈N(F) vJ = v. Since, by definition, Da
J

(
PJ
)

= argmaxX∈C vJ (X) and

Da (P ) = argmaxX∈C v (X), it holds that lim supJ∈N(F)Da
J

(
PJ
)
@ Da (P ) by Proposi-

tion 2.30 (ii).

Third, we investigate the conditional mapping P 7→ S (P ). For the definition SJ (PJ) :=∑
a∈A (Ea −Da (PJ)), it holds that

lim sup
J∈N(F)

SJ
(
PJ
)

=
∑
a∈A

Ea −
∑
a∈A

lim sup
J∈N(F)

Da
J

(
PJ
)
@
∑
a∈A

Ea −
∑
a∈A
Da (P ) = S (P ) (3.9)
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showing that P 7→ S (P ) is outer semicontinuous.

To finally prove (3.2), we observe that by (3.9)

lim sup
J∈N(F)

W (PJ , Q) = lim sup
J∈N(F)

ess sup
SJ∈S(PJ )

〈Q,SJ〉 (3.10)

= ess sup
S∈lim supJ∈N(F) S(PJ )

〈Q,S〉 ≤ ess sup
S∈S(P )

〈Q,S〉 = W (P,Q) (3.11)

for all Q ∈ Σ which shows that P 7→W (P,Q) : Σ→ L0 (F) is upper semicontinuous.

To conclude with (3.3), or that Q 7→W (P,Q) is conditionally convex, we observe that

W
(
P, λQ+ (1− λ)Q′

)
= ess sup

S∈S(P )

〈
λQ+ (1− λ)Q′, S

〉
≤ λ ess sup

S∈S(P )
〈Q,S〉+ (1− λ) ess sup

S∈S(P )

〈
Q′, S

〉
= λW (P,Q) + (1− λ)W

(
P,Q′

)
for all λ ∈ L0 (F)d with 0 ≤ λ ≤ 1, hence, Q 7→W (P,Q) is conditionally convex.

Finally, (3.4) holds since 〈Q,Da (Q)〉 ≤ 〈Q,Ea〉 for all Da (P ) ∈ Da (P ) implies that

〈Q,S (Q)〉 ≥ 0 for all S (Q) ∈ S (Q).

Theorem 3.2 (Existence of an Equilibrium Price). The Walrasian has a max/essinf

point P ∈ Σ such that 0 ≤ ess infQ∈ΣW
(
P ,Q

)
= ess supP∈Σ ess infQ∈ΣW (P,Q). More-

over, this point P is an equilibrium price.

Proof. Since the Walrasian is a Ky Fan function, by Theorem 2.49, the existence of

the max/essinf-point follows. By (3.4), it follows that 0 ≤ ess infQ∈ΣW (Q,Q) ≤
ess infQ∈ΣW

(
P ,Q

)
. Thus, 0 ≤ ess infQ∈Σ ess supS∈S(P)〈Q,S〉.

Next, we show that there exists S ∈ L0 (F)d such that ess supS∈S(P) 〈Q,S〉 =
〈
Q,S

〉
for each Q ∈ Σ. Since ess supS∈S(P) 〈Q,S〉 ∈ L0 (F), there exists a conditional se-

quence (SJ)J∈N(F) in S
(
P
)

with ess supS∈S(P) 〈Q,S〉 = ess lim supJ∈N(F)

〈
Q,SJ

〉
by

the definition of an essential supremum.

Since S (P ) @ Ea − C lives on Ω, the conditional set lim supJ∈N(F) SJ lives on Ω. Thus,

there exists M @ N (F)#∞ such that limJ∈M SJ exists and is denoted by S ∈ S (P ).

Since SJ = Ea − XJ for XJ ∈ argmaxX∈C
{
ua (X) |

〈
P ,X

〉
≤
〈
P ,Ea

〉}
by definition

we now consider the conditional family (XJ)J∈M in C @ L0 (F)d which contains a

converging conditional subsequence (XJ)J∈M′ → X since C is conditionally compact.
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We observe that
〈
P ,X

〉
= limJ∈M′

〈
P ,XJ

〉
≤
〈
P ,Ea

〉
. Also, by upper semicontinu-

ity uf u, u
(
X
)

= u
(
limJ∈M′ XJ

)
≥ ess lim supJ∈M u(XJ) = u

(
XJ

)
for all J ∈ M′,

thus X is a maximizer. That means, S = Ea − X is such that ess supS∈S(P)〈Q,S〉 =

ess lim supJ∈N(F)

〈
Q,SJ

〉
= 〈Q,S〉. For fixed Q ∈ Σ, we denote SQ

(
P
)

:= S as just

defined.

Hence,
〈
Q,SQ

(
P
)〉
≥ 0 for all Q ∈ Σ. In particular, this holds for the j-th unit vector

on A ∈ F , that is 1AQj = (0, . . . , 0,1A, 0, . . . , 0) ∈ Σ. If SQj ,k denotes the k-th compo-

nent of SQj , it holds that SQj ≥ 0. Now, we define λj := 1
d−1

(
1−

P jSQj,j∑
j≤d P jSQj,j

)
and observe that

∑
j≤d λj = 1 and 0 ≤ λj ≤ 1 for all j ∈ N. Furthermore, let

Sλ,k :=
∑

j≤d λjSQj ,k. Since Sλ ∈ S
(
P
)

by conditional convexity of S
(
P
)
, it holds

that P kSQj ,k ≥ −
∑

i 6=k P iSQj ,i. Then,

Sλ,k =
∑
j≤d

λjSQj ,k

=
1

d− 1

∑
j≤d

(
1−

P jSQj ,j∑
j≤d P jSQj ,j

)
SQj ,k

=
1

d− 1

∑
j 6=k

(
1−

P jSQj ,j∑
j≤d P jSQj ,j

)
SQj ,k +

1

d− 1

(
1−

P kSQk,k∑
j≤d P jSQj ,j

)
SQk,k

=
1

d− 1

∑
j 6=k

( ∑
i 6=j P iSQi,i∑
j≤d P jSQj ,j

)
SQj ,k +

1

d− 1

(
1−

P kSQk,k∑
j≤d P jSQj ,j

)
SQk,k

≥ 1

d− 1

∑
j 6=k

(
−P jSQj ,j∑
j≤d P jSQj ,j

)
SQj ,k +

1

d− 1

(
1−

P kSQk,k∑
j≤d P jSQj ,j

)
SQk,k

=
1

d− 1

1−
∑
j≤d

(
P jSQj ,j∑
j≤d P jSQj ,j

)
SQj ,k


= 0

Thus, Sλ
(
P
)
≥ 0, hence, P is an equilibrium price.

In general, these equilibrium prices are not unique, mainly because of Proposition 2.30

if the maximizer is not unique by some given external information. Here we have only

established that if ε-optimal prices always converge to the same price for ε→ 0, this limit

price is the only optimal solution. Another approach to ensure this is the translation-

invariance of the utilities, as for example in [CHKP16]. How this can be applied here is

subject to further research.
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3 Walras equilibrium

3.2 Compactness of allocations

The assumption that the conditional set of allocations of goods is conditionally compact

is rather technical and motivated mathematically. Its reasoning although might be done

in an economic way.

According to [JW02], Jofré and Wets’ assumption is translated into the condi-

tional setting by assuming that ua is conditionally sup-compact, that is, lev≥α u
a ={

X ∈ L0 (F)d | ua (X) ≥ α
}

is conditionally compact for all α ∈ L0 (F). Since ua is

assumed to be upper semicontinuous, this assumption means that only a boundedness

restriction is added to attainable good allocations. Since there exits X ∈ L0 (F)d with

X ∈ int domua, the conditional set C := lev≥ua(X) u
a fulfills the model assumptions.

This is also convenient with the standard optimization problem as in Theorem 2.12.

Another approach is a slight generalization of sensivity to large losses suggested by

[DLVM97], also used in [CHKP16] or [FS04].

Definition 3.3. A conditional utility function u : L0 (F)d → L0 (F) is sensitive to large

losses if limλ→∞ u (λX) = −∞ for all X ∈ L0 (F)d with 1AX ∈ −1AL0 (F)d++ for some

A ∈ F+.

Lemma 3.4. The level sets of a conditionally concave, upper semicontinuous, proper

utility function are conditionally closed if the conditional utility function is sensitive to

large losses.

Proof. We assume that u (Ea) > −∞ for some Ea ∈ L0 (F)d as in the model and remark

that if limλ→∞ u (λX) = −∞ then limλ→∞ u (λX + Ea) = −∞ for Ea ∈ L0 (F)d. We

observe that
{
X ∈ L0 (F)d+ | 〈P,X〉 ≤ 〈P,Ea〉

}
is conditionally bounded, thus condi-

tionally compact. Suppose that there is λ ∈ L0 (F) such that
{
X ∈ L0 (F)d | u (X) ≥ λ

}
is not conditionally compact. Then, there exists a conditional sequence (XN )N∈N(F) in

L0 (F)d with 〈P,XN 〉 ≤ 〈P,Ea〉, u (XN ) ≥ λ such that limN∈N(F)‖XN‖ = ∞ on Ω,

if only on A, on Ac we are done. Then, the conditional sequence (XN − Ea) /‖XN‖
converges to Y ∈ L0 (F)d, if necessary, we pass to a conditional subsequence. By con-

struction, ‖Y ‖ = 1, thus, 1AY ∈ −1AL0 (F)d++ for some A ∈ F+ due to the price
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restriction. Hence, for any λ > 0 it holds that

u (λY ) ≥ ess lim sup
N∈N(F)

u

(
λ
XN − Ea

‖XN‖

)
= ess lim sup

N∈N(F)
u

(
λ

‖XN‖
XN +

(
1− λ

‖Xn‖

)
Ea

)
≥ ess lim sup

N∈N(F)

(
λ

‖XN‖
u (XN ) +

(
1− λ

‖Xn‖

)
u (Ea)

)
≥ ess lim sup

N∈N(F)

(
λ

‖XN‖
λ+

(
1− λ

‖Xn‖

)
u (Ea)

)
= u (Ea) > −∞

in contradiction to that u is sensitive to large losses.

Remark 3.5. We provide criteria for Da (P ) to consist of exactly one point for fixed

P ∈ Σ, and consequences of this. Among other, we consider strict conditional concavity

of the condtitional utility functions.

To that end, let ua : L0 (F)d → [−∞;∞[ be conditionally strict concave. Let X,Y ∈
Da (P ) and 0 < λ < 1. Then, ua (λX + (1− λ)Y ) > λua (X)+(1− λ)ua (Y ) ∈ Da (P ) in

contradiction to the maximality in the definition of Da (P ). Thus, X = Y . By the proof

of Lemma 3.1, it holds that lim supJ∈N(F)Da
J

(
PJ
)
@ Da (P ) whenever (PJ)J∈N(F) → P .

Thus, with Da (P ) = {Da (P )}, we have continuity, that is, (PJ)J∈N(F) → P implies

Da (PJ)→ Da (P ).

3.3 Converging economies

We now consider continuity properties of the Walras equilibrium prices. Therefore, we

consider a lopsidedly disturbed Ky Fan inequality and its application to a converging

economy.

Theorem 3.6. Let C @ L0 (F)d be a conditionally convex, conditionally compact condi-

tional subset. Let FJ : L0 (F)d ×L0 (F)d → L0 (F), J ∈ N (F), be conditional functions

with 0 ≤ FJ (X,X) ≤ ∞ for X ∈ C and

(I). X 7→ FJ (X,Y ) is lower semicontinuous for all Y ∈ L0 (F)d,

(II). Y 7→ FJ (X,Y ) is conditionally concave for all X ∈ L0 (F)d,

for all J ∈ N (F). Assume the conditional sequence (FJ)J∈N(F) to converge lopsided to

a conditional function F . Then, it holds that F (X,X) ≥ 0 for X ∈ C and

(i). X 7→ F (X,Y ) is lower semicontinuous for all Y ∈ L0 (F)d,

(ii). Y 7→ F (X,Y ) is conditionally concave for all Y ∈ L0 (F)d.

96



3 Walras equilibrium

If X ∈ lim supJ∈N(F) argmaxX∈L0(F)d

(
ess infY ∈L0(F)d FJ (X,Y )

)
is a cluster point of

max/essinf-points of FJ then X ∈ argmaxX∈L0(F)d

(
ess infY ∈L0(F)d F (X,Y )

)
also is a

max/essinf-point of F .

Proof. First, we observe that max/essinf-points of FJ are in C × C by Theorem 2.49

and Proposition 2.30. Since the conditional sequence (FJ)J∈N(F) of conditional func-

tions FJ : L0 (F)d × L0 (F)d → L0 (F) converges lopsided to the conditional function

F : L0 (F)d × L0 (F)d → L0 (F) for all conditional sequences
(
XJ
K

)
K∈N(F)

→ XJ there

exists a conditional sequence
(
YK
)
K∈N(F)

→ Y in L0 (F)d with the property that

ess lim supK∈N(F) FK
(
XJ
K , YK

)
≤ F

(
XJ , Y

)
.

Then, we observe that by lopsided convergence and (I),

ess lim inf
J∈N(F)

F
(
XJ , Y

)
≥ ess lim sup

K∈N(F)
ess lim inf
J∈N(F)

FK
(
XJ
K , YK

)
≥ ess lim inf

K∈N(F)
ess lim inf
J∈N(F)

FK
(
XJ
K , YK

)
≥ ess lim inf

K∈N(F)
FK
(
XK , YK

)
.

Thus, there exists a conditional sequence (XK)K∈N(F) → X such that for all conditional

sequences (YK)K∈N(F) → Y it holds that ess lim infK∈N(F) FK (XK , YK) ≥ F (X,Y ).

Hence, finally, ess lim infJ∈N(F) F
(
XJ , Y

)
≥ F (X,Y ), thus (i) holds.

Further, for λ ∈ [0, 1] and conditional sequences (XJ)J∈N(F) → X, (YJ)J∈N(F) → Y and

(Y ′J)J∈N(F) → Y ′ in L0 (F)d, we observe that, by (II),

F
(
X,λY + (1− λ)Y ′

)
≤ ess lim inf

J∈N(F)
FJ
(
XJ , λYJ + (1− λ)Y ′J

)
≤ ess lim sup

J∈N(F)
λFJ (XJ , YJ) + (1− λ) ess lim sup

J∈N(F)
FJ
(
XJ , Y

′
J

)
≤ λFJ (X,Y ) + (1− λ)F

(
X,Y ′

)
which shows (ii).

For the last claim, observe that ess infY ∈L0(F)d F (X,Y ) ≥ 0 for a cluster point X of

max/essinf-points XJ of FJ by Theorem 2.35.

Theorem 3.7. Let ECO = (ua, ea)a∈A be an economy satisfying ea ∈ int (domua). Let

(ECOJ)J∈N(F) be a conditional sequence of economics ECOJ = (uaJ , e
a)a∈A, J ∈ N (F),

that disturb the economy ECO. Assume that domuaJ = domua for all J ∈ N (F) and
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a ∈ A. Assume further that h-limJ∈N(F) u
a
J = ua for all a ∈ A. Then, all the economies

ECO,ECOJ , J ∈ N (F) have an equilibrium price P , P J in Σ, lim supJ∈N(F) P J lives

on Ω and P ∈ lim supJ∈N(F) P J is market equilibrium of the economy ECO.

Proof. We introduce Walrasians for each economy and prove their lopsided convergence.

By S,SJ , we denote the excess supply conditional sets of the economies ECO,ECOJ

and by W,WJ their Walrasians. We show that the conditional sequence (WJ)J∈N(F)

converges lopsided to W , that is, for all (P,Q) ∈ Σ× Σ, it holds that

∀ (PJ)J∈N(F) → P ∃ (QJ)J∈N(F) → Q : ess lim sup
J∈N(F)

WJ (PJ , QJ) ≤W (P,Q) , (3.12)

∃ (PJ)J∈N(F) → P ∀ (QJ)J∈N(F) → Q : ess lim inf
J∈N(F)

WJ (PJ , QJ) ≥W (P,Q) (3.13)

for PJ , QJ ∈ Σ and J ∈ N (F). To show (3.12), consider QJ = Q for all J ∈ N (F) and

ess lim sup
J∈N(F)

WJ (QJ , PJ) = ess lim sup
J∈N(F)

WJ (Q,PJ) ≤W (P,Q)

as in the proof of Lemma 3.1. To show (3.13), choose PJ = P for all J ∈ N (F). Then,

for all conditional sequences (QJ)J∈N(F) → Q in Σ, it holds that

ess lim inf
J∈N(F)

WJ (PJ , QJ) = ess lim inf
J∈N(F)

WJ (P,QJ)

= ess sup
S∈S(P )

〈
ess lim inf
J∈N(F)

QJ , S

〉
= W (P,Q)

which shows (3.13). Now, the claim follows as a consequence of Theorem 3.6.
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4 Path-dependent conditional optimization

In this chapter, we introduce an approach to optimization in a conditional setting depen-

dent on the observed path. The utility function may depend on history, for example, de-

pendent on the recent change of a stock market index oder changes in budget constraints

which will be our main example derived from the setting in Chapter 3. Conceivably, it

may be applicated to increasing risk aversion over time.

First, we give an introduction to conditional functions between different underlying σ-

algebras. Then, we discuss the Euclidean conditional topologies with respect to these

different σ-algebras. This is applied to convergence properties of conditional sequences

and their images under conditional function with respect to different σ-algebras. To

concentrate on the methodology, we present the setting of the path-dependent condi-

tional optimization in discrete time in the continuous case. This will be generalized to

the common porperties of utility functions, semicontinuity and convexity.

4.1 Conditional functions with respect to different σ-algebras

We consider mappings f : L0 (G)→ L0 (F), first for G ⊂ F .

Definition 4.1. A mapping f : L0 (G)→ L0 (F) is called G-stable if

f (1AX + 1AcY ) = 1Af (X) + 1Acf (Y )

for all X,Y ∈ L0 (G) and A ∈ G. We call f a G-stable conditional function.

We observe that L0 (F) is a G-conditional set, and thus, endowed with a G-conditional

topology, a conditional topological space.

Definition 4.2. A G-stable mapping f : L0 (G) → L0 (F) is called G-continuous if for

any conditional sequence (XN )N∈N(G) that converges to X with respect to the Euclidean

G-conditional topology the conditional sequence (f (XN ))N∈N(G) converges to f (X) with

respect to the Euclidean G-conditional topology.
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4 Path-dependent conditional optimization

Remark 4.3. We observe that the Euclidean F-conditional topology is finer than the

Euclidean G-conditional topology on the conditional set L0 (F).

Example 4.4. An example of such a conditional function is motivated by the utility

function from Chapter 3. This example is discussed in detail in Section 4.4. Ordinarily,

let ∆π ∈ L0 (F)d be differences of prices and ϑ ∈ L0 (G)d be trading strategies. Then,

the value V (ϑ) := ϑ∆π is a G-conditional function. If the prices are bounded, then V (·)
is a G-continuous conditional function.

Next, we consider mappings g : L0 (F)→ L0 (G) for G ⊂ F .

Definition 4.5. A mapping g : L0 (F)→ L0 (G) is called G-stable if

g (1AX + 1AcY ) = 1Ag (X) + 1Acg (Y )

for all X,Y ∈ L0 (G) and A ∈ G. We call g a G-stable conditional function.

Definition 4.6. A G-stable mapping g : L0 (F)→ L0 (G) is called continuous if for any

conditional sequence (XN )N∈N(G) that converges to X with respect to the Euclidean G-

conditional topology the conditional sequence (f (XN ))N∈N(G) converges to f (X) with

respect to the Euclidean G-conditional topology.

Example 4.7. The conditional expectation E [· | G] : L0 (F) → L0 (G) is G-stable and

G-continuous.

In Definition 4.2 and 4.5, we write limn∈N f (Xn) or limn∈N g (Xn) if the limit exists for

the G-stable conditional function f or g, respectively, and for the G-conditional sequence

(Xn)n∈N and do not name the conditional topology explicitely. It is indicated by the

stability property.

In Section 4.6, we examine G-conditional functions with respect to arbitrary conditional

topologies. For the model the properties of the conditional Euclidean topology on L0

presented in Section 4.1 are sufficient. To construct the conditional expectation with

respect to arbitrary conditional measures and arbitrary sub-σ-algebras and to present

general ideas of the time-shifts we will give an overview in Section 4.6.

4.2 Introduction to the setting

The time steps are 0, . . . , t, . . . , T . Information is given by a filtration (Ft)t∈{0,...,T},
where the initial σ-algebra F0 is trivial. Additionally, history gives information by
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observed values x0, . . . , xt−1 in R up to time t − 1, denoted by x = (x0, . . . , xt−1). In

the future, these values are random, Xs ∈ L0 (Fs) for t ≤ s ≤ T . Dependent on this

history, the agent has trading constraints, given by a conditionally compact conditional

set C @ L0 (Ft−1)d. The trading strategies are denoted by ϑt−1 ∈ C. We remark that

this conditionally compact set may also depend on the history, for simplicity, we assume

that it is constant. We want to optimize the utilities (us)t≤s≤T where each utility is

defined by

us : Rs−1 × L0 (Fs)× L0 (Fs−1)d → L0 (Fs)

(x,Xs, ϑs−1) 7→ ut (x,Xs, ϑs−1) .
(4.1)

Example 4.8. This is a dynamic version of the utility in Chapter 3 where history is

given by real endowments. We give the details in Section 4.4.

4.2.1 General construction idea

For the continuous case, we often apply the following lemma. To formalize, we introduce

the conditional set

E (F) :=

X ∈ L0 (F) |∃ a finite representationX =
∑

1≤k≤k

1Akxk,

xk ∈ R, (Ak)1≤k≤k′ is a finite partition of Ω inF , k ∈ N


as a conditional subset of L0 (F) of elementary conditional real numbers, and we call

X =
∑

1≤k≤k 1Akxk for xk ∈ R and k ∈ N a normal representation, always for a finite

partition (Ak)1≤k≤k of Ω in F .

In the sequel, we assume every function to be nonnegative. If this is not the case, we do

the proof for the positive and negative part seperately as in standard measure theory.

For the following lemma, we recall that L0 (F) as a conditional topological space is

regarded as an R-module and that R is the measurable functions with respect to the

trivial σ-algebra F0.

Lemma 4.9. Let f : R×R×L0 (F)→ L0 (F) be a mapping with the following properties.

f
(
x, y,1Aϑ+ 1Acϑ

′) = 1Af (x, y, ϑ) + 1Acf
(
x, y, ϑ′

)
for all (x, y) ∈ R2, ϑ, ϑ′ ∈ L0 (F) andA ∈ F ,

(4.2)
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that is, ϑ 7→ f (x, y, ϑ) is F-stable for fixed (x, y) ∈ R×R, and

lim
n∈N

f (xn, yn, ϑn) = f (x, y, ϑ) in L0 (F)

for all lim
n∈N

xn = x in R, lim
n∈N

yn = y in R and lim
n∈N

ϑn = ϑ in L0 (F)
(4.3)

that is, (x, y, ϑ) 7→ f (x, y, ϑ) is jointly F0 ×F0 ×F-continuous.

Further, let F : R× L0 (F)× L0 (F)→ L0 (F) be defined by

F
(
x,1Ay + 1Acy

′,1Aϑ+ 1Acϑ
′) = 1AF (x, y, ϑ) + 1AcF

(
x, y′, ϑ′

)
for allx ∈ R, y, y′ ∈ L0 (F) , ϑ, ϑ′ ∈ L0 (F) andA ∈ F

(4.4)

that is, (y, ϑ) 7→ F (x, y, ϑ) is jointly F-stable for fixed x ∈ R,

F (x, c · 1Ω, ϑ) = f (x, c, ϑ) for c ∈ R (4.5)

that is, F and f are identical on R×R× L0 (F), and

F (x, Y, ϑ) := ess lim sup
K∈N

ess lim sup
(Y n)n∈N⊂E(F)
limn∈N Y

n=Y

F (x, Y n ∧K ∨ −K,ϑ) . (4.6)

It is the unique mapping with (4.4), (4.5) and

lim
n∈N

F (xn, Y n, ϑn) = F (x, Y, ϑ) in L0 (F)

for all lim
n∈N

xn = x in R, lim
n∈N

Y n = Y in L0 (F) and lim
n∈N

ϑn = ϑ in L0 (F) ,
(4.7)

thus, the unique mapping with (4.4), (4.5) and such that (x, Y, ϑ) 7→ F (x, Y, ϑ) is jointly

F0 ×F ×F-continuous.

The proof will be given in section 4.5 and we recall that all limits are with respect to

the Euclidean conditional topology on L0 (F) or in R.

4.2.2 Utility’s and generator’s dependence on the path

We continue with the model and give the properties of the utilities and generator depen-

dent on the observed history with the notation x = (x0, . . . , xt−1) as before. We assume

that uT ≡ 0 and that we have already an optimal utility at time t that is as follows. The
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utility

ut : R
t × L0 (Ft−1)d → L0 (Ft)

(x, xt, ϑt−1) 7→ ut (x, xt, ϑt−1)
(4.8)

is a mapping that has the following properties,

ut
(
x, xt,1Aϑt−1 + 1Acϑ

′) = 1Aut (x, xt, ϑt−1) + 1Acut
(
x, xt, ϑ

′
t−1

)
for all (x, xt) ∈ Rt−1 ×R, ϑt−1, ϑ

′
t−1 ∈ L0 (Ft−1)d andA ∈ Ft−1,

(4.9)

that is, ϑ 7→ ut (x, xt, ϑ) is Ft−1-stable for all (x, xt) ∈ Rt−1 ×R, and

lim
n∈N

ut
(
xn, xnt , ϑ

n
t−1

)
= ut (x, xt, ϑt−1)

for lim
n∈N

xn = x inRt−1, lim
n∈N

xnt = xt inR and lim
n∈N

ϑnt−1 = ϑt−1 inL0 (Ft−1)d ,
(4.10)

that is, (x, xt, ϑ) 7→ ut (x, xt, ϑ) is jointly F0 ×F0 ×Ft−1-continuous. We recall that the

equation limn∈N ut
(
xn, xnt , ϑ

n
t−1

)
= ut (x, xt, ϑt−1) in (4.10) is in the L0 (Ft−1)-module

L0 (Ft).

We remark here that for an optimal utility at time t the history is known up to time

t. We know want to derive an optimal utility ut−1 at time t − 1, there, the history

is not known, thus, Xt is random. That means, in view of Lemma 4.9, regarded from

time t− 1 the utility at time t depends on the path x up to time t− 1, a random path

step Xt ∈ L0 (Ft) and the trading strategies ϑ ∈ L0 (Ft−1)d. The generator is then to

eliminate the random path step to derive the optimal utility ut−1 and its properties. An

example for that is conditional expectation in Example 4.23. The generator plays the

role of an aggregator in the theory of recursive utilities, see for example [Ski98].

Thus, with Lemma 4.9 and the assumptions (4.8), (4.9) and (4.10) on the utility ut we

construct

ũt : R
t−1 × L0 (Ft)× L0 (Ft−1)d → L0 (Ft)

(x,X, ϑ) 7→ ũt (x,X, ϑ) ,
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such that

ũt (x, xt1Ω, ϑt−1) = ut (x, xt, ϑt−1) ,

for allx ∈ Rt−1, xt ∈ R andϑt−1 ∈ L0 (Ft−1)d ,
(4.11)

ũt
(
x,1AXt + 1AcXt,1Aϑt−1 + 1Acϑt

)
= 1Aũt (x,Xt, ϑt−1) + 1Ac ũt

(
x,Xt, ϑt−1

)
for allx ∈ Rt−1, Xt, Xt ∈ L0 (Ft) , ϑt−1, ϑt−1 ∈ L0 (Ft−1)d andA ∈ Ft−1, and

(4.12)

lim
n∈N

ũt
(
xn, Xn

t , ϑ
n
t−1

)
= ũt (x,Xt, ϑt−1)

for all lim
n∈N

xn = x inRt−1, lim
n∈N

Xn
t = Xt inL0 (Ft) , lim

n∈N
ϑnt−1 = ϑt−1 inL0 (Ft−1)d .

(4.13)

Finally, the generator is defined as follows. The mapping

Gt−1 : L0 (Ft)×Rt−1 × L0 (Ft)→ L0 (Ft−1)

(u, x,X) 7→ Gt−1 (u, x,X)

is jointly Ft−1-stable in the sense that

Gt−1

(
1Au+ 1Acu

′, x,1AX + 1AcX
′) = 1AGt−1 (u, x,X) + 1AcGt−1

(
u′, x,X ′

)
for allu, u′ ∈ L0 (Ft) , x ∈ Rt−1, X,X ′ ∈ L0 (Ft) andA ∈ Ft−1

(4.14)

and it is jointly Ft−1 ×F0 ×Ft−1-continuous, that is,

lim
n∈N

Gt−1 (un, xn, Xn) = Gt−1 (u, x,X)

for all lim
n∈N

un = u inL0 (Ft−1) , lim
n∈N

xn = x, and lim
n∈N

Xn = X inL0 (Ft−1) .
(4.15)

We remark here that the generator is not defined first for known history up to time t and

then enlarged as proposed in Lemma 4.9. First, Lemma 4.9 cannot be applied technically

because of nonmatching spaces. Second, a pointwise definition of the generator does not

match known and random time steps.

Now, we discuss how the next random path step is dependent on the observed path.

Here, we assume that

Xt : R
t−1 → L0 (Ft)

x 7→ Xt (x)
(4.16)
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is continuous, that is,

lim
n∈N

Xt (xn) = Xt (x) for all lim
n∈N

xn = x. (4.17)

This is mainly motivated by the example in Section 4.4 and its mathematical applica-

tions. An enhancement of the model here would be appreciated.

We sum up some properties of utilities and generator. To that end, we define the

following auxiliary functions. The mapping

ût : R
t−1 × L0 (Ft−1)d → L0 (Rt)

(x, ϑ) 7→ ût (x, ϑ)

defined by

ût (x, ϑ) := ũt (x,Xt (x) , ϑ) (4.18)

is jointly F0 ×Ft−1-continuous, that is,

lim
n∈N

ût
(
xn, ϑnt−1

)
= ût (x, ϑ) for all lim

n∈N
xn = x and lim

n∈N
ϑnt−1 = ϑt−1 (4.19)

by (4.17) and (4.13). Futher, define the mapping

Ĝt−1 : Rt−1 × L0 (Ft−1)d → L0 (Ft−1)

(x, ϑt−1) 7→ Ĝt−1 (x, ϑt−1)

by

Ĝt−1 (x, ϑt−1) := Gt−1 (ût (x, ϑt−1) , x,X (x)) .

We examine the properties of the mapping Ĝt−1, the generator that provides the recur-

siveness of the utilities, thus,

ut−1 (x) = ess sup
ϑ∈C

Ĝt−1 (x, ϑ) .

We want to show that
(
Ĝnt−1

)
n∈N

with Ĝnt−1 (x, ϑt−1) = Ĝt−1 (xn, ϑt−1) is a conditional

sequence of conditional functions that hypoconverges. Now, let limn∈N ϑ
n
t−1 = ϑt−1. In

view of Corollary 2.31 we want to show that
(
ϑt−1 7→ Ĝnt−1 (x, ϑt−1)

)
n∈N

hypoconverges.
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4 Path-dependent conditional optimization

By definition, we observe that

Ĝt−1

(
x,1Aϑt−1 + 1Acϑ

′
t−1

)
= Gt−1

(
ût
(
x,1Aϑt−1 + 1Acϑ

′
t−1

)
, x,X (x)

)
= Gt−1

(
ũt
(
x,X (x) ,1Aϑt−1 + 1Acϑ

′
t−1

)
, x,X (x)

)
= Gt−1

(
1Aũt (x,X (x) , ϑt−1) + 1Ac ũt

(
x,X (x) , ϑ′t−1

)
, x,X (x)

)
= Gt−1

(
1Aût (x, ϑt−1) + 1Ac ût

(
x, ϑ′t−1

)
, x,X (x)

)
= 1AGt−1 (ût (x, ϑt−1) , x,X (x)) + 1AcGt−1

(
ût
(
x, ϑ′t−1

)
, x,X (x)

)
= 1AĜt−1 (x, ϑt−1) + 1AcĜt−1

(
x, ϑ′

)
for all A ∈ Ft−1 by (4.12) and (4.14). Thus, ϑt−1 7→ Ĝt−1 (x, ϑt−1) is a conditional

function.

Further, let limn∈N x
n = x and limn∈N ϑ

n
t−1 = ϑ. Then, with the definition Ĝnt−1 (x, ϑ) =

Ĝt−1 (xn, ϑ) it holds that

lim
n∈N

Ĝnt−1

(
x, ϑnt−1

)
= lim

n∈N
Ĝt−1

(
xn, ϑnt−1

)
= lim

n∈N
Gt−1

(
ũt
(
xn, X (xn) , ϑnt−1

)
, xn, X (xn)

)
= Gt−1

(
lim
n∈N

ũt
(
xn, X (xn) , ϑnt−1

)
, lim
n∈N

xn, lim
n∈N

X (xn)

)
= Gt−1

(
ũt

(
lim
n∈N

xn, lim
n∈N

X (xn) , lim
n∈N

ϑnt−1

)
, x,X

(
lim
n∈N

xn
))

= Gt−1

(
ũt

(
x,X

(
lim
n∈N

xn
)
, ϑt−1

)
, x,X (x)

)
= Gt−1 (ũt (x,X (x) , ϑt−1) , x,X (x))

by (4.15), (4.13), (4.17), limn∈N x
n = x and limn∈N ϑ

n
t−1 = ϑ. Hence, in particu-

lar, ess lim supn∈N Ĝ
n
t−1

(
x, ϑnt−1

)
≤ Gt−1 (ũt (x,X (x) , ϑt−1) , x,X (x)). Since the con-

ditional set C @ L0 (Ft−1)d is conditionally compact we can apply Corollary 2.31 and

obtain

lim
n∈N

ut−1 (xn) = lim
n∈N

ess sup
ϑ∈C

Ĝnt−1 (ϑ) = ess sup
ϑ∈C

Ĝt−1 (ϑ) = ut−1 (x) . (4.20)

Lemma 4.10. Let ut be a utility mapping given by (4.8), (4.9) and (4.10). Then,

for a conditionally compact C @ L0 (Ft−1)d, the mapping x 7→ ut−1 (x) defined by
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4 Path-dependent conditional optimization

ut−1 (x) := ess supϑ∈C Ĝt−1 (x, ϑ) is F0-continuous, that is, limn∈N ut−1 (xn) = ut−1 (x)

for limn∈N x
n = x.

Proof. These are the assumptions from Section 4.2.2 and it has been shown in (4.20).

Example 4.11. A typical generator is conditional expectation with respect to a condi-

tional measure in its generalized form as in Example 4.23 by what has been discussed

in Section 4.6.

4.3 Hypoconvergent generators and semicontinuous and

conditionally concave utilities

In order to obtain (4.20) the assumptions on generator and utilities may be relaxed, and

thus, the model will be generalized. We replace them by a semicontinuous assumption on

the utility and a Fatou type assumption on the generator in order to propose a slightly

different approach to normal integrands, as or example in [RW09]. We recall that L0

denotes the random variables with values in R ∪ {−∞}.

Again, we assume that Xt : R
t−1 → L0 (Ft) is continuous, that is

lim
n∈N

Xt (xn) = Xt (x) for all lim
n∈N

xn = x, (4.21)

again, for the R-module L0 (F).

The utility

ut : R
t−1 ×R× L0 (Ft−1)d → L0 (Ft)

(x, xt, ϑt−1) 7→ ut (x, xt, ϑt−1)
(4.22)

is a mapping that has the following properties,

ut
(
x, xt,1Aϑt−1 + 1Acϑ

′) = 1Aut (x, xt, ϑt−1) + 1Acut
(
x, xt, ϑ

′
t−1

)
for all (x, xt) ∈ Rt−1 ×R, ϑt−1, ϑ

′
t−1 ∈ C andA ∈ Ft−1,

(4.23)

that is, ϑ 7→ ut (x, xt, ϑ) is Ft−1-stable for all (x, xt), and

ess lim sup
n∈N

ut
(
xn, xnt , ϑ

n
t−1

)
≤ ut (x, xt, ϑt−1)

for lim
n∈N

xn = x inRt−1, lim
n∈N

xnt = xt inR and lim
n∈N

ϑnt−1 = ϑt−1 inL0 (Ft−1)d ,
(4.24)
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4 Path-dependent conditional optimization

thus, Ft−1-upper semicontinuous (that is, upper semicontinuous w.r.t. the conditional

Euclidean topology for the L0 (Ft−1)-module L0 (Ft)) for converging history and con-

verging trading strategies, and

ut
(
x, xt, λϑt−1 + (1− λ)ϑ′

)
≥ λut (x, xt, ϑt−1) + (1− λ)ut

(
x, xt, ϑ

′
t−1

)
for all (x, xt) ∈ Rt, ϑt−1, ϑ

′
t−1 ∈ C andλ ∈ [0, 1] ,

(4.25)

thus, conditionally concave in the trading strategies for constant history. For recursive-

ness of the utilities the aim is to construct a mapping

ut−1 : Rt−1 → L0 (Ft−1)

x 7→ ut−1 (x)
(4.26)

which is upper semicontinuous and independent of trading strategies, the control vari-

ables, at time t.

The extension ũt of ut will fullfill

ũt (x, xt, ϑt−1) = ut (x, xt, ϑt−1) ,

for allx ∈ Rt−1, Xt ∈ L0 (Ft) andϑt−1 ∈ L0 (Ft−1)d ,
(4.27)

ũt
(
x,1AXt + 1AcXt,1Aϑt−1 + 1Acϑt

)
= 1Aũt (x,Xt, ϑt−1) + 1Ac ũt

(
x,Xt, ϑt−1

)
for allx ∈ Rt−1, Xt, Xt ∈ L0 (Ft) ϑt−1, ϑt−1 ∈ L0 (Ft−1)d andA ∈ Ft−1, and

(4.28)

ess lim sup
n∈N

ũt
(
xn, Xn

t , ϑ
n
t−1

)
≤ ũt (x,Xt, ϑt−1)

for all lim
n∈N

xn = x inRt−1, lim
n∈N

Xn
t = Xt inL0 (Ft) , lim

n∈N
ϑnt−1 = ϑt−1 inL0 (Ft−1)d

(4.29)

according to the construction in Lemma 4.13 at the end of this section.

Analaguously, the mapping

ût : R
t−1 × L0 (Ft−1)d → L0 (Ft)

(x, ϑ) 7→ ût (x, ϑ)

defined by

ût (x, ϑ) := ũt (x,Xt (x) , ϑ) (4.30)
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is jointly F0 ×Ft−1-upper semicontinuous, that is,

ess lim sup
n∈N

ût
(
xn, ϑnt−1

)
≤ ût (x, ϑ)

for all lim
n∈N

xn = x inRt−1 and lim
n∈N

ϑnt−1 = ϑt−1 inL0 (Ft−1)d
(4.31)

by (4.21) and (4.29).

The generator mapping

Gt−1 : L0 (Ft)×Rt−1 × L0 (Ft)→ L0 (Ft−1)

(u, x,X) 7→ Gt−1 (u, x,X)

is jointly Ft−1-stable in the sense that

Gt−1

(
1Au+ 1Acu

′, x,1AX + 1AcX
′) = 1AGt−1 (u, x,X) + 1AcGt−1

(
u′, x,X ′

)
for allu, u′ ∈ L0 (Ft) , x ∈ Rt−1, X,X ′ ∈ L0 (Ft) andA ∈ Ft−1,

(4.32)

it is monotone for fixed history, that is,

Gt−1 (u, x,X) ≤ Gt−1

(
u′, x,X

)
foru ≤ u′ and fixedx ∈ Rt−1, X ∈ L0 (Ft) (4.33)

and it has a Fatou property for converging history, that is,

ess lim sup
n∈N

Gt−1 (un, xn, Xn) ≤ Gt−1

(
ess lim sup

n∈N
un, x,X

)
for all lim

n∈N
xn = x inRt−1 and lim

n∈N
Xn = X inL0 (Ft−1) .

(4.34)

We remark that the property (4.33) yields a time-consistency.

Again, finally, we define the mapping

Ĝt−1 : Rt−1 × L0 (Ft−1)d → L0 (Ft−1)

(x, ϑt−1) 7→ Ĝt−1 (x, ϑt−1)

by

Ĝt−1 (x, ϑt−1) := Gt−1 (ût (x, ϑt−1) , x,X (x)) .
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4 Path-dependent conditional optimization

All stable properties remain as in Section 4.2.2, thus,

Ĝt−1

(
x,1Aϑt−1 + 1Acϑ

′
t−1

)
= 1AĜt−1 (x, ϑt−1) + 1AcĜt−1

(
x, ϑ′

)
for all x ∈ Rt−1, ϑt−1, ϑ

′
t−1 ∈ L0 (Ft−1)d and A ∈ Ft−1.

Further,

ess lim sup
n∈N

Ĝnt−1

(
x, ϑnt−1

)
= ess lim sup

n∈N
Ĝt−1

(
xn, ϑnt−1

)
= ess lim sup

n∈N
Gt−1

(
ũt
(
xn, X (xn) , ϑnt−1

)
, xn, X (xn)

)
≤ Gt−1

(
ess lim sup

n∈N
ũt
(
xn, X (xn) , ϑnt−1

)
, lim
n∈N

xn, lim
n∈N

X (xn)

)
≤ Gt−1

(
ũt

(
lim
n∈N

xn, lim
n∈N

X (xn) , lim
n∈N

ϑnt−1

)
, x,X

(
lim
n∈N

xn
))

= Gt−1

(
ũt

(
x,X

(
lim
n∈N

xn
)
, ϑt−1

)
, x,X (x)

)
= Gt−1 (ũt (x,X (x) , ϑt−1) , x,X (x)) .

(4.35)

by (4.34), (4.33), 4.29, (4.17), limn∈N x
n = x and limn∈N ϑ

n
t−1 = ϑt−1.

The result is stated in the following lemma.

Lemma 4.12. Let ut be a utility mapping given by (4.22), (4.23) and (4.24). Then,

for a conditionally compact conditional set C @ L0 (Ft−1)d, the mapping x 7→ ut−1 (x)

defined by ut−1 (x) := ess supϑ∈C Ĝt−1 (x, ϑ) is upper semicontinuous for converging his-

tory, that is, similarly to the assumption (4.24), ess lim supn∈N ut−1 (xn) ≤ ut−1 (x) for

limn∈N x
n = x.

Proof. These are the assumptions presented in Section 4.3 where the result has been

proven in (4.35).

Lemma 4.13. Let f : R×R× L0 (F)→ L0 (F) be a mapping with the following prop-

erties.

f
(
x, y,1Aϑ+ 1Acϑ

′) = 1Af (x, y, ϑ) + 1Acf
(
x, y, ϑ′

)
for all (x, y) ∈ R2, ϑ, ϑ′ ∈ L0 (F) andA ∈ F ,

(4.36)

110
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that is, ϑ 7→ f (x, y, ϑ) is F-stable for fixed (x, y) ∈ R×R, and

ess lim sup
n∈N

f (xn, yn, ϑn) ≤ f (x, y, ϑ)

for all lim
n∈N

xn = x in R, lim
n∈N

yn = y in R and lim
n∈N

ϑn = ϑ in L0 (F)
(4.37)

that is, (x, y, ϑ) 7→ f (x, y, ϑ) is jointly F0 ×F0 ×F-upper semicontinuous.

Further, let F : R× L0 (F)× L0 (F)→ L0 (F) be defined by

F
(
x,1Ay + 1Acy

′,1Aϑ+ 1Acϑ
′) = 1AF (x, y, ϑ) + 1AcF

(
x, y′, ϑ′

)
for allx ∈ R, y, y′ ∈ L0 (F) , ϑ, ϑ′ ∈ L0 (F) andA ∈ F

(4.38)

that is, (y, ϑ) 7→ F (x, y, ϑ) is jointly F-stable for fixed x ∈ R,

F (x, c · 1Ω, ϑ) = f (x, c, ϑ) for c ∈ R (4.39)

that is, F and f are identical on R×R× L0 (F), and

F (x, Y, ϑ) := ess lim sup
K∈N

ess lim sup
(Y n)n∈N⊂E(F)
limn∈N Y

n=Y

F (x, Y n ∧K ∨ −K,ϑ) . (4.40)

It is the unique mapping with (4.38), (4.39) and

ess lim sup
n∈N

F (xn, Y n, ϑn) ≤ F (x, Y, ϑ)

for all lim
n∈N

xn = x in R, lim
n∈N

Y n = Y in L0 (F) and lim
n∈N

ϑn = ϑ in L0 (F) ,
(4.41)

thus, the unique mapping with (4.38), (4.39) and such that (x, Y, ϑ) 7→ F (x, Y, ϑ) is

jointly F0 ×F ×F-upper semicontinuous.

The proof is presented in Section 4.5.

4.4 Example

We return to the setting of Walras equilibrium prices from Section 3.1. In a multi-period

model, the equilibrium may be solved by considering a one period model from the initial

time to time T given the filtration (Ft)t=0,...,T of σ-algebras. Here, we propose a stepwise

maximization similar to the Dynamic Programming Principle making use of Chapter 4.
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4 Path-dependent conditional optimization

The endowments Ea
t ∈ L0 (Ft)d+ constitute the observed history. An additional endow-

ment may depend continuously on the history, for example, a constant production, that

is,

Ea
t : L0 (F1)d × . . .× L0 (Ft−1)d → L0 (Ft)d(

Ea
1, . . . , E

a
t−1

)
7→ Ea

t

((
Ea

1, . . . , E
a
t−1

)) (4.42)

is continuous, that is,

lim
n∈N

Ea
t (Ea,n) = Ea

t (Ea) for all lim
n∈N

Ea,n = Ea (4.43)

for Ea =
(
Ea

1, . . . , E
a
t−1

)
and Ea,n =

(
Ea,n

1 , . . . , Ea,n
t−1

)
. The trading strategies are

ϑt ∈ L0 (Ft)d, the ways, the endowment can be exchanged. For the notation ϑa =(
ϑa1, . . . , ϑ

a
t−1

)
and ϑa,n =

(
ϑa,n1 , . . . , ϑa,nt−1

)
, the utility

ut : L
0 (F1)d × . . .× L0 (Ft−1)d×L0 (Ft)d × L0 (F1)d × . . .× L0 (Ft)d

→ L0 (Ft)

(Ea
1, . . . , E

a
t , ϑ

a
1, . . . , ϑ

a
t ) 7→ ut (Ea

1, . . . , E
a
t , ϑ

a
1, . . . , ϑ

a
t )

(4.44)

is jointly F1× . . .×Ft−1×Ft×F1× . . .×Ft-stable, upper semicontinuous for converging

history and converging trading strategies, cf. (4.24), and conditionally concave in the

trading strategies for constant history, cf. (4.25).

The generator may be jointly F1 × . . . × Ft−1 × Ft × F1 × . . . × Ft-stable in util-

ity and trading strategies, (4.14), monotone for fixed history, (4.33) and may have

the Fatou property for converging history, (4.34). These assumptions are fullfilled in

the economy described in Chapter 3, now, in multiple period. Further, the genera-

tor may be such that a bunch of goods if either useless or useful in all times, that is,

for any fixed path and trading strategies (Et−1, Et (Et−1) , ϑt−1, ϑt (ϑt−1)), it holds that

Gt−1 (ut, Et−1, Et (Et−1) , ϑt−1, ϑt (ϑt−1)) = −∞ if and only if ut = −∞, that is if the

utility at t is proper, then also the utility at t − 1. This is, for example, the case if

Ea
t−1 + ϑat−1 + Ea

t is the bunch of goods that is traded at time t.

Now, our induction assumption is, that under all the given assumptions in Section 4.4,

there exists an equilibrium price P̂t ∈ Σt =
{
P ∈ L0 (Ft)d+ |

∑
i≤d Pi = 1

}
, that is, there

exists

ϑ̂at ∈ Da
t

(
P̂
)

=
{
Y ∈ L0 (Ft)d | Y ∈ argmaxY ∈C

{
ua (Y ) | Y ∈ Cat

(
P̂
)}}
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for Cat (P ) = domua u
{
Y ∈ L0 (Ft)d | 〈P, Y 〉 ≤ 〈P,Ea〉

}
and a conditionally compact

conditional set Ct ∈ L0 (Ft)d with
∑

a∈A ϑ̂
a
t ≥ 0.

We will show that there is an equilibrium price P̂t−1 ∈ Σt−1. As in Chapter 3, we define

vt and vt−1. Let

1Avt
(
Ea
t−1, E

a
t

(
Ea
t−1

)
, ϑat−1, ϑ

a
t

(
ϑat−1

))
:=

1Aut
(
Ea
t−1, E

a
t

(
Ea
t−1

)
, ϑat−1, ϑ

a
t

(
ϑat−1

))
if
〈
Pt (Pt−1) , ϑat

(
ϑat−1

)〉
≤ 0,

−1A∞ else,

and

1Avt−1

(
Ea
t−1, ϑ

a
t−1

)
:=

1Aut
(
Ea
t−1, ϑ

a
t−1

)
if
〈
Pt−1, ϑ

a
t−1

〉
≤ 0,

−1A∞ else.

(4.45)

All properties on utilities and generator that are applied in the sequel have been proved

in Chapters 3 and 4. In fact, the original properties that have been imposed on the

utilities directly are replaced by those of the generator.

Now, we try to find ϑ̂at−1 such that

vat−1

(
Ea, ϑ̂at−1, Pt−1

)
= ess sup

ϑat−1∈Ct−1

vat−1

(
Ea, ϑat−1, Pt−1

)
. (4.46)

In the sequel, we omit the agent in the terms, and to shorten notation, we write χC (ϑ)

which is 1 if ϑ ∈ C and −∞ else, and conclude that

ess sup
ϑat−1∈Ct−1

vt−1

(
Ea, ϑat−1, Pt−1

)
= ess sup

ϑat−1∈Ct−1

χ{〈Pt−1,ϑat−1〉≤0}
(
ϑat−1

)
ut−1

(
Ea, ϑat−1

)
= ess sup

ϑat−1∈Ct−1

χ{〈Pt−1,ϑat−1〉≤0}
(
ϑat−1

)
ess sup
ϑat∈Ct

Gt−1

(
vt
(
Ea, Ea

t (Ea) , ϑat−1, ϑ
a
t

(
ϑat−1

)
, Pt−1, Pt (Pt−1)

)
, Ea, Ea

t (Ea)
)

= ess sup
ϑat−1∈Ct−1

χ{〈Pt−1,ϑat−1〉≤0}
(
ϑat−1

)
ess sup
ϑat∈Ct

Gt−1(ut
(
Ea, Ea

t (Ea) , ϑat−1, ϑ
a
t

(
ϑat−1

))
χ{〈Pt(Pt−1),ϑat(ϑat−1)〉≤0}, E

a, Ea
t (Ea)).
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By assumption on the equilibrium price P̂t and 4.33,

= ess sup
ϑat−1∈Ct−1

χ{〈Pt−1,ϑat−1〉≤0}
(
ϑat−1

)
Gt−1

(
ut

(
Ea, Ea

t (Ea) , ϑat−1, ϑ̂
a
t

(
ϑat−1

))
χ{〈P̂t(Pt−1),ϑ̂at(ϑat−1)〉≤0}, E

a, Ea
t (Ea)

)
Since Gt−1 has the property that if it is −∞ at time t, it is −∞ at time t − 1, this is

equal to

= ess sup
ϑat−1∈Ct−1

χ{〈Pt−1,ϑat−1〉≤0}χ{〈P̂t(Pt−1),ϑ̂at(ϑat−1)〉≤0}
(
ϑat−1

)
Gt−1

(
ut

(
Ea, Ea

t (Ea) , ϑt−1, ϑ̂t (ϑt−1)
)
, Ea, Ea

t (Ea)
)

Here, the optimization problem has the same properties as in the induction assumption,

with one exception. The half plane condition for the trading strategies and the structure

of the sets Ca (Pt−1) have changed. It is now, whatever prices are at time t−1 and t, the

trading restrictions are never violated, even if prices in previous periodes have changed.

But this assumption is the classical one, also imposed when considering a one step model

from initial time to final time. Thus, the claim is proven.

4.5 Proofs of the lemmas

We give now the proof of Lemma 4.9.

Proof. First, we consider the mapping F on the conditional set R×E (F)×L0 (F). Let

Y =
∑

1≤k≤k 1Akyk =
∑

1≤k′≤k′ 1Ak′yk′ be two normal representations of Y ∈ E (F).

By the defining properties (4.4) and (4.5), 1Ak∩Ak′F (x, Y, ϑ) = 1Ak∩Ak′f (x, yk, ϑ) =

1Ak∩Ak′f (x, yk′ , ϑ) which is independent of the representation of Y since 1Ak∩Ak′yk =

1Ak∩Ak′yk′ = 1Ak∩Ak′Y . Next, we prove that F defined on R × E (F) × L0 (F) is con-

sistent with the definition in (4.6). To that end, let (x, Y, ϑ) ∈ R × E (F) × L0 (F)

with Y =
∑

1≤k≤k 1Akyk and (Y n)n∈N in E (F) with limn∈N Y
n = Y and Y n =
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∑
1≤kn≤kn 1Ankny

n
kn . Then, it holds that

Y = ess lim sup
K∈N

(
1{limn∈N Y n≥K}K + 1{−K≥limn∈N Y n} (−K)

+1{−K≤limn∈N Y
n≤K} lim

n∈N
Y n

)
= ess lim sup

K∈N
lim
n∈N

Y n ∧K ∨ −K

since Y is elementary. Now, for any choice of k, kn with 1 ≤ k ≤ k and 1 ≤ kn ≤ kn, we

have that

1Ak∩
⋂
n∈N A

n
kn

lim
n∈N

F (x, Y n, ϑ) = 1Ak∩
⋂
n∈N A

n
kn

lim
n∈N

f (x, ynkn , ϑ)

= 1Ak∩
⋂
n∈N A

n
kn
f (x, y, ϑ)

= 1Ak∩
⋂
n∈N A

n
kn
F (x, Y, ϑ) .

by assumption (4.3). Put together, by stability,

lim
m∈N

F (x, Y m, ϑ)

= lim
m∈N

ess lim sup
K∈N

ess lim sup
(Y n)n∈N⊂E(F)
limn∈N Y

n=Ym

F (x, Y n ∧K ∨ −K,ϑ)

= lim
m∈N

ess lim sup
K∈N

ess lim sup
(Y n)n∈N⊂E(F)
limn∈N Y

n=Ym

1AKn F (x,K, ϑ)

+ 1A∗nF (x, Y n, ϑ) + 1A−Kn F (x,−K,ϑ)

= lim
m∈N

ess lim sup
K∈N

1AKmF (x,K, ϑ) + 1A∗mF (x, Y m, ϑ) + 1A−Km F (x,−K,ϑ)

= F (x, Y, ϑ)

with AKn := {Y n ≥ K}, A−Kn := {−K ≥ Y n} and A∗n :=
(
AKn ∪A−Kn

)c
. Thus, F on

R× E (F)× L0 (F) fulfills (4.6).

For the general case, let δ ∈ L0 (Ft)++. Assume that limn∈N x
n = x in R, limn∈N Y

n =

Y in L0 (F) and limn∈N ϑ
n = ϑ in L0 (F). We want to show that here exists n ∈ N

such that ‖F (xn, Y n, ϑn) − F (x, Y, ϑ)‖ < δ for all n ≥ n. By definition of F , there

are sequences (Y n
k )k∈N and (Yk)k∈N in E (F) with limk∈N Y

n
k = Y n, limk∈N Yk = Y ,

limF (xn, Y n
k , ϑ

n) = F (xn, Y n, ϑn) and limF (x, Yk, ϑ) = F (x, Y, ϑ).
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4 Path-dependent conditional optimization

This implies that there exists k ∈ N, such that, by triangle inequality,

‖F (xn, Y n, ϑn)− F (x, Y, ϑ)‖

≤ ‖F (xn, Y n, ϑn)− F (xn, Y n
k , ϑ

n)‖+ ‖F (xn, Y n
k , ϑ

n)− F (x, Yk, ϑ)‖

+ ‖F (x, Yk, ϑ)− F (x, Y, ϑ)‖

≤ δ

3
+ ‖F (xn, Y n

k , ϑ
n)− F (x, Yk, ϑ)‖+

δ

3

(4.47)

for all k ≥ k. Therefore, it is left to consider the term ‖F (xn, Y n
k , ϑ

n) − F (x, Yk, ϑ)‖.
Again, for all ε ∈ L0 (F)++, there exists k

′ ∈ N such that, by triangle inequality,

‖Yk − Y n
k ‖ ≤ ‖Yk − Y ‖+ ‖Y − Y n‖+ ‖Y n − Y n

k ‖ ≤ ε (4.48)

for all k ≥ k
′
. In terms of normal representations, the remaining term in (4.47) and

inequality (4.48) are reformulated by

‖F (xn, Y n
k , ϑ

n)− F (x, Yk, ϑ)‖ =
∑
m∈N
m′∈N

1Am∩Am′‖f
(
xn, yn,km , ϑn

)
− f

(
x, ykm′ , ϑ

)
‖

(4.49)

and

∑
m∈N,m′∈N

1Am∩Am′‖y
n,k
m − ykm′‖ ≤ ε (4.50)

for Y n
k =

∑
m∈N 1An,km

yn,km and Yk =
∑

m′∈N 1Ak
m′
ykm′ . Inequality (4.50) together with

the assumptions ‖xn − x‖ < ε′ and ‖ϑn − ϑ‖ < ε′′ of the general case and (4.3) yield

that there exists n ∈ N such that

‖f
(
xn, yn,km , ϑn

)
− f

(
x, ykm′ , ϑ

)
‖ < δ

3

for all n ≥ n by Lemma 4.14 on the compact interval
[
yn,km ∧ ykm′ , y

n,k
m ∨ ykm′

]
. Hence,

with inequality (4.47), we conclude that

‖F (xn, Y n, ϑn)− F (x, Y, ϑ)‖ < δ

for all n ≥ n. For the uniqueness, let F̃ fulfill properties (4.4), (4.5) and (4.7). Then,

there exist A ∈ F , x ∈ R, Y ∈ L0 (F) and ϑ ∈ L0 (F) such that F (x, Y, ϑ) 6=
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4 Path-dependent conditional optimization

F̃ (x, Y, ϑ) on A. Now, there exist Yn ∈ E (F) such that F (x, Yn, ϑ) = F̃ (x, Yn, ϑ)

on A and limn∈N Yn = Y . Then, it holds that F (x, Y, ϑ) = limn∈N F (x, Yn, ϑ) =

limn∈N F̃ (x, Yn, ϑ) = F̃ (x, Y, ϑ) by (4.7), in contradiction to F (x, Y, ϑ) 6= F̃ (x, Y, ϑ) on

A. Thus, the lemma holds.

The following lemma is a conditional version of a characterization of P-almost sure

uniformly continuity.

Lemma 4.14. Let f : R×R× L0 (F)→ L0 (F) be a mapping with the following prop-

erties.

f
(
x, y,1Aϑ+ 1Acϑ

′) = 1Af (x, y, ϑ) + 1Acf
(
x, y, ϑ′

)
for all (x, y) ∈ R2, ϑ, ϑ′ ∈ L0 (F) andA ∈ F ,

(4.51)

that is, ϑ 7→ f (x, y, ϑ) is F-stable for fixed (x, y) ∈ R×R, and

lim
n∈N

f (xn, yn, ϑn) = f (x, y, ϑ)

for all lim
n∈N

xn = x in R, lim
n∈N

yn = y in R and lim
n∈N

ϑn = ϑ in L0 (F) .
(4.52)

Then, for a compact interval I ⊂ R and a conditionally compact conditional interval

I @ L0 (F), for all ε ∈ L0 (F)++ there exist δ ∈ R++ and δ ∈ L0 (F)++ such that

‖f (x1, y1, ϑ1)− f (x2, y2, ϑ2)‖ < ε

if |x1 − x2| < δ, |y1 − y2| < δ and ‖ϑ1 − ϑ2‖ < δ

for all x1, x2, y1, y2 ∈ I, ϑ1, ϑ2 ∈ I.

We remark here that the stricter assumption ‖ϑ1− ϑ2‖ < δ1Ω for δ ∈ R++ is a uniform

assumption, thus, a convergence assumption in (L∞, ‖·‖∞). For our purpose, the latter

is too strong and not often fulfilled.

Proof. The proof is as in classical analysis. Assume to the contrary, that there exist

sequences (xn)n∈N , (x
n)n∈N in I, (yn)n∈N , (y

n)n∈N in I and (ϑn)n∈N ,
(
ϑ
n
)
n∈N

in I such

that |xn−xn| < 1
n , |yn− yn| < 1

n , |ϑn−ϑn| < 1
n and ‖f (xn, yn, ϑn)− f (xn, yn, ϑn)‖ ≥ ε

for all n ∈ N. On the compact subset I ⊂ R, there is a cluster point x of the sequence

(xn)n∈N and a converging subsequence (xnk)k∈N with limit x. Similarly, there is a cluster

point y of the sequence (ynk)k∈N and a converging subsequence (ynl)l∈N with limit y.

On the conditionall compact conditional subset I ⊂ L0 (F), the sequence (ϑnl)l∈N has a
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4 Path-dependent conditional optimization

converging conditional subsequence with limit ϑ, in other words, there is a subsequence

(ϑnm)m∈N with limm∈N ϑ
nm = ϑ. By construction, also limm∈N x

nm = x, limm∈N y
nm =

y and limm∈N ϑ
nm

= ϑ. By assumption (4.52), it holds that limm∈N f (xnm , ynm , ϑnm) =

f (x, y, ϑ) and limm∈N f
(
xnm , ynm , ϑ

nm
)

= f (x, y, ϑ). Therefore,

ε ≤ ‖ lim
m∈N

f (xnm , ynm , ϑnm)− lim
m∈N

f
(
xnm , ynm , ϑ

nm
)
‖

≤ ‖ lim
m∈N

f (xnm , ynm , ϑnm)− f (x, y, ϑ)‖

+ ‖(f (x, y, ϑ)− lim
m∈N

f
(
xnm , ynm , ϑ

nm
)
‖ = 0,

which is a contradiction. Thus, the lemma holds.

We give the proof of Lemma 4.13.

Proof. How to deal with the limit for K →∞ has been shown in the proof of Lemma 4.9.

Thus, we may assume that Y is conditionally bounded. Let limn∈N x
n = x, limn∈N Y

n =

Y and limn∈N ϑ
n = ϑ. We want to show that

ess lim sup
n∈N

F (xn, Y n, ϑn) ≤ F (x, Y, ϑ) .

By definition of the essential supremum, there exists a sequence
(
xn, Y

n
, ϑ

n
)
n∈N

such

that

ess lim sup
n∈N

F (xn, Y n, ϑn) = lim
n∈N

F
(
xn, Y

n
, ϑ

n
)
.

Further, by definition of F , there exists a sequence
(
Y
n
kn

)
kn∈N in E (F) such that

ess lim sup
n∈N

F (xn, Y n, ϑn) = lim
n∈N

F
(
xn, Y

n
, ϑ

n
)

= lim
n∈N

lim
kn∈N

F
(
xn, Y

n
kn , ϑ

n
)
.

We make use of the proof of Lemma 4.9. Therefore, we may choose a subsequence(
x̃n, Ỹ n, ϑ̃n

)
n∈N

of
(
xn, Y

n
kn , ϑ

n
)
n∈N

such that limn∈N x̃
n = x, limn∈N Ỹ

n = Y for

Ỹ n ∈ E (F), limn∈N ϑ̃
n = ϑ, F

(
x̃n, Ỹ n, ϑ̃n

)
≤ F

(
x̃n
′
, Ỹ n′ , ϑ̃n

′
)

for n ≤ n′ and

ess lim supn∈N F (xn, Y n, ϑn) = limn∈N F
(
x̃n, Ỹ n, ϑ̃n

)
. Since Ỹ n ∈ E (F), we write

Ỹ n =
∑

mn≤mn 1Ãnmn
ỹnmn for a partition

(
Ãnmn

)
mn≤mn

of Ω and ỹnmn ∈ R, mn ≤ mn.

We consider the joint partition
(⋂

n∈N Ã
n
m̂n
| m̂n ∈ {1, . . . ,mn} , n ∈ N

)
on Ω which is
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countable by definition and therefore can be denoted by
(
Ãñ

)
ñ∈N

. Since by construction

limn∈N Ỹ
n = Y we observe that the sequence

(∑
ñ≤ñ′ 1Ãñ ỹñ

)
ñ′∈N

is in E (F) and its

conditional limit is Y where the indexing for ỹ and Ã are corresponding, thus, ỹñ = ỹnmn
whenever Ãñ = Ãnmn .

On
⋂
n∈NA

n
m̃n

for fixed m̃n ≤ mn, we observe that

1Ãnmn
ess lim sup

n∈N
F (xn, Y n, ϑn) = 1Ãnm̃n

lim
n∈N

F
(
x̃n, Ỹ n, ϑ̃n

)
= 1Ãnmn

lim
n∈N

f
(
x̃nmn , ỹ

n
mn , ϑ̃

n
)

= 1Ãnmn
lim sup
n∈N

f
(
x̃nmn , ỹ

n
mn , ϑ̃

n
)

≤ 1Ãnmnf
(
x, ynmn

)
= F

(
x,1Ãnmn

ynmn

)
(4.53)

since
(
x̃n, Ỹ n, ϑ̃n

)
n∈N

has been chosen such that F
(
x̃n, Ỹ n, ϑ̃n

)
≤ F

(
x̃n
′
, Ỹ n′ ϑ̃n

′
)

for

n ≤ n′, by 4.37 and limn∈N x
n = x and for limñ′∈N

(∑
ñ≤ñ′ 1Ãñ ỹñ

)
= Y and limn∈N ϑ

n =

ϑ. Thus, since
(
Ãñ

)
ñ∈N

is a partition of Ω, in (4.53), we consider the conditional union

on all Ãñ, ñ ∈ N. Hence,

ess lim sup
n∈N

F (xn, Y n, ϑn) =
∑
ñ∈N

1Ãñ ess lim sup
n∈N

F (xn, Y n, ϑn)

≤
∑
ñ∈N

1ÃñF
(
x,1Ãñyñ, ϑ

)
≤ F (x, Y, ϑ)

by the very definition of F which shows the claim.

4.6 Conditional topology conditioned to a sub-σ-algebra

Finally, we give some results for conditional topological spaces with respect to different

sigma-algebras.

Let X be a conditional set with respect to the σ-algebra F and T a conditional topology

on X. Let G ⊂ F be a sub-σ-algebra. We want to consider X as a conditional set

with respect to G. Then, the conditional topology T on (X,F) restricted to G will be a

G-conditional topology as a direct consequence of the following definition.

Definition 4.15. Let C ∈ T be conditionally open. It lives on AC ∈ F . Define A∗C :=

119



4 Path-dependent conditional optimization

ess sup {A ∈ G | A ⊂ AC}. Then, C∗ := {X ∈ C | X lives onA∗C and isG-measurable} is a

conditional subset of (X,G). Further, the family T|G := {C∗ | C ∈ T} is a conditional

topology on (X,G) and called the conditional topology T restricted to the sub-σ-algebra

G.

Example 4.16. The conditional Euclidean topology on L0 (F) restricted to G is the

G-conditional Euclidean topology by construction.

Now, let X be a conditional set with respect to the σ-algebra F . Let G ⊂ F be a

sub-σ-algebra. Let T be a conditional topology on the conditional set X with respect to

G.

Definition 4.17. The smallest conditional σ-algebra with respect to F that contains

all σF (C) for C ∈ T is a conditional topology on (X,F) and is called the F-conditional

topology generated by T and denoted by σF (T).

Example 4.18. The G-conditional Euclidean topology on L0 (F) generates the F-

conditional Euclidean topology on L0 (F) by construction.

Remark 4.19. We remark that (σF (TG)) |G = TG and σF (TF |G) = TF for a F-

conditional topology TF on X and G ⊂ F . The latter property is the reason why we

do not consider conditional expectation instead of a conditional topology restricted to

a sub-σ-algebra since it is not reversible. Indeed, let Y be F-measurable, but not G-

measurable. For simplicity, let G be trivial. The L0 (F)-open conditional set {Y }@ is not

reproduced when considering the F-conditional Euclidean topology, since the σF -stable

hull of
{
E [X | G] | X ∈ {Y }@

}
= L0 (G) is L0 (F) 6= {Y }@.

Next, we give an example of a convergence property of conditional sequences with respect

to these different σ-algebras.

Example 4.20. Let Ω = {ω1, ω2, ω3}, F = 2Ω and G = {∅, {ω1, ω2} , {ω3} ,Ω}. The

conditional balls Bε (1ω1) for all ε ∈ L0 (F)++ which lives on A with ε < 1 for all A ∈ F
form an F-conditional topology T on L0 (F). Now, by definition, T|G consists of the

conditional balls (−ε′, ε′) living on {ω3} for ε ∈ R++. If the restriction ε < 1 is omitted,

we obtain the conditional topology T′ on L0 (F), an enlargement of T, then T′|G consists

of the conditional balls (−ε′, ε′)1ω3 living on A for ε ∈ R++ and A ∈ G.

Next, the consider an example how convergence with respect to the conditional topologies

is transmitted. The conditional sequence (XN )N∈(N,F) defined by XN :=
(
1− 1

N

)
1ω1 +

1
N 1{ω2,ω3} converges to X = 1ω1 in T and T′. If we consider the G-measurable elements
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4 Path-dependent conditional optimization

of the conditional sequence YN = 1
N 1ω3 we may examine convergence with respect to

the conditional topologies T|G with limit Y = 0 and T′|G with limit Y ′ = 0 living only

on {ω3}.

Remark 4.21. Let G ⊂ F be a sub-σ-algebra and let (XN )N∈N(F) be a conditional

sequence in L0 (F) that converges to X ∈ L0 (F) with respect to the Euclidean topology

T. Then, the conditional sequence (XN )N∈N(G) converges to X on A∗ with respect to T|G
on A∗ ∈ G where A∗ = ess sup {A ∈ G | X lives onA and isG ∩A-measurable}. If XN is

additionally G-measurable, the conditional sequence converges in L0 (G) with respect to

the conditional topology T|G, and the limit is X if it is G-measurable, too. Indeed, since

the conditional sequence (XN )N∈N(F) converges to X in T, for any ε ∈ L0(F)++ there

is N ∈ N(F) such that ‖XN − X‖ < ε for all N ≥ N . Now, by definition of T|G, a

conditional ball Bε (Y ) for ε ∈ L0 (F)++ and Y ∈ L0 (F) is mapped to Bε (Y ) @ L0 (G)

and lives on A∗ε ∩ A∗Y . Therefore, we show that (XN )N∈N(G) converges to X on A∗X .

For any ε′ ∈ L0(G)++, the conditional ball Bε′ (X) is mapped to the conditional ball

Bε′ (X) on A∗X , thus, it holds that XN ∈ Bε
′
(X) on A∗X for all N ≥ N since XN is

G-measurable. That is the claim, and for the second part, we observe that X lives on

A∗X if X is G-measurable.

Conversely, let (XN )N∈N(G) be a conditional sequence in L0 (G) that converges to X

with respect to the Euclidean topology T. Then, the conditional sequence (XN )N∈N(F)

in L0 (F) converges to X with respect to the Euclidean topology σF (T) which is just

a finer stability property. Indeed, for any conditionally open O @ L0 (F) that is the

F-σ-stable hull of some O′ ∈ T, all XN ∈ O′ with N ∈ N (G) belong to O, thus, also

for N ∈ N (F). Further, also by definition, for A ∈ F , XN ∈ O on A as well as

XN ∈ O u O∗ for all N ≥ N ∨ N∗ if XN ∈ O′ for N ≥ N and XN ∈ O∗ for N ≥ N
′
.

Thus, the conditional sequence (XN )N∈N(F) converges with respect to the generator of

σF (T).

Summing up, it is important to consider the corresponding conditional topology when

considering the limit of a conditional sequence. Thus, we give the following notation.

Definition 4.22. Let f : L0 (G)→ L0 (F) be a G-stable conditional function for G ⊂ F .

Let (XN )N∈N(G) be a conditional sequence in L0 (G). Then, the convergence of the

G-conditional sequence f (XN )N∈N(G) ist considered with respect to the conditional

euclidean topology T|G where T is the conditional topology on L0 (F). We write

limn∈N f (Xn) if the limit exists for the G-conditional sequence (Xn)n∈N and do not

name the conditional topology explicitely if it is clear.
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4 Path-dependent conditional optimization

Let g : L0 (F)→ L0 (G) be a G-stable conditional function for G ⊂ F . Let (XN )N∈N(F)

be a conditional sequence in L0 (F). If we want to consider the convergence of the G-

conditional sequence f (XN )N∈N(G) we only may assume that the G-conditional sequence

(XN )N∈N(G) converges with respect to the conditional euclidean topology T|G where T

is the conditional topology on L0 (F).

We remark here, that this definition will often be applied for the identity. Also, any

other property in terms of conditionally open conditional sets is handled the same way.

If stability in the conditional set is with respect to a different σ-algebra we always

understand the property as given here.

Example 4.23. [Conditional expectation with respect to a conditional measure] From

Section 1.2, we can define integrals with respect to a conditional measure µ : F→ L0 (F)+

where F is a conditional σ-algebra in L0 (F). We extend this definition to the space L0 (G)

for G ⊂ F , thus, a conditional expectation is defined for an arbitrary sub-conditional-

σ-algebra with respect to an underlying sub-σ-algebra. For a conditional sub-σ-algebra

with respect to the same σ-algebra, we refer to Section 1.2. Thus, it suffices to consider

the setup as in Definition 4.22. So, let G be a conditional σ-algebra in L0 (G) defined

by F|G. Then, the conditional measure µ is projected such that µG (C) = µ (σF (C)) for

µG : G → L0 (G)+, but, µG is only G-stable, and hence, the conditional integral with

respect to µG .

Further, for the definition of the integral with respect to µG , let f : L0 (F)→ L0 (F) be a

µ-integrable conditional function. Then, the G-conditional function g : L0 (G) → L0 (G)

is called the conditional expectation of f with respect to G if
∫
gχCdµG =

∫
fχσF (C)dµ

for all C ∈ G and it is denoted by Eµ [f | G]. To show that such a mapping g exists

remark that by definition of µG , for indicator functions, then step functions, and by

monotone convergence, the equality holds for fositive conditional functions. Considering

positive and negative part yields the claim.
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Concluding remarks and discussion

Conditional theory and namely conditional variational analysis provide a large toolkit

of methods for optimization problems. Compared to classical variational analysis with

random sets and measurable selection there are the following remarks.

If we fix an underlying probability space for the conditional sets there is no need of

topological assumptions such as closed-valued mappings or Polish spaces. Integrability

of the utility is also not presumed.

These rather technical assumptions are replaced by stability conditions which usually

can be verified easily. Furthermore, conditional variational analysis also works in infinite

dimensional spaces, further examples are given in [JKZ18].

Further, the optimization of the utility has mainly been driven by assumptions on the

utility coming from the Walras setting in an economy driven by offer and demand. We

may apply this methodology to risk averse agents, or, just simple examples such as

u (x, Y, t) = 1 − e−αxE[Y |Ft]T−tT where Y is some allocation as in [CHKP16] and αx is a

scalar depending on the history x.

The price dependencies in multiple periods in the Walras setting are not clear cut. Other

assumptions on the utility such as translation invariance may allow to control the prices.

At any case, the path-dependency allows for a wider class of utility functions that takes

history in count.
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