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Abstract: Total Internal Reflection Microscopy (TIRM) is a sensitive
non-invasive technique to measure the interaction potentials between a
colloidal particle and a wall with femtonewton resolution. The equilibrium
distribution of the particle-wall separation distance z is sampled monitoring
the intensity I scattered by the Brownian particle under evanescent illumi-
nation. Central to the data analysis is the knowledge of the relation between
I and the corresponding z, which typically must be known a priori. This
poses considerable constraints to the experimental conditions where TIRM
can be applied (short penetration depth of the evanescent wave, transparent
surfaces). Here, we introduce a method to experimentally determine I(z)
by relying only on the distance-dependent particle-wall hydrodynamic
interactions. We demonstrate that this method largely extends the range of
conditions accessible with TIRM, and even allows measurements on highly
reflecting gold surfaces where multiple reflections lead to a complex I(z).

OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (120.5820) Scattering
measurements; (180.0180) Microscopy; (260.6970) Total internal reflection; (240.0240) Optics
at surfaces; (240.6690) Surface waves.
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1. Introduction

Total Internal Reflection Microscopy (TIRM) [1, 2] is a fairly new technique to optically mea-
sure the interactions between a single colloidal particle and a surface using evanescent light
scattering. The distribution of the separation distances sampled by the particle’s Brownian mo-
tion is used to obtain the potential energy profile U(z) of the particle-surface interactions with
sub-kBT resolution, where kBT is the thermal energy. Amongst various techniques available



to probe the mechanical properties of microsystems, the strength of TIRM lies in its sensitiv-
ity to very weak interactions. Atomic Force Microscopy (AFM) [3, 4] requires a macroscopic
cantilever as a probe and is typically limited to forces down to several piconewton (10−12N);
the sensitivity of Photonic Force Microscopy (PFM) [5–7] can even reach a few femtonew-
tons (10−15N), but this method is usually applied to bulk measurements far from any surface.
TIRM, instead, can measure forces with femtonewton resolution acting on a particle near a
surface. Over the last years, TIRM has been successfully applied to study electrostatic [8, 9],
van der Waals [10], depletion [11–14], magnetic [15], and, rather recently, critical Casimir [16]
forces.
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Fig. 1. Total Internal Reflection Microscopy (TIRM). (a) Schematic of a typical TIRM
setup: a Brownian particle moves in the evanescent electromagnetic field generated by to-
tal internal reflection of a laser beam; its scattering is collected by an objective lens; and
the scattering intensity is recorded using a photomultiplier (PMT). (b) Typical experimental
scattering intensity time-series (polystyrene particle in water, R = 1.45μm). (c) Exponen-
tial intensity-distance relation (β = 120nm). (d) Particle position distribution (acquisition
time 1200s, sampling rate 500Hz). (e) Experimental (dots) and theoretical (line) potential
obtained from the position distribution using the Boltzmann factor.

A schematic sketch of a typical TIRM setup is presented in Fig. 1(a). To track the Brownian
trajectory of a spherical colloidal particle diffusing near a wall, an evanescent field is created at
the substrate-liquid interface. The scattered light is collected with a microscope objective and
recorded with a photomultiplier connected to a data acquisition system. Figure 1(b) shows a
typical example of an experimentally measured intensity time-series It of a polystyrene particle
with radius R = 1.45μm in water.
Due to the evanescent illumination, the intensity of the light scattered by the particle is quite

sensitive to the particle-wall distance. If the corresponding intensity-distance relation I(z) is
known (and monotonic), the vertical component of the particles trajectory zt can be deduced
from It . To obtain I(z), it is in principle required to solve a rather complex Mie scattering
problem, i.e. the scattering of a micron-sized colloidal particle under evanescent illumination
close to a surface [17, 18], where multiple reflections between the particle and the substrate



and Mie resonances must be accounted for [19–22]. When such effects can be neglected, the
scattering intensity is proportional to the evanescent field intensity and, since the latter decays
exponentially, TIRM data are typically analyzed using a purely exponential I(z) = I0e−z/β [1,

2, 17, 18, 23] [Fig. 1(c)], where β = λ/4π
√

n2s sin2 θ −n2m is the evanescent field penetration
depth, λ the incident light wavelength, ns the substrate refractive index, nm the liquid medium
refractive index, and θ the incidence angle, which must be larger than the critical angle θc =
arcsin(nm/ns). I0 is the scattering intensity at the wall, which can be determined e.g. using a
hydrodynamic method proposed in Ref. [24].
From the obtained zt the particle-wall interaction potential U(z) is easily derived by ap-

plying the Boltzmann factor U(z) = −kBT ln p(z) to the calculated position distribution p(z)
[Fig. 1(d), 1(e)]. For an electrically charged dielectric particle suspended in a solvent, the in-
teraction potential typically corresponds toU(z) = Bexp(−κz)+[ 43πR3(ρp−ρm)g−Fs]z. The
first term is due to double layer forces with κ−1 the Debye length and B a prefactor depending
on the surface charge densities of the particle and the wall [1, 2, 9]. The second term describes
the effective gravitational contributions with ρp and ρm the particle and solvent density and g
the gravitational acceleration constant; Fs takes into account additional optical forces, which
may result from a vertically incident laser beam often employed as a two-dimensional optical
trap to reduce the lateral motion of the particle [25]. Depending on the experimental conditions,
additional interactions, such as depletion or van der Waals forces, may arise.
Despite the broad range of phenomena that have successfully been addressed with TIRM,

most studies have been carried out with small penetration depths (at most β ≈ 100nm), and
have therefore been limited to rather small particle-substrate distances z. In addition, no TIRM
studies on highly reflecting walls, e.g. gold surfaces, have been reported, although such surfaces
are interesting since they can support surface plasmons enhancing the evanescent field [26]
and the optical near-field radiation forces [27–29]. Furthermore, gold coatings can be easily
functionalized [30], which would allow to apply TIRM to e.g. biological systems. The reason
for these limitations is the aforementioned problem to obtain a reliable I(z) relationship under
these conditions. For example, it has been demonstrated that large penetration depths (e.g.
above ≈ 200nm in Ref. [31]) increase the multiple optical reflections between the particle and
the wall, which in turn leads to a non-exponential I(z) [21, 31]. Experiments combining TIRM
and AFM found deviations from simple exponential behaviour very close to the wall even
for shorter penetration depths [32]. In principle, such effects can be included into elaborate
scattering models, however, this requires precise knowledge of the system properties and, in
particular, of the refractive indices of particle, wall, and liquid medium [31]. Since the latter
are prone to significant uncertainties (in particular for the colloidal particles), the application of
TIRM under such conditions remains inaccurate.
Here, we introduce a method to experimentally determine I(z) by making solely use of the

experimentally acquired It and of the distance-dependent hydrodynamic interactions between
the particle and the wall. In particular, no knowledge about the shape of the potential U(z) is
required. We demonstrate the capability of this method by experiments and simulations, and we
also apply it to experimental conditions with long penetration depths (β = 720nm) and even
with highly reflective gold surfaces.

2. Theory

2.1. Diffusion coefficient and skewness of Brownian motion near a wall

Colloidal particles immersed in a solvent undergo Brownian motion due to collisions with sol-
vent molecules. This erratic motion leads to particle diffusion with the Stokes-Einstein diffusion
coefficient DSE = kBT/6πηR, where η is the shear viscosity of the liquid. It is well known that
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Fig. 2. Vertical diffusion coefficient D⊥(z) near a wall [Eq. (1)].

this bulk diffusion coefficient decreases close to a wall due to hydrodynamic interactions. From
the solution of the creeping flow equations for a spherical particle in motion near a wall assum-
ing nonslip boundary conditions and negligible inertial effects, one obtains for the diffusion
coefficient in the vertical direction [33],

D⊥(z) =
DSE

l(z)
, (1)

where l(z) = 4
3 sinh(α(z))∑∞

n=1
n(n+1)

(2n−1)(2n+3)

[
2sinh((2n+1)α(z))+(2n+1)sinh(2α(z))
4sinh2 ((n+0.5)α(z))−(2n+1)2 sinh2 (α(z))

−1
]
and

α(z) = cosh−1
(
1+ z

R

)
. As shown in Fig. 2, D⊥ first increases with z approaching the

corresponding bulk value at a distance of several particle radii away from the wall.
Experimentally, the diffusion coefficient can be obtained from the mean square displacement

(MSD) calculated from a particle trajectory. For the z-component this reads 〈(zt+Δt − zt)2〉 =
2DSEΔt, where 〈...〉 indicates average over time t. To account for a z-dependent diffusion coef-
ficient close to a wall, one has to calculate the conditional MSD given that the particle is at time
t at position z, i.e. 〈(zt+Δt − zt)2 | zt = z〉 = 2D⊥(z)Δt where the equality is valid for Δt → 0;
in such limit, this expression is only determined by the particle diffusion even if the particle is
exposed to an external potential U(z). From this follows that D⊥(z) can be directly obtained
from the particle’s trajectory

D⊥(z) = lim
Δt→0

1
2Δt

〈
(zt+Δt − zt)2 | zt = z

〉
. (2)

Equation (2) was employed already by several groups [34, 35] to validate Eq. (1).
The distribution of particle displacements h(z;z0,Δt) around a given distance z0 converges to

a gaussian for Δt → 0 and therefore its skewness – i.e. the normalized third central moment –
converges to zero. Accordingly,

S(z) ≡ lim
Δt→0

1
Δt2

〈(
zt+Δt − zt −M(z,Δt)√

2D⊥(z)

)3
| zt = z

〉
= 0, (3)

where M(z,Δt) = 〈zt+Δt − zt | zt = z〉 = argẑmax h(ẑ;z,Δt), where argẑmax indicates the argu-
ment that maximize the given function.

2.2. Mean square displacement and skewness of the scattering intensity

In a TIRM experiment, h(z;z0,Δt) is translated into a corresponding intensity distribution
h(I; I0,Δt) around intensity I0 = I(z0), whose shape strongly depends on I(z). In Fig. 3 we



demonstrate how a particle displacement distribution h(z:zo, tlt), which is gaussian for small 
tlf. translates into the corresponding scattered intensity distribution h(I:Io, tlf) for an arbitraty 
non-exponential I(z) dependence. In the linear regions ofl(z) . the corresponding h(I:Io , tlf) are 
also gaussian with the half-width detemiined by the slope of the I (z) curve. In the non-linear 
part of I(z), however, a non-gaussian intensity liistogram with fuiite skewness is obtained. 

Fig. 3. Relation between position distributions and intensity distributions. Brownian diffu­
sion of a particle arotmd a point is synunetric, leading for small tJ.t to a gaussian distribu­
tion h(z;zo,& ) (bottom). According to J(z) this leads to the scattered intensity histogrruus 
h(I ;Io ,& ) (left): in the linear region of J (z), h(I ;Io ,& ) is also gaussian with the width 
depending on I' (Eq. (4)]; in the nonlineru· region of J(z) (central histogrant), h(I:Io ,tlt) 
deviates from a gaussian and has a finite skewness depending on I'' [Eq. (5)]. 

In the following we calculate the MSD and the skewness of h(I;Io ,tlf) for an arbitrruy I(z), 
which we assume to be a continuous function with well defined fu·st and second derivates I' 
and I'' . In the vicinity of zo, I (z) can be therefore expanded in a Taylor series I (z) = I (zo) + 
! Czo)(z - zo) + tl''(zo)(z - zof for z ~ zo, where I' = ~ and J'' = ~·The MSD of h(I;Io, tlf) 
IS 

(4) 

where ( {.ht;t - It )2 I It = I ) = I12 ( (zt+t;t - Zt )2 I It = I ) for tlf ~ 0 and Eq. (2) has been used. 
The skewness of h(I ;Io, tlt) is 

S(I) = lim - 1 ((ft+t;t -It -M(I, tlf) )
3

II1 =I)=~J''(z) · J 2D (z). (5) 
t;t_.o tl/2 J MSD(I) 2 II'(z) l j_ 

with M(I,tlf) argj maxh(i:I,tlf) and ((It+t;t - ft - M(I ,tlt)?I It = I ) 
I'3 ((zt+t;t - Zt -M(z, tlf)) 3 i z1 = z)+ ~I12I'' ((zr+t;t - Zt -M(z, tlt ))4 1 zr = z) for tlf ~ 0 
where the first tem1 is null because of Eq. (3), and the second term is calculated using the 
properties of the momenta of a gaussian distribution ( ( ... )4) = 3 ( ( ... )2)

2
. 



In Fig. 4 we applied Eqs. (4) and (5) to the intensity time-series corresponding to a
particle trajectory simulated using a Langevin difference equation assuming various I(z)
[Fig. 4(a), 4(c), 4(e)]. The solid lines in Fig. 4(b), 4(d), 4(f) show the theoretical MSD(I)
(black) and S(I) (red) and the dots the ones obtained from the simulations. When I(z) is lin-
ear [Fig. 4(a)], MSD(I) is proportional to Eq. (1) and S(I) vanishes [Fig. 4(b)]. When I(z) is
exponential [Fig. 4(c)] or a sinusoidally modulated exponential [Fig. 4(e)], MSD(I) is not pro-
portional to Eq. (1) and large values of the skewness occur as shown in Figs. 4(d), 4(f). Small
deviations between the theoretical curves and the numerical data can be observed for intensities
where the particle drift becomes large in comparison to the time-step (Δt = 2ms); in our case
this corresponds to a slope of the potential of about 1 pN/μm, which is close to the upper force
limit of typical TIRM measurements. If necessary such deviations can be reduced employing
shorter time-steps.
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Fig. 4. Various intensity-distance relations and their effect on MSD(I) (black) and skew-
ness S(I) (red). Both theoretical values (solid lines) and the results from the analysis of
numerically simulated data (dots) using Eq. (4) and Eq. (5) are presented (R = 1.45μm,
ρp = 1.053g/cm3, samples 106, frequency 100Hz). (a)-(b) Linear I(z). (c)-(d) Exponen-
tial I(z). (e)-(f) Exponential I(z) modulated by a sinusoidal function.

2.3. Obtaining I(z) from It

The correct I(z) satisfies the conditions{
MSD(I(z)) = I′2(z) ·2D⊥(z)
S(I(z)) = 9

2
I′′(z)
|I′(z)| ·

√
2D⊥(z)

, (6)

where MSD(I) and S(I) are calculated from an experimental It . Thus, the problem of deter-
mining I(z) can be regarded as a functional optimization problem, where Eqs. (6) have to be
fulfilled.



3. Analysis workflow

Here, we present a concrete analysis workflow to obtain zt from the experimental It by finding
the I(z) that satisfies Eqs. (6). To do so, we will construct a series of approximations I(i)(z)
indexed by i converging to I(z).
(1) As first guess, take I(0)(z) = I0 exp(−z/β )+bs, where β , I0 and bs are parameters chosen

to optimize Eqs. (6). Often some initial estimates are available from the experimental condi-
tions: β can be taken as the evanescent field penetration depth, I0 as the scattering intensity at
the wall, and bs as the background scattering in the absence of the Brownian particle. While β
is typically well known, I0 and bs are prone to large experimental systematic errors and uncer-
tainties.
(2) Take I(1)(z) = I(0)(z)[1−G(I(0)(z),μ(1),σ (1),A(1))], where G(x,μ,σ ,A) = Aexp(−(x−

μ)2/σ2) is a gaussian, and the parameters μ(1), σ (1), and A(1) optimize Eqs. (6). Gaussian
functions were chosen because they have smooth derivatives and quickly tend to zero at infinite.
Notice that the choice of a Gaussian is unessential for the working of the algorithm.
(3) Reiterate step (2), substituting I(0) with I(i) and I(1) with I(i+1), until Eqs. (6) are satisfied

within the required precision.
(4) Invert I(i+1)(z), i.e. numerically construct z(i+1)(I).
(5) Take zt = z(i+1)(It).

4. Experimental case studies

4.1. Validation of the technique

We test our approach on experimental data (polystyrene particle with R = 1.45μm near a glass-
water interface kept in place by a vertically incident laser beam [25]) for which the exponential
I(z) is justified (β = 120nm, λ = 658nm) [31]. As illustrated in Fig. 5(a), there is indeed
agreement between the measured (dots) and theoretical potential (solid line). In the inset, the
measured diffusion coefficient (black dots) agrees with Eq. (2) (black solid line) and the skew-
ness (red dots) is negligible (small deviations in the region where the potential is steepest are
due to the finite time-step). The criteria for I(z) in Eqs. (6) are already fulfilled after I0 and bs
have been optimized in the first step of the analysis workflow in the previous section. As shown
in Fig. 5(b), the experimental MSD(I) (black dots) and skewness S(I) (red dots) fit Eqs. (4) and
(5) (solid lines).

4.2. TIRM with large penetration depth

We now apply our technique under conditions where an exponential I(z) is not valid, i.e. for
large penetration depth as mentioned above. Figure 6 shows the potential obtained for the same
particle as in Fig. 5 but for a penetration depth (β = 720nm). Note, that compared to Fig. 5 the
potential extends over a much larger distance range since the particle’s motion can be tracked
from hundreds of nanometers to microns. The green data points show the faulty interaction
potential that is obtained when assuming an exponential I(z). Since the only difference is in
the illumination, the same potential as in Fig. 5 should be retrieved [solid line in Fig. 6(a)].
However, applying an exponential I(z) [green line in Fig. 6(b)] wiggles appear in the potential
[green dots in Fig. 6(a)]. Their origin is due to multiple reflections between the particle and
the wall as discussed in detail in [21]. The correct I(z) [black line in Fig. 6(b)] is obtained
with the algorithm proposed in the previous section: after 9 iterations the conditions in Eqs. (6)
appear reasonably satisfied, as shown in Fig. 6(c). With this I(z), we reconstructed the potential
represented by the black dots in Fig. 6(a), in good agreement with the one in Fig. 5. It should
be noticed that, even though the deviations of the correct I(z) from an exponential function are
quite small, this is enough to significantly alter the measurement of the potential. This again
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Fig. 5. TIRM with exponential intensity-distance relation. (a) The experimental (dots) and 
theoretical (solid line) potential. Inset: the diffusion coefficient on the position data (black 
dots) fits well Eq. (1) (black solid line), while the absolute value of the Bro\ovnian motion 
skewness S(z) is small (red dots). (b) Experimental MSD(I) (black dots) and skewness 
S(I ) (red dots) for a scattering intensity tin1e-series (polystyrene particle, R = 1.45 Jlm, 
Pp = 1.053g / cm3, np = 1.59 suspended in water nm = 1.33 with 300,u.MNaCI background 
electrolyte. IC- l = 17 nm. near a glass swface n5 = 1.52. acquisition time 1800s, sampling 
frequency 500Hz) calculated using Eq. (4) and Eq. (5) . Given the shott penett-ation depth 
(/3 = 120nm), the theoretical MSD(I) (black solid line) and S(J) (red solid line) for an 
exponential I (z) fit d1e experin1ental ones and d1e conditions in Eqs. ( 6) are fulfilled. 

demonstrates the importance of obtaining the conect I (z) for the analysis ofTIRM experiments. 

4. 3. TIRM in f ront of a reflective swface 

To demonstrate that our method is capable of coiTecting even more severe optical distortions, we 
perfonned measurements in front of a reflecting swface (20 nm gold-layer. reflectivity ~ 60%. 
{3 = 244mn). The experimental conditions are similar to the previous experiments. Only the salt 
concentration was lowered to avoid sticking of the particle to the gold smface due to van der 
Waals forces, leading to a larger electrostatic particle-smface repulsion, and the optical trap was 
not used. Using an exponential I(z) [green line in Fig. 7(b )], we obtain the potential represented 
by the green dots in Fig. 7(a), which clearly features unphysical artifacts, e.g. spurious potential 
minima. After 27 iterations of the data analysis algorithm, the black I(z) in Fig. 7(b) is obtained, 
which reasonably satisfies the criteria in Eqs. (6) [Fig. 7(c)]. The reconstmcted potential [black 
dots in Fig. 7(a)] fits well to theoretical predictions (solid line); in particular the w1physical 
minima disappear. 

5. Conclusions & Outlook 

TIRM is a technique which allows one to measure the interaction potentials between a colloidal 
patticle and a wall with femtonewton resolution. So fat·, its applicability has been linlited by the 
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Fig. 6. TIRM with large penetJ:ation depth. (a) The experimental potential (black dots) ob­
tained using the fitted intensity-distance relation and the theoretical one (black solid line). 
The green dots represent the faulty potential obtained using the exponential J (z). (b) The 
fitted I ( z) (black line) and the exponential one (green line) con·esponding to the penefl·ation 
depth f3 = Tl.Onm. (c) Experimental intensity MSD(J ) (black dots) and skewness S(J) (red 
dots) for a scattering intensity time-series (same particle and acquisition parameters as in 
Fig. 5) calculated using Eq. (4) and Eq. (5). Due to the large penetration depth. the J (z) 
diverges fi·om an exponential; the theoretical MSD(J) (black solid line) and S(J) (red solid 
line) co1Tespond to the fitted J (z). 

need for an a p1iori knowledge of the intensity-distance relation. / (z) oc exp( - z/ {3 ) can safely 
be assumed only for short penetration depths of the evanescent field and transparent smfaces. 
This, however, poses considerable constraints to the experimental conditions and the range of 
forces where TIRM can be applied. Here. we have proposed a technique to determine I (z) 
that relies only on the hydrodynamic pat1icle-surface interaction [Eq. (1)] and, differently from 
existing data evaluation schemes, makes no assmuption on the functional fmm of I(z) or on 
the wall-pat1icle potential. This teclmique will particulru·ly be beneficial for the extension of 
TIRM to new domains. Here, we have demonstrated TIRM with a very large penetration deptl1, 
which allows one to bridge the gap between surface measurements and bulk measurements, 
and TIRM in front of a reflecting (gold-coated) surface, which allows plasmonic and biological 
applications. 

This new technique only assumes the knowledge of the particle radius, which is usually 
known within an high accuracy atld catl also be measured in situ [24], and tl1e monotonicity of 
I(z) . Were I (z) not monotonous, as it might happen for a metallic pat1icle in front of a reflective 
surface, the technique can be adapted to use the information from two non-monotonous signals, 
e.g. the scattering from two evanescent fields with different wavelength [31]. We notice that the 
technique encounters its natural limits when Eq. (1) does not coll'ectly describe the particle­
wall hydrodynamic interactions. Tlris may happen in situations when the nonslip bom1dary 
conditions do not apply or when the hydrodynanric interactions are otherwise altered, e.g. in a 
viscoelastic fluid. 
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Fig. 7. TIRM in front of a reflective surface. (a) The experimental potential (black dots)
obtained using the fitted intensity-distance relation and theoretical one (solid black line).
The green dots represent the faulty potential obtained using the exponential I(z) with
β = 244nm. (b) The fitted I(z) (black line) and the exponential one (green line) corre-
sponding to the evanescent field penetration depth β = 244nm. (c) Experimental intensity
MSD(I) (black dots) and skewness S(I) (red dots) for a scattering intensity time-series
(same particle and acquisition parameters as in Fig. 5, except for background electrolyte
50μM, κ−1 = 42nm) calculated using Eq. (4) and Eq. (5). Due to the presence of a
20nm-thick gold layer on the surface, the I(z) deviates from an exponential; the theoretical
MSD(I) (black solid line) and S(I) (red solid line) correspond to the fitted I(z).

Since the conditions in Eqs. (6) are fulfilled only by the correct I(z), they permit a self-
consistency check on the data analysis. Even when an exponential I(z) is justified, errors that
arise from the estimation of some parameters (e.g. the zero-intensity I0 and the background
intensity bs) can be easily avoided by checking the consistency of the analyzed data with the
aforementioned criteria. In principle, the analysis of TIRM data can be completely automatized,
possibly providing the missing link for a widespread application of TIRM to fields, such as
biology, where automated analysis techniques are highly appreciated.
The proposed technique can also be useful to determine the intensity-distance relation in

all those situations where it is possible to rely on the knowledge of the system hydrodynam-
ics, while the scattering is not accurately known. Often explicit formulas are available for the
hydrodynamic interaction of an over-damped Brownian particle in a simple geometry, while
complex numerical calculations are needed to determine its scattering. As a limiting case, this
technique might also prove useful for the PFM technique working in bulk, where the diffusiv-
ity is constant. Indeed, under certain experimental conditions – e.g. using back-scattered light
instead of the more usual forward-scattered light [36] – the intensity-distance relation can be
non-trivial and it can be necessary to determine it experimentally.




