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The study of microsystems and the development of nanotechnologies require alternative techniques to measure
piconewton and femtonewton forces at microscopic and nanoscopic scales. Among the challenges is the need to
deal with the ineluctable thermal noise, which, in the typical experimental situation of a spatial diffusion gradient,
causes a spurious drift. This leads to a correction term when forces are estimated from drift measurements
[G. Volpe, L. Helden, T. Brettschneider, J. Wehr, and C. Bechinger, Phys. Rev. Lett. 104, 170602 (2010)]. Here
we provide a systematic study of such an effect by comparing the forces acting on various Brownian particles
derived from equilibrium-distribution and drift measurements. We discuss the physical origin of the correction
term, its dependence on wall distance and particle radius, and its relation to the convention used to solve the
respective stochastic integrals. Such a correction term becomes more significant for smaller particles and is
predicted to be on the order of several piconewtons for particles the size of a biomolecule.

DOI: 10.1103/PhysRevE.83.041113 PACS number(s): 05.40.−a, 07.10.Pz

I. INTRODUCTION

The precise measurement of small forces plays a central
role in science and technology. Apart from the instrumental
challenge of measuring forces in the piconewton and fem-
tonewton ranges,the underlying concept of how forces are
determined between macroscopic objects cannot simply be
scaled down to the microscale and nanoscale levels. This is
easily understood by considering, e.g., a micron-sized object
suspended in a liquid environment. Due to its Brownian motion
resulting from collisions with the solvent’s molecules inertial
effects become largely negligible and the trajectory will look
rather different compared to macroscopic objects [1,2]. Due to
the irregularities of this type of motion, various possible math-
ematical descriptions for the trajectory of a microscopic object
exist, e.g., the stochastic differential equations suggested
by Itô and Stratonovich. Under many conditions all these
descriptions lead to the identical physical interpretation. This is
no longer true when the diffusion coefficient of the suspended
particle becomes position dependent, as this typically occurs
close to other particles or to a wall. In such cases, different
mathematical interpretations are not identical and at most one
correctly describes the physical reality. Although the need for
such corrections—usually referred to as “spurious drift”—
has been realized several decades ago, e.g., for numerical
simulations [3–6], they are seldom applied when analyzing
experimental data [7,8]. While such corrections are often
small, we have recently demonstrated that, in the presence
of a spatial dependence of the diffusion coefficient (a situation
often encountered, e.g., in biophysical system) the negligence
of the correct spurious drift term can lead not only to the wrong
amplitude but even to the wrong sign of the forces acting on a
micron-sized object suspended in a liquid environment [9].

In this paper we provide a systematic study of how the
presence of a position-dependent diffusion coefficient alters
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the interpretation of the forces acting on a colloidal particle.
By extending the results we presented in Ref. [9] we show
that only when the correct spurious drift term is subtracted are
the measured forces in agreement with theoretical predictions.
In particular, we show that the magnitude of the spurious
forces increases when considering smaller particles, as often
employed in biophysical experiments: The spurious forces
acting on a biomolecule with a diameter of about 10 nm can be
on the order of several piconewtons. This value is comparable
to the elastic forces that are commonly found in experiments
probing the biomechanics of single molecules [10,11].

In Sec. II we discuss the physical origin of the mathematical
ambiguity in the description of Brownian motion in a diffusion
gradient and how this ambiguity may result in different
formulas for the estimation of a force from experimental
data. We also show that there are essentially two ways of
measuring forces at the nanoscale level. The first is based
on the equilibrium distribution of a particle (or particles)
subjected to an a priori unknown force. The second takes
advantage of the fact that an applied force results in a drift of
the particle. In Sec. III we provide some detailed information
on the total internal reflection microscopy (TIRM) technique
and the materials we employed. In Sec. IV we report the
results of the force measurements on particles of various sizes
and materials suspended in water close to a wall under the
action of electrostatic forces and effective gravity, quantifying
in each case the value of the spurious forces. Finally, in
the Appendix we clarify how to describe correctly such
phenomena using both stochastic differential equations and
Fokker-Planck equations.

II. THEORY: FORCE MEASUREMENTS IN AN
OVERDAMPED SYSTEM

The forces acting on a microscopic object immersed in a
fluid medium can be assessed either by studying the underlying
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FIG. 1. (Color online) Main techniques of measuring forces at
the microscopic and nanoscopic scales, classified according to their
force resolution and the working conditions—surface and bulk—
for which they are best suited: atomic force microscopy (AFM)
[12], photonic force microscopy (PFM) [13–15], and total internal
reflection microscopy (TIRM) [16–18].

potential or by studying their effect on the object’s trajectory
(for an overview of force-measurement techniques and their
force resolution, see Fig. 1). The first approach—which we
shall refer to as the “equilibrium distribution method”—
requires sampling of the equilibrium distribution. Accordingly,
it can be applied only under conditions where the investigated
system is at or close to thermodynamic equilibrium with
a heat bath. The second method—which we shall refer to
as the “drift method”—does not require the object to be at
or even close to thermal equilibrium. Therefore, it can be
applied also to systems that are intrinsically out of equilibrium,
e.g., molecular machines, transport through pores, and DNA
stretching [10,11]. The latter method, however, requires the
detection of the object trajectory with high sampling rates,
which can be technologically more challenging, in particular
when combined with a high spatial resolution.

A. Equilibrium-distribution method

A microscopic object in contact with a thermal heat bath
at constant temperature does not come to rest, but keeps
on jiggling around due to the presence of thermal agitation.
When the particle is subjected to an external potential well
U (z), this leads to a Boltzmann position distribution p(z) =
exp{−[U (z)/kBT ]}, where kB is the Boltzmann constant and
T is the temperature of the heat bath.

Accordingly, it is possible to sample the steady-state
position probability distribution p(z) by measuring a large
number of uncorrelated object positions [Fig. 2(a)]. The equi-
librium potential can be derived from U (z) = −kBT ln[p(z)]
[Fig. 2(b)] and the force [Fig. 2(c)] from

F (z) = −dU (z)

dz
= kBT

p(z)

dp(z)

dz
. (1)
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FIG. 2. (Color online) Schematic procedure for measuring a force
F (z) by the equilibrium-distribution method. From (a) the measured
equilibrium probability distribution p(z) of a particle one obtains
(b) the potential-energy distribution U (z) = − ln p(z), which then
gives (c) the force F (z) = − ∂

∂z
U (z) [Eq. (1)].

Due to the exponential dependence of the probability
distribution on the potential depth, in typical experiments,
only potential minima within typically less than approximately
5kBT are explored by the particle. While Eq. (1) can be applied
only to equilibrium conditions, it should be mentioned that
recently it has been demonstrated that for the specific case of
nonequilibrium steady states a similar relation, i.e., a general-
ized Boltzmann distribution, can be derived for the stationary
particle equilibrium distribution and the conservative part of
the potential [19,20].

B. Drift method

Since for a microscopic body suspended in a liquid medium
viscous forces prevail by several orders of magnitude over
inertial effects, a constant force F applied to a microscopic
particle results in a constant drift velocity v = F/γ , where γ

is the object’s friction coefficient. Since v = �z/�t can be
retrieved from the measured particle displacement �z within
time �t , the force can be measured accordingly as

F = γ
�z

�t
. (2)

For large forces this obviously leads to a univocal result.
However, when the drift force amplitude is comparable to the
effect of the thermal noise, the measured particle displacement
�z and thus the drift force vary between identical experiments,
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FIG. 3. Schematic view of the propagator p(�z; z0,�t), which
gives the distribution of the particle position increments �z from its
initial position z0 after a time step �t . For sufficiently small �t the
distribution is gaussian with standard deviation

√
2Dz0�t [Eq. (4)].

The force can be estimated from the measured drift according to
Eq. (5).

leading to a statistical distribution of the measured values
(Fig. 3):

F (z) = γ

〈
�zj (z)

�t

〉
, (3)

where �zj (z) denotes the j th experimental value of the
particle’s displacement after time �t .

Although Eq. (3) is key to measuring forces under
nonequilibrium conditions, it is valid only in situations where
the diffusion coefficient D = kT /γ of the object to which
the force is applied is constant. When D becomes position
dependent, i.e.,

D(z) =
〈

[�zj (z) − 〈�zj (z)〉]2

2�t

〉
, (4)

Eq. (3) must be corrected by an additional term [9,21]

F (z) = γ (z)

〈
�zj (z)

�t

〉
− αγ (z)

dD(z)

dz
, (5)

which we shall refer to as “spurious force” and which may
depend on the specific choice of α ∈ [0,1].

In the case of systems that are coupled to a heat bath,
thermodynamic consistency requires that α = 1 [22]. In
particular, this is true for a Brownian particle, which is the
system we have experimentally investigated. More generally,
other values of α might be possible when describing other
stochastic processes [23].

1. Physical origin of the spurious force

A qualitative physical understanding of the correction term
in Eq. (5) can be gained by considering the effect of a diffusion
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FIG. 4. (Color online) In the presence of (a) a diffusion gradient,
the propagator p(�z; z0,�t) depends on where D is evaluated, i.e.,
at (b) zinitial, (c) zmiddle, or (d) zfinal. In the latter two cases this results
in a shift of the position distribution mean—the spurious drift.

gradient [Fig. 4(a)] on a Brownian particle initially localized
at position zinitial (verticaldashed line in Fig. 4) at time t0.

In the simplest picture, the particle diffusion results in a
dichotomic movement either to the left or to the right with
the same probability; therefore, after time �t the particle is
displaced by zinitial ± √

2D�t . In a more realistic picture,
the particle’s final position has a continuous probability
distribution. In both cases, by assuming D is constant, the
final particle position distribution p(�z; z0,�t) is symmetric,
like the histogram of Fig. 4(b).

In the presence of a diffusion gradient [Fig. 4(a)] the value
of D is obviously different at the initial and final positions;
therefore the evaluation of the displacement is not univocal.
If we assume that D = D(zintial)—which we shall refer to
as the “Itô convention”—p(�z; z0,�t) is symmetric, as in
the constant diffusion coefficient case [Fig. 4(b)]. However,
it could be argued that D should be averaged over the
particle displacement; if we assume thus D = D(zmiddle) —
the “Stratonovich convention”—p(�z; z0,�t) becomes asym-
metric [Fig. 4(c)] because the particle displaces further when
moving toward increasing diffusion. Finally, if we assume
D = D(zfinal)—the “isothermal, anti Itô or backward Itô
convention”—p(�z; z0,�t) becomes even more asymmetric
[Fig. 4(d)]. The spurious drift and the related spurious force
account for such asymmetry.

In more general terms, we might assume D = (1 −
α)D(zinitial) + αD(zfinal) and α ∈ [0,1], with α = 0 corre-
sponding to the Itô convention, α = 0.5 to the Stratonovich
convention, and α = 1 to the isothermal convention. The latter
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one in particular turns out to be the only thermodynamically
consistent one for a system coupled to a heat bath [22].

III. METHODS AND MATERIALS

A. Total internal reflection microscopy

The trajectories of colloidal particles close to a wall are
measured with TIRM [16–18] and a scheme of a typical
setup is presented in Fig. 5(a). A p-polarized laser beam
(λ = 658 nm) is totally internally reflected at a glass-liquid
interface generating an evanescent field decaying into the
liquid. A spherical colloidal particle in the vicinity of the
interface scatters the evanescent light. The scattering intensity
shows a marked dependence on the particle position I (z) =
I0 exp(−βz), where β is the inverse evanescent decay length
and I0 = I (with z = 0) [Fig. 5(b)]. The scattering intensity
time series I (t) is collected by an objective and recorded
by a photomultiplier [Fig. 5(c)] at a sampling rate of 1 kHz
for about 200 min. Inverting the position-intensity relation,
we finally obtain the particles’ trajectory z(t) with a spatial
resolution of a few nanometers [Fig. 5(d)]. Since our system is
in thermal equilibrium, the measured particle trajectory allows
us to calculate the forces via both the equilibrium distribution
and the drift method, as described above.
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FIG. 5. (Color online) Total internal reflection microscopy.
(a) Sketch of a typical TIRM geometry with a single colloidal particle
in front of a planar transparent wall. The particle is illuminated by the
evanescent field created by the total internal reflection of a laser beam
at the glass-fluid interface while undergoing Brownian motion. The
scattered intensity I is measured using a photomultiplier (PMT). The
forces acting on the particle are due to gravity Geff and electrostatic
interactions Fel and are indicated by opposing arrows. When (b)
the relationship between the scattered intensity and distance I (z) is
known, (c) the intensity time series I (t) can be converted into (d) the
trajectory z(t).
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FIG. 6. Influence of �t . At the distance z0 = 220 nm,(a) �t =
2 ms leads to a Gaussian distribution of the position increments, but
for (b) �t = 20 ms, a clear deviation from a Gaussian distribution
appears. At z = 400 nm, where the spatial variation of the drift is
much smaller, (c) the distribution is again Gaussian for �t = 2 ms
and (d) remains almost Gaussian also for �t = 20 ms.

Due to thefractal nature of the Brownian motion, the value
of 〈�zj (z)/�t〉 that has to be calculated for the drift force
[see Eq. (5)] strongly depends on the chosen time interval �t .
On the one hand, �t should be as short as possible; on the
other hand, it cannot be made arbitrarily small due to the finite
experimental acquisition frequency. A reasonable trade-off is
to choose �t so small that the spatial variation of the drift
force during such a time step is negligible. In order to meet
these conditions in our experiment, we have stepwise reduced
�t until the probability distribution of �z became Gaussian,
as expected when the above condition holds. Because under
our conditions (see Sec. III A) the spatial gradient of the force
acting on the particle is not constant, the above condition on
�t is expected to vary with the particle-wall distance. This is
shown in Fig. 6, where we plotted the probability distribution
of �z for �t = 2 and 20 ms obtained at two particle-wall
distances z = 220 and 400 nm, which correspond to the
distances with the largest and smallest spatial variations of the

TABLE I. Particle and sample parameters. Titanium oxide
particles were prepared according to the procedure in Ref. [24].
Melamin particles were acquired from Microparticles GmbH (MF-
F-1.3). Polystyrene particles were acquired from Invitrogen (IDC
1-2400).

R(nm) Material ρs(g/cm3) κ−1(nm) B(pN) NaCl (μm)

400 titanium -oxide 2.54 25 68 150
655 melamin 1.51 18 770 300
1180 polystyrene 1.05 18 1080 300
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FIG. 7. (Color online) Comparison of measured (solid cir-
cles) and calculated (line) normalized vertical diffusion coefficient
D⊥/DSE for an R = 400 nm particle as a function of the particle-wall
separation z.

force acting on the particle. As can be seen, for �t = 2 ms, we
always obtain a Gaussian distribution, while for �t = 20 ms
deviations from a Gaussian fit (dashed line) are observed. In
all measurements presented in the following we have chosen
�t = 2 ms.

B. Gravitational and electrostatic forces

In order to compare the measured forces with theory,
it is important to have full knowledge of the interaction
mechanisms of a colloidal particle with a wall. For an
electrically charged dielectric colloidal sphere suspended in
a solvent, the interaction forces have been demonstrated to be
described by [16–18]

F (z) = Be−κz − Geff . (6)
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FIG. 8. (Color online) Force derived by the equilibrium-
distribution method (squares) for the 400-nm-radius particle (see
Table I) and theoretical expectation (line) according to Eq. (6). The
inset shows the corresponding potential U (z).
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FIG. 9. (Color online) Force derived by the drift method for the
very same particle as in Fig. 8. The force measured according to
Eq. (5) with α = 1 (solid circles) coincides with the theory (line),
while with α = 0 (circles) and α = 0.5 (triangles) there is a clear
disagreement.

The first term is due to double layer forces with κ−1 the
Debye length and B a prefactor depending on the surface
charge densities of the particle and the wall (see Table I). The
second term describes the effective gravitational contributions
Geff = 4

3πR3(ρp − ρs)g with ρp and ρs the particle and
solvent density and g the gravitational acceleration constant.
Under our conditions the additional contribution of van der
Waals forces can be neglected since they become relevant
only at much shorter particle-wall distances [25,26].

C. Diffusion in the bulk and diffusion gradient in front of a wall

The Stokes-Einstein diffusion coefficient of a spherical
colloidal particle immersed in a solvent is DSE = kBT /6πηR,
where η is the shear viscosity of the liquid. Close to a wall
the bulk diffusion coefficient decreases due to hydrodynamic
interactions. From the solution of the creeping flow equations
for a spherical particle moving near a wall assuming nonslip
boundary conditions, the vertical component of the diffusion
coefficient is [27]

D⊥(z) = DSE

l(z)
, (7)

where

l(z) = 4

3
sinh [a(z)]

∞∑
n=1

n(n + 1)

(2n − 1)(2n + 3)(
2 sinh [(2n + 1)a(z)] + (2n + 1) sinh [2a(z)]

4 sinh2 [(n + 0.5)a(z)] − (2n + 1)2 sinh2 [a(z)]
− 1

)

and a(z) = cosh−1
(

1 + z

R

)
.
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FIG. 10. (Color online) Comparison of forces obtained for the
655-nm-radius particle (see Table I). For the equilibrium-distribution
method (solid squares) and drift method with correction term (open
squares) the results are in agreement with the theoretical expectation
(line) according to Eq. (6). Neglecting the correction term leads to
a clear deviation (solid circles). These data are the same as those
presented in Ref. [9].

D⊥(z) is zero at the wall and monotonically increases with
z approaching the bulk value at a distance of several particle
radii away from the wall. When calculating D⊥(z) from the
particle trajectories of our TIRM measurements according to
Eq. (4), indeed we find good agreement with the theoretical
prediction (Fig. 7).

D. Sample preparation and parameters

As a sample cell we used a 2-mm-thick cuvette comprising
two optical flats separated by a spacer of silicon rubber. The
cell was filled with clean deionized water containing a very
small number of colloidal particles and 150 − 300 μmM of
NaCl salt to adjust the Debye screening length. In order
to vary the spatial gradients of the diffusion coefficient we
used particles with different radii R and densities since they
sample different ranges of z/R: R = 400 nm (titanium oxide),
R = 655 nm (melamin), and R = 1180 nm (polystyrene). For
further details see Table I.

IV. RESULTS AND DISCUSSION

In Fig. 8 we show as solid symbols the force [and in the inset
the corresponding potential U (z)] acting on a R = 400-nm
titanium oxide particle as obtained by the equilibrium distri-
bution method [Eq. (1)]. Since the forces as determined from
this method are unambiguous, they will be considered as the
true forces acting on the particle. This is also supported by the
fact that the experimental data are in quantitative agreement
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FIG. 11. (Color online) Comparison of forces obtained for
the 1180-nm-radius particle (see Table I). For the equilibrium-
distribution method (solid squares) and the drift method with
the correction term (open squares) the results are in agreement with
the theoretical expectation (line) according to Eq. (6). Neglecting the
correction term leads to a clear deviation (solid circles).

with Eq. (6) (solid line), where Geff and κ−1 are taken from the
experimentally known parameters (Table I) while the prefactor
B has been treated as a fit parameter. The value B = 68 pN
is in agreement with other TIRM measurements under similar
conditions [17].

The symbols in Fig. 9 correspond to the force-distance
relation as obtained from the drift method using Eq. (5) for
α = 0 (solid circles), α = 0.5 (triangles), and α = 1 (open
squares). Since the gradient of D vanishes far away from
the surface, the force dependence on α is most pronounced
close to the wall but weakens at larger z where the curves
will eventually merge (only beyond the maximum distance
sampled by the particle). The forces determined with α = 1,
i.e., the isothermal convention, show good agreement with
Eq. (6) (solid line, the same as in Fig. 8). We want to emphasize
that all other choices of α, in particular the negligence
of the noise-induced correction (α = 0), lead to significant
differences. Not only the magnitude, but also the sign of the
forces obtained with α = 0 and 0.5 disagrees with the true
forces as obtained in Fig. 8.

Similar measurements were also performed with other
particles that are capable of sampling even smaller particle-
wall distances normalized by the particle radius, i.e., z/R (cf.
Figs. 12 and 13), where the gradient of the diffusion coefficient
becomes larger. Results are shown in Fig. 10 for the R = 655-
nm particle and in Fig. 11 for the R = 1080-nm particle. In
both cases, the equilibrium-distribution measurement (solid
squares) agrees with Eq. (6) with B as the only fit parameter
and with α = 1 (open squares). As before, all other choices of
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FIG. 12. (Color online) Distance dependence of the theoretically
calculated spurious force αγ d

dz
D with α = 1 for various particle radii

R (solid lines). Experimental data are shown for R = 400 nm (circles;
cf. Fig. 9), R = 655 nm (squares; cf. Fig. 10), and R = 1180 nm
(triangles; cf. Fig. 11).

α show no agreement, as exemplarily plotted for α = 0 (solid
circles).

In Fig. 12, the experimentally determined spurious force
obtained by the difference between the forces derived with the
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FIG. 13. (Color online) Distance dependence of the spurious drift
d

dz
D for various particle radii R (solid lines). Experimental data are

shown for R = 400 nm (circles; cf. Fig. 9), R = 655 nm (squares; cf.
Fig. 10), and R = 1180 nm (triangles; cf. Fig. 11).

uncorrected drift method [Eq. (3) or (5) with α = 0] and the
equilibrium potential method [Eq. (1)] is plotted for different
particle sizes as a function of z/R. The data are in good
agreement with the solid lines representing the theoretical
predictions for the spurious force αγ d

dz
D(z) with α = 1. The

spurious force depends only on the particle radius, but is
independent of ρs . It increases for particles closer to the wall
and for smaller particles due to the larger D, reaching values on
the order of several piconewtons for particles with R = 10 nm,
the size of a macromolecule.

By dividing the spurious forces (Fig. 12) by γ , it is possible
to derive the spurious drift α d

dz
D(z), which is plotted in

Fig. 13 for α = 1. The lines corresponding to the theoretical
predictions and the symbols representing the experimental data
for the particles with R = 400 nm (solid circles), R = 655 nm
(squares), and R = 1080 nm (triangles) show good agreement.
Due to the increasing gradient of the diffusion coefficient when
approaching a surface, the spurious drift increases for shorter
particle-wall distances and for smaller particles. In contrast to
the spurious force, which diverges for small z, the spurious
drift reaches a maximum at z = 0.

V. CONCLUSIONS

The experiments presented in this paper clearly demonstrate
that the presence of noise-induced drift has to be considered
in force measurements based on the drift; neglecting the drift
can lead to artifacts, which may even suggest the wrong sign
of the force. Such spurious forces become more significant
for smaller systems and may reach the piconewton range
for objects the size of a biomolecule, i.e., about 10 nm.
Furthermore, we stress that a constant diffusion coefficient
can be assumed only for a particle far from any boundary.
Such boundaries are naturally introduced by surfaces or by
other particles in suspension, a situation that is typically met
in experiments.
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APPENDIX: MATHEMATICAL DESCRIPTION OF THE
SPURIOUS DRIFT: STOCHASTIC DIFFERENTIAL

EQUATIONS AND THE FOKKER-PLANCK EQUATION

The motion of a Brownian particle can be described in
several ways. In this Appendix we clarify the relations between
the various approaches, putting them in a historical context
and demonstrating how the spurious drift emerges. We refer
to Ref. [21] for further details.

The first diffusion theory was developed by Smoluchowski
[28] and, independently, by Einstein [29] at the beginning
of the 20th century. The fundamental object of this theory
was the transition probability density ps,t (zinitial,zfinal) from
position zinitial to position zfinal between times s and t > s. The
individual particle trajectories played no major role in this
description of the diffusion process. In the 1930s Kolmogorov
showed that defining a probability measure on the path space is
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equivalent to specifying all finite-dimensional distributions of
a stochastic process, i.e., all joint distributions of the random
variables z(t1),z(t2), . . . ,z(tk), where t1 < t2 < . . . < tk are
some time instants (Kolmogorov’s extension theorem; for a
thorough mathematical treatment see, e.g., Ref. [30]). For the
Markov processes, such as processes describing the motion
of Brownian particles, finite-dimensional distributions are
determined in turn by the initial distribution and by the
transition probability density mentioned above. This shows, at
an abstract level, an equivalence of Kolmogorov’s general ap-
proach and the Smoluchowski-Einstein transition probability
description.

While the Kolmogorov extension theorem restores the
concept of an individual path to its position of central
importance in the description of a diffusion process, it
still leaves out another fundamental physical ingredient:
infinitesimal evolution law. This is furnished by the theory
of stochastic differential equations (SDEs), which describe
the time evolution of individual paths. This theory, developed
in the 1940s by Itô [21] (and to some extent also by
Gikhman and Stratonovitch), presents diffusion as a motion
of a particle according to a random dynamic law. Solutions
to SDEs are Markov processes and, at least in princi-
ple, transition probabilities are determined by the equation
and, as we have seen, they determine the statistics of the
trajectories.

The preceding remarks are purported to explain the status
of the Fokker-Planck equation [21] and its place in diffusion
theory. This partial differential equation (in mathematics called
the Kolmogorov forward equation) has the transition density
as its solution. It is thus an infinitesimal approach to diffusion
at the level of the transition densities. As explained above,
knowing the solution to the Fokker-Planck equation gives
one full knowledge of the diffusion process. It is thus of
the utmost importance for a successful implementation of
the Fokker-Planck equation method, given a SDE, to be able
to produce the correct form of the Fokker-Planck equation
from its coefficients. Before we address this point, we have to
discuss the so-called Itô-Stratonovitch dilemma, which is at
the root of the existence of the spurious drift and deals with
the interpretation of a SDE [31].

1. Stochastic differential equation approach

We consider the one-dimensional, time-independent SDE

dz = F (z)

γ (z)
dt +

√
2D(z) dW (t), (A1)

where W (t) denotes a Wiener process, i.e., a stochastic process,
whose increments are stationary, independent, and normally
distributed with W (t) − W (s) having mean zero and variance
equal to |t − s|. Such an equation describes, for example,
the behavior of a Brownian particle in the presence of a
position-dependent diffusion coefficient D(z). While only one-
dimensional SDEs are discussed here, these considerations can
be straightforwardly generalized to the multidimensional case.

Equation (A2) should be interpreted as the integral equation
[21],

z(T ) =
∫ T

0

F (z)

γ (z)
dt +

∫ T

0

√
2D(z) dW (t). (A2)

However, due to the irregularity of the Wiener process, as
well as the solution z(t) of the SDE, the second integral
on the right-hand side has several possible interpretations.
More precisely, it is defined as a limit of integral sums,∑N−1

n=0 σ [z(t∗j )][W (tj+1) − W (tj )], where tj are points divid-
ing the interval [0,T ] into N equal subintervals and the
intermediate points are defined by t∗j = (1 − α)tj + αtj+1. A
crucial point is that the value of the limit, i.e., of the stochastic
integral, depends on the choice of α. Thus, in every problem,
in addition to the SDE, we have to know the value of α for the
mathematical model of the phenomenon under investigation
to be well defined. Common choices are α = 0 (the Itô
convention), α = 0.5 (the Stratonovitch convention), and α =
1 (the isothermal, anti Itô, or backward Itô convention).

The different choices of α are connected to each other by
a precise mathematical relationship. Namely, the above SDE
with a given choice of α is equivalent to the Itô equation
(α = 0)

dz = F (z)

γ (z)
dt + α

dD(z)

dz
dt +

√
2D(z)dW |α=0, (A3)

that is, an equation with any choice of α can be rewritten
equivalently as an Itô equation, at the cost of adding an

TABLE II. Correct use of the SDE and the Fokker-Planck equation for systems coupled to a heat bath.

α SDE Fokker-Planck equation

0 dz = − F (z)
γ (z) dt + ∂

∂z
D(z)︸ ︷︷ ︸

spurious drift

dt + √
2D(z) dW ∂

∂t
p =

⎡
⎢⎢⎢⎣ ∂

∂z

⎛
⎜⎜⎜⎝ F (z)

γ (z) − ∂

∂z
D(z)︸ ︷︷ ︸

spurious drift

⎞
⎟⎟⎟⎠ + ∂

∂z

(
∂

∂z
D(z)

)
︸ ︷︷ ︸

diffusion

⎤
⎥⎥⎥⎦p

1/2 dz = − F (z)
γ (z) dt + 1

2

∂

∂z
D(z)︸ ︷︷ ︸

spurious drift

dt + √
2D(z) dW ∂

∂t
p =

⎡
⎢⎢⎢⎣ ∂

∂z

⎛
⎜⎜⎜⎝ F (z)

γ (z) −1

2

∂

∂z
D(z)︸ ︷︷ ︸

spurious drift

⎞
⎟⎟⎟⎠ + ∂

∂z

(
D(z)1/2 ∂

∂z
D(z)1/2

)
︸ ︷︷ ︸

diffusion

⎤
⎥⎥⎥⎦p

1 dz = − F (z)
γ (z) dt + √

2D(z) dW ∂

∂t
p =

⎡
⎢⎢⎢⎣ ∂

∂z

F (z)
γ (z) + ∂

∂z

(
D(z)

∂

∂z

)
︸ ︷︷ ︸

diffusion

⎤
⎥⎥⎥⎦p
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additional term α dD(z)
dz

dt . This term has been called “spu-
rious drift”—a confusing name since it may suggest its
nonphysical character, while, as we have seen, this addi-
tional drift term may be fully observable in a real physical
situation [9].

Concisely, we see here the central problem addressed in this
paper: The choice of α leads, in the Itô form of the equation,
to an extra drift term, which vanishes only when the diffusion
coefficient is constant. When D is position dependent, at most
one of these values of α can correctly describe the system; such
a parameter may depend on the system under investigation.
However, if the system is coupled to a heat bath, as is the case
for a Brownian particle, the spurious drift and the associated
spurious force are maximal, i.e., α = 1 in Eq. (A3). Of course,
as shown in Table II, other conventions may also be used by
adjusting the weight of the spurious drift term; remarkably,
for the anti Itô or isothermal convention the correction term
vanishes [22].

2. Fokker-Planck approach

Since the Fokker-Planck equation is deterministic, its solu-
tion involves no randomness and is thus uniquely determined.
However, given a SDE, the prescription for writing the
associated Fokker-Planck equation depends on the convention
adopted, as shown in Table II. To guarantee that the dynamics
reproduces equilibrium properties correctly when the noise
term is interpreted with a given α (first column), the SDE
(second column) must be corrected with an additional drift
term. The corresponding Fokker-Planck equation (third col-
umn) obtained from the SDE contains a drift term, which also
includes the corresponding spurious drift and a diffusion term,
which is commonly written in various forms in the literature.
We note that each form corresponds to a different choice of α

for the interpretation of the noise in the underlying SDE, such
that the Fokker-Planck equation is unique, i.e., the sum of the
extra term due to the spurious drift and the diffusion term is
constant.
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