
8

Computing and Software

Evaluating Scripting Languages: How Python Can Help Political Methodologists

Holger Döring
Universität Konstanz
Holger.Doering@uni-konstanz.de

Why Python?
Political methodologists tend to make passionate statements
about their software tools. The PolMeth mailing list fre-
quently gives strong advocacy for the use of Linux, LATEX,
Emacs and other specific programmes. For statistical anal-
ysis R has become the mainstream programming language.
However, frequent encouragements to use PHP for web pur-
poses or Perl for various scripting tasks highlight the need
for a major scripting language beside R. Once political scien-
tists need systematic parsing of markup languages or have
to generate web presentations from their data, R quickly
reaches its limits. For me, Python has become my favourite
scripting language of choice. Having had some previous ex-
posure to C, Java, PHP and Perl, Python turned out to
meet all my needs for software development, that R can not
fulfil. So let me introduce you to the beauty of Python.

Python helps with almost all of the data management
tasks I need. Two applications of the language accompany
my every day work: First, I use Python scripts to gener-
ate data sets from information provided at internet pages
(web scraping). Second, I work with SQLite and Django to
manage more complex data sets that require database op-
erations, such as merging, virtual tables, and visualization
in web pages. Both of these usages of a modern program-
ming language have increased my productivity significantly
and made data resources more easily available. In order
to introduce you to Python, I first evaluate contemporary
programming languages and their appropriateness for polit-
ical methodology. Subsequently, I demonstrate how to use
Python to generate a data set from an online source. In
the last part, I discuss some more advanced issues of data
analysis and evaluate how Python can help in a world of
ever more easily available online data.

Evaluating modern programming languages
Python has existed for almost two decades and became pop-
ular among programmers in the late nineties1. The language
is open source software and available at www.python.org.
It is preinstalled with Mac OS X and most Linux distri-
butions as well as easily installable on Windows systems.
Today, Python is a highly developed, well documented lan-

guage widely used. Much of google is driven by Python.
Its development is constantly evolving with a major new
version released in October 2008 (Python 3.0). Most im-
portant, the language is easy to learn and still satisfies your
needs even if you have reached high levels of proficiency.
Consequently, it is a good choice for a first programming
language to learn.

As with every modern programming language,
Python comes with a big standard library that makes
many tasks easier, such as reading and parsing files or us-
ing regular expressions. In addition, many projects have
evolved around Python providing extensions to the lan-
guage. These packages allow for example rapid develop-
ment of webpages, advanced numerical analysis or process-
ing of various data types. Most of these additional mod-
ules can be easily installed via the Python Package Index
(pypi.python.org/pypi) a repository of software that con-
tains many useful program packages, similar to CRAN. Fi-
nally, the language comes with an interpreter, as in R, that
allows shell-like exploration of language features.

How does Python perform compared to other soft-
ware languages? Most of the more traditional programming
languages are too complex for our every day tasks in po-
litical methodology. Memory management as required in C
is something political scientist should not worry about for
almost any of their projects. Java may also be too complex
and its syntax too verbose for most of our tasks, however it
is widely used in agent-based modelling.

PHP and Perl were the most popular scripting lan-
guages in the late nineties and the first part of this decade.
The syntax of both of these languages can not stand up to
the simple beauty of Python code. Perl even has become
famous for its idiosyncratic syntax. Its motto of “There’s
more than one way to do it” has made it known to be the
“The Swiss Army Chainsaw” allowing one to hack scripts
very quickly. However, Perl scripts are often hard to un-
derstand by others or even by oneself after some time has
passed. Beside Perl, PHP has been very popular for develop-
ing dynamic webpages. However, PHP requires a web server
to run and is often less powerful than Perl and Python in
not web related tasks. Finally, there are issues of language

1To compare the spread of different computer languages see for example the TIOBE Programming Community Index www.tiobe.com/tpci.htm

http://polmeth.wustl.edu/thepolmeth.php
http://kops.ub.uni-konstanz.de/volltexte/2009/7652
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-76526

9

design that make Python a superior choice but I am not the
one who can talk about design issues very competently.

Currently, only Ruby has developed to be a major
contender of Python’s popularity. Especially, its web frame-
work “Ruby on Rails” has generated a significant group
of advocates for the language. Ruby and Python are very
similar and debates over general benefits of either of these
languages quickly turn into very detailed aspects of agile
programming languages. Python is in wider use among
scientists whereas Ruby is driven signifcantly by web de-
velopment projects. NumPy and Python’s superb Unicode
support, even better in the upcoming Python 3.0, would be
my arguments in favour of Python over Ruby. Nevertheless,
if you worked with Ruby and feel comfortable with the lan-
guage, it may not be worthwhile to switch to Python. Either
of the two languages fulfils the demands political method-
ologists have in data processing and web related tasks.

Data management with Python
Let us now turn to applications of modern scripting lan-
guages and demonstrate how they can support our every
day computing tasks. More and more data sources for po-
litical scientists are available online. Mostly, the information
does not come in a neat spreadsheet like format that we can
easily import into our statistical packages. Data may be
available in a highly structured format such as XML, but
most of current online information is provided in HTML. It
is up to the data analyst to turn these digital resources into
data sets quickly and the task at hand is significantly easier
to handle with a modern scripting language.

Recently, Jackman (2006) demonstrated how R can
be used to read reasonable structured online sources. How-
ever, in my experience, R is quickly stretched to its limits

once the web pages get somewhat more complicated. Solely
relying on string processing tools such as regular expres-
sions quickly creates complicated programmes and ignores
the structure of the document provided by the markup lan-
guage. Modern scripting languages come with parsers that
make reading structured data easier. These parsers allow
very fine grained access to elements of a data source. As
reading and analysing structured documents is one of the
major tasks for modern scripting languages, these parsers
are well developed and different approaches to access the
data are implemented.

The structure of most online sources we want to im-
port is very simple. First, we have one or various content
pages with links to each page that contains the informa-
tion we are interested in. Second, data has to be extracted
from each of these pages and sometimes the documents con-
tain links to further information we may want to include.
As an example, take a website with information on MPs or
legislation. While browsing these webpages, we start from
navigating index pages to the specific information we are
interested in. Hence, our computer programs should do the
same to extract the information we need.

Let us start with an example on how to fetch data
from nested HTML pages. On the following pages, I pro-
vide a Python script, that reads information about all post-
ings on the PolMeth mailing list as provided at http:
//polmeth.wustl.edu/polmeth.php and its subpages (see
Figure 1). From this information, we want to generate a
data set with information on all postings (author, date, ti-
tle, URL) at the PolMeth list. In addition, we want to
calculate a top ten list of authors posting at PolMeth. I
now demonstrate how these nested online data sources can
be turned into a data set with a modern scripting language.

Figure 1: PolMeth mailing list archive

10

To fetch all postings from the PolMeth mailing list,
I wrote a Python program that parses data from the online
source. For this task, we rely on functions provided in the
Python standard library. The library comes with an HTML
parser of its own that is a little clumsy. An additional
Python package that parses HTML documents, Beautiful-
Soup (www.crummy.com/software/BeautifulSoup), is eas-
ier to use and shows better performance with invalid HTML
pages. In my work, I have had very good experiences using
BeautifulSoup to parse very different online sources.

The following script fetches the data from the Pol-
Meth list web page we are interested in. It proceeds
by first reading the index page http://polmeth.wustl.
edu/polmeth.php and extracts all links to the monthly
summaries—links starting with /mailinglist/search.php.
Subsequently, the program loops over all links, reads the re-
lated pages and extracts the information we are interested
in. To read the information about a posting, the program
processes every table row and extracts information from col-
umn entries and hyperlinks provided for posting. Finally,
results are stored in a list structure.

Web scraping: An example

#/usr/bin/env python

import codecs, csv, re, urllib

from BeautifulSoup import BeautifulSoup

polmethurl = ’http://polmeth.wustl.edu’

read online file and parse html

s = urllib.urlopen(polmethurl + ’/polmeth.php’)

index = BeautifulSoup(s.read())

regex = re.compile(’^/mailinglist/search.php’)

urlmonths = index.findAll(attrs={’href’: regex})

process monthly section of postings

data = []; m = {} # initialize elements

for url in urlmonths:

read page for current month

url = polmethurl + url[’href’]

print ’fetching ’ + url

s = urllib.urlopen(url)

mails = BeautifulSoup(s.read())

process table rows (skip headline)

for mail in mails.table(’tr’)[1:]:

entries = mail(’td’) # row elements into list

extract information from row elements

m[’date’], m[’time’] = entries[0].string.split()

m[’title’] = entries[2].a.string.strip()

m[’url’] = entries[2].a[’href’]

m[’url’] = polmethurl + ’/mailinglist/’ + m[’url’]

extract author name from first field (if existing)

m[’authorfull’] = entries[1].string.strip()

if m[’authorfull’].find(’<’) != -1:

m[’author’] = m[’authorfull’].split(’<’)[0].strip(’ "’)

else:

m[’author’] = m[’authorfull’]

add elements to list of data

data.append(m.copy())

Looking at the program listings you may have quickly
realised that Python uses indentions to separate program
blocks. This helps to write readable code. In the program,
we use lists and dictionaries to assign our data. At the end
of the program, information we are interested in is saved in
a list where each entry contains information about one post-
ing at the PolMeth list. Every entry has an element for the
following information: author, date, time, authorfull, title,
url.

After we have processed the data from our online
sources, we have to decide if we want to perform our data
analysis in Python as well. In the Python community, there
is the NumPy package, that allows mathematical array pro-
cessing and is widely used by scientists. For our current
task, determining the top ten posting authors, python stan-
dard tools are sufficient.

determine the number of postings per author and sort results

authorlist = [x[’author’] for x in data]

authors = [(authorlist.count(x), x) for x in set(authorlist)]

authors.sort()

authors.reverse()

print ’\nTop ten postings on PolMeth list’

print ’--------------------------------’

for i, j in authors[0:9]:

print str(i) + ’\t’ + j

The listings show that processing spreadsheet like
data in python is rather awkward. Here, we rely on list
comprehension to generate a variable with the information
we are interested in, the number of postings per author.

For me, once I have downloaded and parsed my data
from online sources I quickly change horses and turn to R
for data analysis. Python is very powerful to process online
sources and text files. However, once I have converted these
information into something that is more spreadsheet like, R
feels more natural.

In order to export our data from the Python program
we generate a csv file. Python’s syntax for exporting data
into a csv file is somewhat verbose. For completeness, I give
the listing here:

write all data into csv file

outfile = codecs.open("polmeth.csv", "wb", "utf-8")

cols = [’author’, ’date’, ’time’, ’authorfull’, ’title’, ’url’]

writer = csv.DictWriter(outfile, cols, quoting=csv.QUOTE_NONNUMERIC)

writer.writerow(dict(zip(cols, cols)))

for i in data:

try:

writer.writerow(i)

11

except:

"Print can’t write row" + i[’date’] + i[’time’]

outfile.close()

You can also write the information directly into a database,
such as MySQL or SQLite. Once you have exported the data
from Python you can proceed by analysing the information
in your favourite statistical package. For our example, gen-
erating the top ten list of authors posting at PolMeth is
straight forward in R. It just requires three lines of code:

pm <- read.csv("polmeth.csv", as.is=TRUE)

authors <- sort(tapply(pm$author, pm$author, length),

decreasing = TRUE)

authors[1:10]

Maybe, you have gained some ideas how Python, or any
other modern scripting language, may help to derive data
from structured information sources. In the previous exam-
ples, we used Python to extract data from the PolMeth list
archive. Relying on a HTML parser that comes with any
high level language allows fine grained access to page ele-
ments. Running the scripts, you may have figured out what
the top ten list looks like.

Future online presentations will provide information
that is even better structured (eg. XML, JSON, etc.), hence
easier to access. Hopefully, I have convinced you that mod-
ern scripting languages are extremely helpful to turn various
data sources into data sets. My discussion of recent trends
in data provision at the last section will explore more ap-
plications for modern scripting languages. Before, let me
shortly present some more tasks I manage with Python.

Organising and presenting data
I regularly use Python to convert online data into data sets.
In addition, I apply the language to process textual data
and for record linkage of different data sets. The latter
requires use of a simple fuzzy string matching algorithms.
The language also helps with a couple of minor tasks that
show up every now and then, such as renaming multiple
files, data conversion etc. For most of these requirements I
can rely solely on Pyhton’s standard library and sometimes
I add external open source packages. I rarely have to code
extensivly to fulfil my data management tasks.

Some of my data sets have become rather complex
and require a database design to be managed coherently.
I have started to use the Python web framework Django
(www.djangoproject.com) in order to develop a web inter-
face for this data. Web application frameworks allow one to
create dynamic websites easily. Once you want to provide
an interface to more complex data structures, frameworks
allow you to develop a web interface quickly. Web frame-
works help with accessing your data from a database with
user management and templating of HTML pages. Django,
a popular Python framework, has allowed me to manage my

data very easily. In my view, it is easier and faster to de-
velop a web presentation in Django than in PHP, which is
often used for these tasks. You will get familiar with Django
quickly if you have some knowledge of Python.

Building web applications for data sets is not a major
task for political methodologists. However, once you work
with different people on the creation of a data set, web based
data coding makes the data generation more reliable. Web
frameworks also allow you to include modern features of
webpages, such as wikis and comment sections. In addi-
tion, see the shift from paper based to Internet based uses
of surveys. Nowadays, everyone can setup a small online
survey with very limited resources. As this article promotes
the usage of Python for data related tasks, web frameworks
that are provided for modern scripting languages make the
creation of data presentations online significantly easier.

Trends in data provision and analysis
There are current trends in the online world that will

make knowledge of a modern scripting language even more
important in the coming years. There are web pages that
provide systematic data on questions of political science and
these data sources are regularly updated. Combining these
data sources allows one to generate data sets for studies of
political science automatically.

Take for example the web page at projects.
washingtonpost.com/congress, a so called mashup. The
page collects and presents information on voting in the
Congress from various online sources. It is important to
note that the providers do not code any of the data them-
selves. They just combine existing online sources. The
page has been created with Python and Django, tools I
have previously presented. Political scientists that want to
make systematic use of data in a similiar way need pro-
grammed scripts that include these data sources automat-
ically or download them at regular intervals. Modern data
generation does not require one to code extensive amounts of
data manually but to code a computer script that extracts
information. Hence, political methodologists have to gain
knowledge of a scripting language in order to write these
scripts.

There is a strong trend in the online community to-
wards a more systematic distinction between data and lay-
out. This trend is referred to as the semantic web or web
3.0. Out of this work data will be presented in a way that
allows a combination of different data sources. One interest-
ing project in this respect is www.freebase.com. Whereas
Wikipedia provides a huge data source of information on-
line, its different information is difficult to extract auto-
matically. Freebase provides an open database that can be
extended by its users and the project provides an open in-
terface to systematically extract relevant information. In
the same line, Wikipedia has also started to include some

12

semantic information in its articles.
Other online sources are also provided in a more sys-

tematic way. I do not want to go into too much detail.
Creating data sets by drawing on systematically organised
online sources will be a substantial part of our future work
on data generation. Contrary, to the approach that I pro-
vided in my example, these data sources can be read by
systematically specifying the content of the element to be
extracted instead of relying on format parameters such as
the table entry as used in my example.

Combining and analysing the ever growing amount of
information available has led to new methods of data min-
ing. Segaran (2007) gives a nice and accessible demonstra-
tion of how Python can be used to analyse different online
information. He provides examples of modern data mining
techniques applied to various online information that pro-
vide systematic interfaces to their data (APIs). Segran’s
book shows how you access the online resources via Python
and discusses different data mining algorithms to analyse
these data. The scripts are short and easy to read, most of
the statistical techniques are similar to the ones we apply
in political methodology. The book gives many inspirations
on how to make use of new opportunities provided through
structured online data.

To make systematic use of modern methods of data
provision and analysis you need to have some knowledge of a
powerful scripting language. All these languages come with
package repositories that provide many scripts to work with
online data and to access various web resources. To turn the
information you are interested into a data set requires you
to include these packages in your own script and to modify
them for your needs.

Conclusion
Hopefully, this note was sufficient to convince you of the
benefits that modern scripting languages provide for politi-
cal methodologists. In my opinion, Python and Ruby have
the right balance between power and complexity for all pro-
gramming tasks that statistical programming languages can
not fulfil. Both languages are easy to learn and are still pow-
erful programming languages once you have gained more
proficiency. It may well be that every decade has its pro-
gramming language and I believe that Python and Ruby are
today’s languages for computing tasks in political method-
ology. Knowing one of these modern scripting languages be-
comes even more important as online data sources become
more numerous and better structured. A powerful scripting
language at hand will help you to draw on this information
quickly and adds to many more of your scripting needs. If I
have convinced you on the power of Python, pick up Chun
(2007) to get a thorough introduction into the language and
its applications.

References

Chun, Wesley J. 2007. Core python programming.
Upper Saddle River, NJ: Prentice Hall.

Jackman, Simon. 2006. “Data from the web into R.”
The Political Methodologist 14(2): 11-15.

Segaran, Toby. 2007. Programming collective
intelligence: Building smart Web 2.0 applications.
Sebastopol, CA: O’Reilly Media.

	Text1: First publ. in: The Political Methodologist 16 (2008), 1, pp. 8-12
	Text2: Konstanzer Online-Publikations-System (KOPS)
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-76526
URL: http://kops.ub.uni-konstanz.de/volltexte/2009/7652

